Skip to main content
Log in

On the Convergence of Monotone Hurwitz Generating Functions

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Monotone Hurwitz numbers were introduced by the authors as a combinatorially natural desymmetrization of the Hurwitz numbers studied in enumerative algebraic geometry. Over the course of several papers, we developed the structural theory of monotone Hurwitz numbers and demonstrated that it is in many ways parallel to that of their classical counterparts. In this note, we identify an important difference between the monotone and classical worlds: fixed-genus generating functions for monotone double Hurwitz numbers are absolutely summable, whereas those for classical double Hurwitz numbers are not. This property is crucial for applications of monotone Hurwitz theory in analysis. We quantify the growth rate of monotone Hurwitz numbers in fixed genus by giving universal upper and lower bounds on the radii of convergence of their generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biane, P.: Parking functions of types A and B. Electron. J. Combin. 9, #N7 (2002)

  2. De Wit B., ’t Hooft G.: Nonconvergence of the 1/N expansion for SU(N) gauge fields on a lattice. Phys. Lett. B 69(1), 61–64 (1977)

    Article  MathSciNet  Google Scholar 

  3. Diaconis, P., Greene, C.: Applications of Murphy’s elements. Technical Report, No. 335, Stanford University, Stanford (1989)

  4. Do, N., Dyer, A., Matthews, D.: Topological recursion and the quantum curve for monotone Hurwitz numbers. arXiv:1408.3992 (2014)

  5. Do, N., Karev, M.: Monotone orbifold Hurwitz numbers. arXiv:1505.06503 (2015)

  6. Eisenbud D., Elkies N., Harris J., Speiser R.: On the Hurwitz scheme and its monodromy. Compositio Math. 77, 95–117 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Goulden I.P., Guay-Paquet M., Novak J.: Monotone Hurwitz numbers in genus zero. Canad. J. Math. 65, 1020–1042 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goulden I.P., Guay-Paquet M., Novak J.: Polynomiality of monotone Hurwitz numbers in higher genera. Adv. Math. 238, 1–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goulden I.P., Guay-Paquet M., Novak J.: Monotone Hurwitz numbers and the HCIZ integral. Ann. Math. Blaise Pascal 21, 71–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goulden I.P., Jackson D.M., Vakil R.: Towards the geometry of double Hurwitz numbers. Adv. Math. 198, 43–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gross, D.J., Taylor IV, W.: Two-dimensional QCD is a string theory. Nuclear Phys. B 400, 181–208 (1993)

  12. Hurwitz A.: Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–60 (1891)

    Article  MathSciNet  Google Scholar 

  13. Jucys A.: Symmetric polynomials and the center of the symmetric group ring. Rep. Math. Phys. 5, 107–112 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Matsumoto S., Novak J.: Jucys-Murphy elements and unitary matrix integrals. Int. Math. Res. Not. IMRN 2, 362–397 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Novak, J.: Jucys-Murphy elements and the Weingarten function. In: Bozejko, M., Krystek, A., Wojakowski, L. (eds.) Noncommutative Harmonic Analysis with Applications to Probability II, pp. 231–235. Polish Acad. Sci. Inst. Math., Warsaw (2010)

  16. Novak J.: Lozenge tilings and Hurwitz numbers. J. Stat. Phys. 161, 509–517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Okounkov A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7, 447–453 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Okounkov A., Pandharipande R.: Gromov-Witten theory, Hurwitz theory, and completed cycles. Ann. of Math. (2) 163, 517–560 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Okounkov, A., Pandharipande, R.: Gromov-Witten theory, Hurwitz theory, and matrix models. arXiv:math/0101147v2 (2014)

  20. Pyber L.: Enumerating finite groups of given order. Ann. of Math. (2) 137, 203–220 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Samuel S.: U(N)-integrals, 1/N, and the De Wit-’t Hooft anomalies. J. Math. Phys. 21, 2695–2703 (1980)

    Article  MathSciNet  Google Scholar 

  22. Stanley, R.P.: Parking functions and noncrossing partitions. Electron. J. Combin. 4, #R20 (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Goulden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goulden, I.P., Guay-Paquet, M. & Novak, J. On the Convergence of Monotone Hurwitz Generating Functions. Ann. Comb. 21, 73–81 (2017). https://doi.org/10.1007/s00026-017-0341-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-017-0341-5

Mathematics Subject Classification

Keywords

Navigation