Skip to main content
Log in

The Minimal Function of a BV Function

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper we introduce a class of one dimensional non-centered minimal operator \({\widetilde{m}}_\Phi \) associated to a function \(\Phi \), which covers the usual minimal operator. We establish the boundedness of \({\widetilde{m}}_\Phi :\textrm{BV}(\mathbb {R})\rightarrow \textrm{BV}(\mathbb {R})\) under a more restrictive condition on \(\Phi \). Here \(\textrm{BV}(\mathbb {R})\) is the set of functions of bounded variation defined on \(\mathbb {R}\). In the discrete setting, we prove the discrete minimal operator is bounded and continuous from \(\textrm{BV}(\mathbb {Z})\) to itself under a more restrictive condition on \(\Phi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

No data were used to support this study.

References

  1. Aldaz, J.M., Pérez Lázaro, J.: Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities. Trans. Am. Math. Soc. 359, 2443–2461 (2007)

    Article  MathSciNet  Google Scholar 

  2. Beltran, D., Madrid, J.: Regularity of the centered fractional maximal function on radial functions. J. Funct. Anal. 279(8), 108686 (2020)

    Article  MathSciNet  Google Scholar 

  3. Beltran, D., Madrid, J.: Endpoint Sobolev continuity of the fractional maximal function in higher dimensions. Int. Math. Res. Not. 2021(22), 17316–17342 (2021)

    Article  MathSciNet  Google Scholar 

  4. Bober, J., Carneiro, E., Hughes, K., Pierce, L.B.: On a discrete version of Tanaka’s theorem for maximal functions. Proc. Am. Math. Soc. 140, 1669–1680 (2012)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  6. Carneiro, E., Hughes, K.: On the endpoint regularity of discrete maximal operators. Math. Res. Lett. 19, 1245–1262 (2012)

    Article  MathSciNet  Google Scholar 

  7. Carneiro, E., Madrid, J.: Derivative bounds for fractional maximal functions. Trans. Am. Math. Soc. 369(6), 4063–4092 (2017)

    Article  MathSciNet  Google Scholar 

  8. Carneiro, E., Madrid, J., Pierce, L.B.: Endpoint Sobolev and BV continuity for maximal operators. J. Funct. Anal. 273(10), 3262–3294 (2017)

    Article  MathSciNet  Google Scholar 

  9. Carneiro, E., Moreira, D.: On the regularity of maximal operators. Proc. Am. Math. Soc. 136, 4395–4404 (2008)

    Article  MathSciNet  Google Scholar 

  10. Chen, T., Liu, F.: A characterization of a function of bounded variation, arXiv:2306.07852v1.

  11. González-Riquelme, C.: Continuity for the one-dimensional centered Hardy–Littlewood maximal operator at the derivative level. J. Funct. Anal. 285, 110097 (2023)

    Article  MathSciNet  Google Scholar 

  12. González-Riquelme, C., Kosz, D.: BV continuity for the uncentered Hardy–Littlewood maximal operator. J. Funct. Anal. 281(2), 109037 (2021)

    Article  MathSciNet  Google Scholar 

  13. Cruz-Uribe, D.S.F.O., Neugebauer, C.J.: The structure of the reverse Hölder classes. Trans. Am. Math. Soc. 347, 2941–2960 (1995)

    Google Scholar 

  14. Cruz-Uribe, D.S.F.O., Neugebauer, C.J., Olesen, V.: Norm inequalities for the minimal operator and maximal operator, and differentiation of the integral. Publ. Mat. 41, 577–C604 (1997)

  15. Hajłasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 29, 167–176 (2004)

    MathSciNet  Google Scholar 

  16. Kinnunen, J.: The Hardy–Littlewood maximal function of a Sobolev function. Israel J. Math. 100, 117–124 (1997)

    Article  MathSciNet  Google Scholar 

  17. Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine Angew. Math. 503, 161–167 (1998)

    MathSciNet  Google Scholar 

  18. Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35(4), 529–535 (2003)

    Article  MathSciNet  Google Scholar 

  19. Kurka, O.: On the variation of the Hardy–Littlewood maximal function. Ann. Acad. Sci. Fenn. Math. 40, 109–133 (2015)

    Article  MathSciNet  Google Scholar 

  20. Liu, F., Wu, H.: A note on the endpoint regularity of the discrete maximal operator. Proc. Am. Math. Soc. 147(2), 583–596 (2019)

    Article  MathSciNet  Google Scholar 

  21. Liu, F., Xue, Q., Yabuta, K.: Regularity and continuity of the multilinear strong maximal operators. J. Math. Pures Appl. 138, 204–241 (2020)

    Article  MathSciNet  Google Scholar 

  22. Luiro, H.: The variation of the maximal function of a radial function. Ark. Mat. 56(1), 147–161 (2018)

    Article  MathSciNet  Google Scholar 

  23. Luiro, H., Madrid, J.: The variation of the fractional maximal function of a radial function. Int. Math. Res. Not. 17, 5284–5298 (2019)

    Article  MathSciNet  Google Scholar 

  24. Madrid, J.: Endpoint Sobolev and BV continuity for maximal operators II. Rev. Mat. Iberoam. 35(7), 2151–2168 (2019)

    Article  MathSciNet  Google Scholar 

  25. Madrid, J.: Sharp inequalities for the variation of the discrete maximal function. Bull. Aust. Math. Soc. 95, 94–107 (2017)

    Article  MathSciNet  Google Scholar 

  26. Tanaka, H.: A remark on the derivative of the one-dimensional Hardy–Littlewood maximal function. Bull. Aust. Math. Soc. 65, 253–258 (2002)

    Article  MathSciNet  Google Scholar 

  27. F. Temur, On regularity of the discrete Hardy–Littlewood maximal function. arXiv:1303.3993v1

Download references

Funding

The second author was supported partly by the Natural Science Foundation of Shandong Province (Grant No. ZR2023MA022).

Author information

Authors and Affiliations

Authors

Contributions

The authors read and approved the final manuscript.

Corresponding author

Correspondence to Feng Liu.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regrading the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was supported partly by the Natural Science Foundation of Shandong Province (Grant No. ZR2023MA022) and National Natural Science Foundation of China (12326371).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, F. The Minimal Function of a BV Function. Results Math 79, 101 (2024). https://doi.org/10.1007/s00025-024-02124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-024-02124-4

Keywords

Mathematics Subject Classification

Navigation