Skip to main content
Log in

Global in Time Solution to Kolmogorov’s Two-equation Model of Turbulence with Small Initial Data

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We prove the existence of global in time solution to Kolmogorov’s two-equation model of turbulence in three dimensional domain with periodic boundary conditions under smallness assumption imposed on initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bulicek, M., Malek, J.: Large data analysis for Kolmogorov’s two equation model of turbulence. Nonlinear Anal. Real World Appl. 50, 104–143 (2019)

    Article  MathSciNet  Google Scholar 

  2. Chacon, R.T., Lewandowski, R.: Mathematical and numerical foundations of turbulence models and applications. Birkhauser/Springer, New York (2014)

  3. Dreyfuss, P.: Results for a turbulent system with unbounded viscosities: weak formulations, existence of solutions, boundedness and smoothness. Nonlinear Anal. 68(6), 1462–1478 (2008)

    Article  MathSciNet  Google Scholar 

  4. Fanelli, F., Granero-Belinchon, R.: Well-posedness and singularity formation for the Kolmogorov two-equation model of turbulence in 1-D. (2021) arXiv preprint arXiv:2112.13454

  5. Fiorenza, A., Formica, M.R., Roskovec, T.G., Soudsky, F.: Detailed proof of classical Gagliardo-Nirenberg interpolation inequality with historical remarks. Z. Anal. Anwend. 40(2), 217–236 (2021)

    Article  MathSciNet  Google Scholar 

  6. Gagliardo, E.: Ulteriori proprieta di alcune classi di funzioni in piu variabili. Ricerche Mat. 8, 24–51 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Kolmogorov, A..N..: Equations of turbulent motion in an incompressible fluid. Izv. Akad. Nauk SSSR, Seria fizicheska 6(1–2), 56–58 (1942)

    Google Scholar 

  8. Kosewski, P., Kubica, A.: Local in time solution to Kolmogorov’s two-equation model of turbulence. Monatsh Math 198, 345–369 (2022). https://doi.org/10.1007/s00605-022-01703-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Mielke, A., Naumann, J.: On the existence of global-in-time weak solutionsand scaling laws for Kolmogorov’s two-equation model of turbulence, arXiv:1801.02039, (2018)

  10. Mielke, A., Naumann, J.: Global-in-time existence of weak solutions to Kolmogorov’s two-equation model of turbulence. C. R. Math. Acad. Sci. Paris 353(4), 321–326 (2015)

    Article  MathSciNet  Google Scholar 

  11. Naumann, J.: On the existence of weak solutions to a model problem for the unsteady turbulent pipe-flow. C. R. Math. Acad. Sci. Paris 351(11–12), 451–456 (2013)

    Article  MathSciNet  Google Scholar 

  12. Nirenberg, L.: On Elliptic Partial Differential Equations. In: Faedo, S. (eds) Il principio di minimo e sue applicazioni alle equazioni funzionali. C.I.M.E. Summer Schools, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10926-3_1

  13. Parés, C.: Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43(3–4), 245–296 (1992)

    Article  MathSciNet  Google Scholar 

  14. Oliveira, H.B., Paiva, A.: A stationary one-equation turbulent model with applications in porous media. J. Math. Fluid Mech. 20(2), 263–287 (2018)

    Article  MathSciNet  Google Scholar 

  15. Prandtl, L., Wieghardt, K.: Uber ein neues Formelsystem fur die ausgebildete Turbulenz. Nachr. Akad. Wiss. Gottingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt. 1945, 6–19 (1945)

    MATH  Google Scholar 

  16. Spalding, D.B.: Kolmogorov’s two-equation model of turbulence. Proc. Roy. Soc. London Ser. A 434(1890), 211–216 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for valuable remarks, which significantly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Kubica.

Ethics declarations

Conflict of interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this subsection we collect the special cases of Gagliardo-Nirenberg inequalities used in the paper (for the original formulation and proof see [5, 6, 12]). Here, the constant c depends only on \(\Omega \) and we assume that f is periodic function on \(\Omega \) it is sufficiently regular to make the right-hand side finite. Firstly, we recall

$$\begin{aligned} \Vert \nabla f \Vert _{4}^{2} \le c \left\| \nabla f \right\| _{2} \left\| \nabla ^{3}f \right\| _{2}. \end{aligned}$$
(98)

The lower order term (say, \(L^{2}\) norm) can be omitted, because \(\int _{\Omega }\nabla f dx =0\), \(\int _{\Omega }\nabla ^{2}f dx =0\) and from Poincaré inequality for functions with vanishing mean we get

$$\begin{aligned} \Vert \nabla f \Vert _{2}^{2}= \left\| \nabla f \right\| _{2} \left\| \nabla f \right\| _{2} \le C_{1} \left\| \nabla f \right\| _{2} \left\| \nabla ^{2}f \right\| _{2}\le C_{2} \left\| \nabla f \right\| _{2} \left\| \nabla ^{3}f \right\| _{2} , \end{aligned}$$

where \(C_{1}\), \(C_{2}\) depends only on Poincaré constant for \(\Omega \). Next, we have

$$\begin{aligned}&\Vert f \Vert _{3}^{2} \le c \left\| \nabla f \right\| _{2} \left\| f \right\| _{2} , \mathrm { if } \int _{\Omega }fdx=0, \end{aligned}$$
(99)
$$\begin{aligned}&\Vert f \Vert _{6} \le c \left\| \nabla f \right\| _{2} , \mathrm { if } \int _{\Omega }fdx=0, \end{aligned}$$
(100)
$$\begin{aligned}&\Vert \nabla f \Vert _{6}^{2} \le c \left\| \nabla ^{3}f \right\| _{2} \left\| \nabla f \right\| _{2}, \end{aligned}$$
(101)
$$\begin{aligned}&\Vert \nabla f \Vert _{4}^{2} \le c\left\| \nabla ^{3}f \right\| _{2} \left\| {\nabla f}\right\| _{\frac{3}{2}}, \end{aligned}$$
(102)
$$\begin{aligned}&\left\| f \right\| _{\infty } \le c(\left\| \nabla ^{2}f \right\| _{2} + \Vert f \Vert _{1}). \end{aligned}$$
(103)
$$\begin{aligned}&\left\| f \right\| _{\infty } \le c \left\| \nabla ^{2}f \right\| _{2}, \mathrm { if} \int _{\Omega }fdx=0, \end{aligned}$$
(104)
$$\begin{aligned}&\left\| {f}\right\| _\frac{3}{2}\le c \left\| {\nabla f}\right\| ^\frac{1}{2}_\frac{3}{2}\Vert f \Vert _{1}^\frac{1}{2}+ c\Vert f \Vert _{1}, \end{aligned}$$
(105)

where c depends only on \(\Omega \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosewski, P., Kubica, A. Global in Time Solution to Kolmogorov’s Two-equation Model of Turbulence with Small Initial Data. Results Math 77, 163 (2022). https://doi.org/10.1007/s00025-022-01676-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01676-7

Keywords

Mathematical Subject Classifications

Navigation