Skip to main content
Log in

p-Kirchhoff Modified Schrödinger Equation with Critical Nonlinearity in \(\mathbb {R}^{N}\)

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

This article study the following on p-Kirchhoff modified Schrödinger equation with critical nonlinearity in \(\mathbb {R}^{N}\):

$$\begin{aligned} {\mathcal {K}}(u)+V(x)|u{{|}^{p-2}}u= & {} \lambda \left( \int _{{{\mathbb {R}}^{N}}}{\frac{|u(y){{|}^{2p_{\mu }^{*}}}}{|y-x{{|}^{\mu }}}dy} \right) |u(x){{|}^{2p_{\mu }^{*}-2}}u(x)\\{} & {} +f(x,u) \text{ in }\ \mathbb {R}^{N}, \end{aligned}$$

where \({\mathcal {K}}(u)=-\left( a+b\int _{\mathbb {R}^{N}}|\nabla u|^{p}dx\right) \Delta _{p}u-au\Delta _{p}(u^{2})\) with \(a>0, b\ge 0\), \(0<\mu <N\), \(N\ge 3\), and \(\lambda >0\) is a positive parameter. Here \(p^{*}_{\mu }:=\frac{p}{2}\frac{2N-\mu }{N-p}\) is the critical exponent with respect to the Hardy–Littlewood–Sobolev inequality. First, we establish the concentration-compactness principle related to our problem. Moreover, under some suitable assumptions on the nonlinearity f and the potential V, the existence of infinitely many nontrivial solutions are obtained by using the concentration-compactness principle and the symmetric mountain pass theorem. We generalize and fill in some of the previous results (Liang et al., Math Methods Appl Sci 43:2473–2490, 2020; Liang and Song, Differ Integral Equ 35:359–370, 2022; Yang and Ding, Ann Mat Pura Appl 192:783–804, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Date sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Arora, R., Fiscella, A., Mukherjee, T., Winkert, P.: On double phase Kirchhoff problems with singular nonlinearity. Adv. Nonlinear Anal. 12, 20220312 (2023)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T., Wang, Z.: Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R^{N}} \). Commun. Part. Differ. Equ. 20, 1725–1741 (1995)

    Article  Google Scholar 

  3. Bass, F., Nasanov, N.: Nonlinear electromagnetic spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  ADS  Google Scholar 

  4. Benci, V.: On critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc. 274, 533–572 (1982)

    Article  MathSciNet  Google Scholar 

  5. Borovskii, A., Galkin, A.: Dynamical modulation of an ultrashort high-intensity laser pulse in matter. JETP 77, 562–573 (1983)

    ADS  Google Scholar 

  6. Brandi, H.S., Manus, C., Mainfray, G., Lehner, T., Bonnaud, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Phys. Fluids B 5, 3539–3550 (1993)

    Article  ADS  CAS  Google Scholar 

  7. Brézis, H.: Sobolev Spaces and Partial Differential Equations, Functional Analysis. Universitext. Springer, New York (2011)

    Book  Google Scholar 

  8. Cabanillas Lapa, E.: Global solutions for a nonlinear Kirchhoff type equation with viscosity. Opusc. Math. 43, 689–701 (2023)

    Article  MathSciNet  Google Scholar 

  9. Cassani, D., Zhang, J.: Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth. Adv. Nonlinear Anal. 8, 1184–1212 (2019)

    Article  MathSciNet  Google Scholar 

  10. Chen, C.Y., Kuo, Y.C., Wu, T.F.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chen, S., Rǎdulescu, V., Tang, X., Zhang, B.: Ground state solutions for quasilinear Schrödinger equations with variable potential and superlinear reaction. Rev. Mat. Iberoam 36, 1549–1570 (2020)

    Article  MathSciNet  Google Scholar 

  12. D’Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108, 247–262 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. De Bouard, A., Hayashi, N., Saut, J.: Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun. Math. Phys. 189, 73–105 (1997)

    Article  ADS  Google Scholar 

  14. Du, L., Gao, F., Yang, M.: On elliptic equations with Stein–Weiss type convolution parts. Math. Z. 301, 2185–2225 (2022)

    Article  MathSciNet  Google Scholar 

  15. Gu, G., Yang, Z.: On the singularly perturbation fractional Kirchhoff equations: critical case. Adv. Nonlinear Anal. 11, 1097–1116 (2022)

    Article  MathSciNet  Google Scholar 

  16. He, X.M., Zou, W.M.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009)

    Article  MathSciNet  Google Scholar 

  17. Ji, C., Fang, F., Zhang, B.L.: A multiplicity result for asymptotically linear Kirchhoff equations. Adv. Nonlinear Anal. 8, 267–277 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Magnetic solitions in superfluid films. Phys. Rep. 194, 117–238 (1990)

    Article  ADS  CAS  Google Scholar 

  19. Kurihura, S.: Large-amplitude quasi-solitons in superfluids films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    Article  ADS  Google Scholar 

  20. Liang, S., Repovs̆, D., Zhang, B.: Fractional magnetic Schrödinger–Kirchhoff problems with convolution and critical nonlinearities. Math. Methods Appl. Sci. 43, 2473–2490 (2020)

  21. Liang, Sh., Song, Y.: Nontrivial solutions of quasilinear Choquard equation involving the \(p\)-Laplacian operator and critical nonlinearities. Differ. Integral Equ. 35, 359–370 (2022)

    MathSciNet  Google Scholar 

  22. Liang, S., Zhang, B.: Soliton solutions for quasilinear Schrödinger equations involving convolution and critical nonlinearities. J. Geom. Anal. 32, 1–48 (2022)

    Article  MathSciNet  Google Scholar 

  23. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics. AMS, Providence (2001)

    Google Scholar 

  24. Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: North-Holland Math. Stud., vol. 30, pp. 284–346. North-Holland, Amsterdam, New York (1978)

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations, the locally compact case, part 1. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lions, P.L.: The concentration-compactness principle in the calculus of variations, the locally compact case II. Ann. Inst. Henri Poincare Anal. Non Linéaire 1, 223–283 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  27. Liu, D.C.: On a \(p\)-Kirchhoff equation via Fountain theorem and dual fountain theorem. Nonlinear Anal. 72, 302–308 (2010)

    Article  MathSciNet  Google Scholar 

  28. Liu, J., Wang, Y., Wang, Z.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Part. Differ. Equ. 29, 879–901 (2004)

    Article  Google Scholar 

  29. Liu, X., Liu, J., Wang, Z.: Quasilinear elliptic equations with critical growth via perturbation method. J. Differ. Equ. 254, 102–124 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Makhankov, V.G., Fedyanin, V.K.: Nonlinear effects in guasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Miyagaki, O.H., Soares, S.H.: Soliton solutions for quasilinear Schrödinger equations, the critical eaponential case. Nonlinear Anal. 67, 3357–3372 (2007)

    Article  MathSciNet  Google Scholar 

  32. Poppenberg, M., Schmitt, K., Wang, Z.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Part. Differ. Equ. 14, 329–344 (2002)

    Article  Google Scholar 

  33. Ritchie, B.: Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 50, 687–689 (1994)

    Article  ADS  Google Scholar 

  34. Sun, X., Song, Y., Liang, S., Zhang, B.: Critical Kirchhoff equations involving the \(p\)-sub-Laplacians operators on the Heisenberg group. Bull. Math. Sci. 13, 2250006 (2023)

    Article  MathSciNet  Google Scholar 

  35. Takeno, S., Homma, S.: Classical planar Heisenberg ferromagnet Complex scalar fields and nonlinear excitations. Progr. Theoret. Phys. 65, 172–189 (1981)

    Article  ADS  CAS  Google Scholar 

  36. Tang, X.H., Chen, S.: Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Part. Differ. Equ. 56, 1–25 (2017)

    Article  MathSciNet  Google Scholar 

  37. Yang, M., Ding, Y.: Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in \(\mathbb{R} ^{N}\). Ann. Mat. Pura Appl. 192, 783–804 (2013)

    Article  MathSciNet  Google Scholar 

  38. Yang, X., Zhang, W., Zhao, F.: Existence and multiplicity of solutions for a quasilinear Choquard equation via perturbation method. J. Math. Phys. 59, 081503 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Yang, X., Tang, X., Gu, G.: Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard equation. Complex Var. Ellipt. Equ. 65, 1515–1547 (2020)

    Article  MathSciNet  Google Scholar 

  40. Yang, X., Tang, X., Gu, G.: Concentration behavior of ground states for a generalized quasilinear Choquard equation. Math. Methods Appl. Sci. 43, 3569–3585 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. Zhang, W., Wu, X.: Existence, multiplicity, and concentration of positive solutions for a quasilinear Choquard equation with critical exponent. J. Math. Phys. 60, 051501 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her useful comments and suggestions which help to improve and clarify the paper greatly. This paper is supported by the Natural Science Foundation of Changchun Normal University (No. CSJJ2023004GZR).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sihua Liang.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Liu, H. & Zhang, D. p-Kirchhoff Modified Schrödinger Equation with Critical Nonlinearity in \(\mathbb {R}^{N}\). Results Math 79, 83 (2024). https://doi.org/10.1007/s00025-023-02109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-02109-9

Keywords

Mathematics Subject Classification

Navigation