Skip to main content
Log in

The Anti-symmetric Solution of the Matrix Equation \(AXA^\top =B\) on a Null Subspace

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

For a given matrix \(G \in {\mathbb {R}}^{k\times n}\), let the set \( \Omega _G =\hbox {Null}(G),\) and let \(\mathbb{A}\mathbb{S}_{{\Omega _G}}({\mathbb {R}}^{n \times n})=\{ A \in {\mathbb {R}}^{n\times n}\vert (Ax,y)=(x,-Ay),\forall x,y \in {\Omega _G}\}\), that is, \(\mathbb {{AS}}_{{\Omega _G}}({\mathbb {R}}^{n \times n})\) is the set of all anti-symmetric matrices on \(\Omega _G\). In this paper, we first consider the following problem (Problem 1): Given \(A\in {\mathbb {R}}^{m\times n},B\in {\mathbb {R}}^{m\times m}\), find \(X\in \mathbb {{AS}}_{{\Omega _G}}({\mathbb {R}}^{n \times n})\) such that \(AXA^\top =B\). Then, we consider the associated optimal approximation problem: Given \({\tilde{X}} \in {\mathbb {R}}^{n\times n}\), find \({\hat{X}}\in {\mathcal {S}}_{{\Omega _G}}(A,B)\) such that \(\hat{X}={\arg \min \limits _{X\in {\mathcal {S}}_{{\Omega _G}}(A,B)}}\Vert X - {\tilde{X}}\Vert \), where \(\Vert \cdot \Vert \) is the Frobenius norm and \({\mathcal {S}}_{{\Omega _G}}(A,B)\) is the solution set of Problem 1. By using the generalized singular value decomposition of a matrix pair, we deduce the solvability condition and the representation of the general solution of Problem 1. Moreover, we obtain the unique approximation solution \({\hat{X}}\) of the optimal approximation problem. Finally, a numerical example is presented to show the correctness of our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

Data availability

This paper has no associated data.

References

  1. Lancaster, P., Prells, U.: Inverse problems for damped vibrating systems. J. Sound Vib. 283, 891–914 (2005)

    Article  MathSciNet  Google Scholar 

  2. Mottershead, J.E., Ram, Y.M.: Inverse eigenvalue problems in vibration absorption: passive modification and active control. Mech. Syst. Signal Process. 20, 5–44 (2006)

    Article  Google Scholar 

  3. Yuan, Y.: A symmetric inverse eigenvalue problem in structural dynamic model updating. Appl. Math. Comput. 213, 516–521 (2009)

    MathSciNet  Google Scholar 

  4. Yuan, Y., Dai, H.: An inverse problem for undamped gyroscopic systems. J. Comput. Appl. Math. 236, 2574–2581 (2012)

    Article  MathSciNet  Google Scholar 

  5. Wonham, W.M.: Linear Multivariable Control: A Geometric Approach. Springer, New York (1979)

    Book  Google Scholar 

  6. Avdonin, S.A., Belishev, M.I., Ivanov, S.A.: Boundary control and a matrix inverse problem for the equation. Math. USSR-Sbornik 72, 287–310 (1992)

    Article  MathSciNet  Google Scholar 

  7. Udwadia, F.E.: Structural identification and damage detection from noisy modal data. J. Aerosp. Eng. 18, 179–187 (2005)

    Article  Google Scholar 

  8. Dong, B., Lin, M., Chu, M.: Parameter reconstruction of vibration systems from partial eigeninformation. J. Sound Vib. 327, 391–401 (2009)

    Article  Google Scholar 

  9. Chang, X., Wang, J.: The symmetric solution of the matrix equations \(AX + Y A = C,AXA^\top + BY B^\top = C,\) and \((A^\top XA,B^\top XB) = (C,D).\) Linear Algebra Appl. 179, 171–189 (1993)

  10. Xie, D., Zhang, L.: The least squares solution of the inverse problem for a class of anti-symmetric matrices. J. Eng. Math. 10, 25–34 (1993)

    Google Scholar 

  11. You, X., Tao, Y., Ma, S.: Anti-symmetric solution of matrix equation \(AXB = C.\) J. Nanjing Normal Univ. (Nat. Sci.) 26, 6–10 (2003)

  12. Ramadan, M.A.: Necessary and sufficient conditions for the existence of positive definite solutions of the matrix equation \(X + A^\top X^{-2}A = I.\) Int. J. Comput. Math. 82, 865–870 (2005)

  13. Furuta, T.: Positive semidefinite solutions of the operator equation \(\Sigma ^n_{j=1}A^{n-j}XA^{j-1}=B.\) Linear Algebra Appl. 432, 949–955 (2010)

  14. Wang, Q., Yang, C.: The re-nonnegative definite solutions to the matrix equation \(AXB = C.\) Comment. Math. Univ. Carol. 39, 7–13 (1998)

  15. Khatri, C.G., Mitra, S.K.: Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math. 31, 579–585 (1976)

    Article  MathSciNet  Google Scholar 

  16. Groß, J.: A note on the general Hermitian solution to \(AXA^\ast =B.\) Bull. Malays. Math. Sci. Soc. 21, 57–62 (1998)

  17. Groß, J.: Nonnegative-definite and positive-definite solutions to the matrix equation \(AXA^\ast =B\)-revisited. Linear Algebra Appl. 321, 123–129 (2000)

    Article  MathSciNet  Google Scholar 

  18. Peng, X., Zhang, L., Hu, X.: The anti-symmetric orthogonal anti-symmetric least squares solutions of matrix equation \(A^\top XA = B\). Chin. J. Eng. Math. 21, 93–97 (2004)

  19. Yuan, L., Liao, A., Zhang, L.: Minimization problem for symmetric orthogonal anti-symmetric matrices. J. Comput. Math. 25, 211–220 (2007)

    MathSciNet  Google Scholar 

  20. Liu, Y., Tian, Y., Takane, Y.: Ranks of Hermitian and skew-Hermitian solutions to the matrix equation \(AXA^\ast =B\). Linear Algebra Appl. 431, 2359–2372 (2009)

    Article  MathSciNet  Google Scholar 

  21. Tian, Y.: On additive decompositions of the Hermitian solutions of the matrix equation \(AXA^\ast =B\). Mediterr. J. Math. 9, 47–60 (2012)

    Article  MathSciNet  Google Scholar 

  22. Berman, A.: Mass matrix correction using an incomplete set of measured modes. AIAA J. 17, 1147–1148 (1979)

    Article  Google Scholar 

  23. Yuan, Y., Dai, H.: Inverse problems for symmetric matrices with a submatrix constraint. Appl. Numer. Math. 57, 646–656 (2006)

    Article  MathSciNet  Google Scholar 

  24. Zeng, M., Yuan, Y.: Sparse structure preserving finite element model updating problem for gyroscopic systems. Mech. Syst. Signal Process. 203, 110734 (2023)

    Article  Google Scholar 

  25. Yuan, Y., Dai, H.: A class of inverse problem for matrices on subspace. Numer. Math. -J. Chin. Univ. 27, 69–76 (2005)

  26. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)

    Google Scholar 

  27. Cao, W.: Solvability of a quaternion matrix equation. Numer. Math. -J. Chin. Univ. 17, 490–498 (2002)

  28. Paige, C.C., Saunders, M.A.: Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18, 398–405 (1981)

  29. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013)

    Book  Google Scholar 

  30. Stewart, G.W.: Computing the CS decomposition of a partitioned orthonormal matrix. Numer. Math. 40, 297–306 (1982)

  31. Cheney, E.W.: Introduction to Approximation Theory. AMS Chelsea Publishing, Providence (1982)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to an anonymous referee for valuable comments and suggestions which helped to improve the presentation of this paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Yuan.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Yuan, Y. The Anti-symmetric Solution of the Matrix Equation \(AXA^\top =B\) on a Null Subspace. Results Math 79, 100 (2024). https://doi.org/10.1007/s00025-024-02129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-024-02129-z

Keywords

Mathematics Subject Classification

Navigation