Skip to main content
Log in

\({\mathcal {L}}^p\)-Approximation Using Fractal Functions on the Sierpiński Gasket

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We are concerned with the approximation of functions by fractal functions with respect to \({\mathcal {L}}^p\)-norm on the Sierpiński gasket. We define the \(\alpha \)-fractal function in \({\mathcal {L}}^p\) space. The properties such as topological isomorphism and many others, which are closely associated with the fractal operator will be discussed in more detail. We also prove the existence of a non-trivial closed invariant subspace for the fractal operator. Additionally, we define set-valued mapping and discuss some useful properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  2. Bagby, T.: \({\cal{L}}^p\), approximation by analytic functions. J. Approx. Theory 5(4), 401–404 (1972)

    Article  MathSciNet  Google Scholar 

  3. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  Google Scholar 

  4. Barnsley, M.F.: Fractals Everywhere. Academic Press, Orlando (1988)

    MATH  Google Scholar 

  5. Bokhari, M.A., Iqbal, M.: \({\cal{L}}^2\) approximation of real-valued functions with interpolatory constraints. J. Comput. Appl. Math. 70(2), 201–205 (1996)

    Article  MathSciNet  Google Scholar 

  6. Cazassa, P.G., Christensen, O.: Perturbation of operators and application to frame theory. J. Fourier Anal. Appl. 3(5), 543–557 (1997)

    Article  MathSciNet  Google Scholar 

  7. Celik, D., Kocak, S., Özdemir, Y.: Fractal interpolation on the Sierpiński Gasket. J. Math. Anal. Appl. 337, 343–347 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chalmers, B.L.: Convex \({\cal{L}}^p\) approximation. J. Approx. Theory 37, 326–334 (1983)

    Article  MathSciNet  Google Scholar 

  9. Chandra, S., Abbas, S.: The calculus of bivariate fractal interpolation surfaces. Fractals (2020). https://doi.org/10.1142/S0218348X21500663

  10. Chandra, S., Abbas, S.: Analysis of mixed Weyl-Marchaud fractional derivative and box dimensions. Fractals (2021). https://doi.org/10.1142/S0218348X21501450

  11. Hedberg, L.I.: Approximation in the mean by analytic functions. Trans. Am. Math. Soc. 163, 157–171 (1972)

    Article  MathSciNet  Google Scholar 

  12. Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  13. Massopust, P.R.: Fractal Functions, Fractal Surfaces, and Wavelets, 2nd edn. Academic Press, New York (2016)

    MATH  Google Scholar 

  14. Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)

    Article  MathSciNet  Google Scholar 

  15. Navascués, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)

    Article  MathSciNet  Google Scholar 

  16. Navascúes, M. A., Verma, S., Viswanathan, P.: Concerning vector-valued fractal interpolation functions on the Sierpiński gasket. Mediterranean J. Mathe. (2021) (to appear)

  17. Ri, S.-I.: Fractal Functions on the Sierpinski Gasket. Chaos Solitons Fractals 138, 110142 (2020)

    Article  MathSciNet  Google Scholar 

  18. Ri, S.-G., Ruan, H.-J.: Some properties of fractal interpolation functions on Sierpiński gasket. J. Math. Anal. Appl. 380, 313–322 (2011)

    Article  MathSciNet  Google Scholar 

  19. Ruan, H.J.: Fractal interpolation functions on post critically finite self-similar sets. Fractals 18, 119–125 (2010)

    Article  MathSciNet  Google Scholar 

  20. Sahu, A., Priyadarshi, A.: On the box-counting dimension of graphs of harmonic functions on the Sierpiński gasket. J. Math. Anal. Appl. 487, 124036 (2020)

    Article  MathSciNet  Google Scholar 

  21. Strichartz, R.S.: Differential Equations on Fractals. Princeton University Press, Princeton (2006)

    Book  Google Scholar 

  22. Verma, S., Viswanathan, P.: A fractal operator associated with bivariate fractal interpolation functions on rectangular grids. Result Math. 75, 25 (2020)

    Article  MathSciNet  Google Scholar 

  23. Verma, S., Massopust, P.R.: Dimension preserving approximation. arXiv:2002.05061

  24. Verma, S., Sahu, A.: Bounded Variation on the Sierpiński Gasket. arXiv:2010.01780

  25. Verma, S.: Some results on fractal functions, fractal dimensions and fractional calculus. Ph.D. thesis, Indian Institute of Technology Delhi (2020)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed equally in this manuscript.

Ethics declarations

Conflict of interest

We do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, V., Som, T. \({\mathcal {L}}^p\)-Approximation Using Fractal Functions on the Sierpiński Gasket. Results Math 77, 74 (2022). https://doi.org/10.1007/s00025-021-01565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01565-5

Keywords

Mathematics Subject Classification

Navigation