Skip to main content
Log in

Functional Inequalities in Stratified Lie Groups with Sobolev, Besov, Lorentz and Morrey Spaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

When \(p>1\), using as base space classical Lorentz spaces associated to a weight from the Ariño–Muckenhoupt class \(B_p\), we will study Gagliardo–Nirenberg inequalities. As a by-product we will also consider Morrey–Sobolev inequalities. These arguments can be generalized to many different frameworks, in particular the proofs are given in the setting of stratified Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The lower bound \(N\ge 4\) corresponds to the homogeneous dimension of the Heisenberg group \(\mathbb {H}^1\), which is the simplest non-trivial stratified Lie group.

  2. Which means that the Lie algebra generated by the family \({\textbf {X}}\) is \(\mathfrak {g}\).

References

  1. Adams, D.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akbulut, A., Guliyev, V., Mammadov, Y.: Boundedness of fractional maximal operator and their higher order commutator in the generalized Morrey spaces on Carnot groups. Acta Math. Sci. Ser. B Engl. Ed. 33(5), 1329–1346 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Ariño, M., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320(2), 727–735 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Bahouri, H., Cohen, A.: Refined Sobolev inequalities in Lorentz spaces. J. Fourier Anal. Appl. 17(4), 662–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, C., Sharpley, R.: Interpolation of operators. Pure and Applied Mathematics, Vol 129, Academic Press Inc., Boston, MA, (1988)

  6. Carro, M.J., García del Amo, A., Soria, J.: Weak-type weights and normable Lorentz spaces. Proc. Am. Math. Soc. 124(3), 849–857 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carro, M.J., Soria, J.: Boundedness of some integral operators. Can. J. Math. 45(6), 1155–1166 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carro, M.J., Soria, J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112(2), 480–494 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carro, M.J., Soria, J.: The Hardy-Littlewood maximal function and weighted Lorentz spaces. J. London Math. Soc. (2) 55(1), 146–158 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carro, M.J., Raposo, J.A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math. Soc. 187, no. 877, (2007)

  11. Chamorro, D.: Improved Sobolev Inequalities and Muckenhoupt weights on stratified Lie groups. J. Math. Anal. Appl. 377(2), 695–709 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chamorro, D.: Some functional inequalities on polynomial volume growth Lie groups. Canad. J. Math. 64, 481–496 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chamorro, D., Lemarié-Rieusset, P.G.: Real interpolation method, Lorentz spaces and refined Sobolev inequalities. J. Funct. Anal. 265(12), 3219–3232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl. (7) 7(3–4), 273–279 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Cianchi, A.: Optimal Orlicz–Sobolev embeddings. Rev. Mat. Iberoamericana 20(2), 427–474 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, A., Dahmen, W., Daubechies, I., De Vore, R.: Harmonic analysis of the space BV. Rev. Mat. Iberoamericana 19(1), 235–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dai, F. et al.: Brezis–Van Schaftingen–Yung formulae in ball banach function spaces with applications to fractional Sobolev and Gagliardo–Nirenberg inequalities (2022). arXiv:2109.04638v2

  18. Folland, G.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13(2), 161–207 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Folland, G., Stein, E.M.: Hardy Spaces on homogeneous groups. Mathematical Notes, 28, Princeton University Press, (1982)

  20. Furioli, G., Melzi, C., Veneruso, A.: Littlewood-Paley decomposition and Besov spaces on Lie groups of polynomial growth. Math. Nachr. 279(9–10), 1028–1040 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garofalo, N., Nhieu, D.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. 49(10), 1081–1144 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gérard, P., Meyer, Y., Oru. F.: Inégalités de Sobolev Précisées. Séminaire sur les Equations aux Dérivées Partielles, Exp. No. IV, École Polytech., Palaiseau, (1996–1997)

  23. Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall (2004)

  24. Kolyada, V.I., Pérez Lázaro, F.J.: On Gagliardo–Nirenberg type inequalities. J. Fourier Anal. Appl. 20(3), 577–607 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ledoux, M.: On improved Sobolev embedding theorems. Math. Res. Lett. 10(5–6), 659–669 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lorentz, G.G.: Some new functional spaces. Ann. Math. 2(51), 37–55 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lorentz, G.G.: On the theory of spaces \(\Lambda \). Pacific J. Math. 1, 411–429 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martín, J., Milman, M.: Sharp Gagliardo–Nirenberg inequalities via symmetrization. Math. Res. Lett. 14(1), 49–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Studia Math. 176(1), 1–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saka, K.: Besov spaces and Sobolev spaces on a nilpotent Lie group. Tôhoku. Math. J. (2) 31(4), 383–437 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sawano, Y., Sugano, S., Tanaka, H.: Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces. Trans. Am. Math. Soc. 363(12), 6481–6503 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sawano, Y., Wadade, H.: On the Gagliardo-Nirenberg type inequality in the critical Sobolev–Morrey space. J. Fourier Anal. Appl. 19, 20–47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Soria, J.: Lorentz spaces of weak-type. Q. J. Math. Oxford Ser. (2) 49(193), 93–103 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, 30. Princeton University Press (1970)

  37. Stein, E. M.: Harmonic Analysis. Princeton University Press (1993)

  38. Strichartz, R.: Self-similarity on nilpotent Lie groups. Contemp. Math. 140, 123–157 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96(2), 145–158 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Varopoulos, N. Th., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups. Cambridge Tracts in Mathematics, 100, (1992)

Download references

Acknowledgements

A part of this work was performed while the second and third authors visited the University of Evry Val d’Essonne. We express our gratitude to the Laboratoire de Mathématiques et Modélisation d’Evry (LaMME) of the University of Evry Val d’Essonne for the hospitality and excellent conditions.

Funding

The second named author was partially supported by POSDRU/159/1.5/S/137750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu-Gabriel Marcoci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamorro, D., Marcoci, AN. & Marcoci, LG. Functional Inequalities in Stratified Lie Groups with Sobolev, Besov, Lorentz and Morrey Spaces. Results Math 78, 219 (2023). https://doi.org/10.1007/s00025-023-01991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-01991-7

Keywords

Mathematics Subject Classification

Navigation