Skip to main content
Log in

Bivariate Poly-analytic Hermite Polynomials

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A new class of bivariate poly-analytic Hermite polynomials is considered. We show that they are realizable as the Fourier–Wigner transform of the univariate complex Hermite functions and form a nontrivial orthogonal basis of the classical Hilbert space on the two-complex space with respect to the Gaussian measure. Their basic properties are discussed, such as their three term recurrence relations, operational realizations and differential equations (Bochner’s property) they obey. Different generating functions of exponential type are obtained. Integral and exponential operational representations are also derived. Some applications in the context of integral transforms and the concrete spectral theory of specific magnetic Laplacians are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agorram, F., Benkhadra, A., El Hamyani, A., Ghanmi, A.: Complex Hermite functions as Fourier–Wigner transform. Integr. Transf. Spec. Funct. 27(2), 94–100 (2016)

    Article  MathSciNet  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Ali, S.T., Bagarello, F., Gazeau, J.-P.: Quantizations from reproducing Kernel spaces. Ann. Phys. 332, 127–142 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Ali, S.T., Bagarello, F., Honnouvo, G.: Modular structures on trace class operators and applications to Landau levels. J. Phys. A 43(10), 105202 (2010)

    Article  MathSciNet  Google Scholar 

  5. Barrett, M.J.: Nonlinear analysis of travelling wave tube amplifiers using complex Hermite polynomials. Preprint

  6. Benahmadi, A., Diki, K., Ghanmi, A.: On composition of Segal–Bargmann transforms. Complex Var. Ellip. Equ. 64(6), 950–964 (2019)

    Article  MathSciNet  Google Scholar 

  7. Benahmadi, A., Ghanmi, A.: Non-trivial 1d and 2d Segal–Bargmann transforms. Integr. Transf. Spec. Funct. 30(7), 547–563 (2019)

    Article  MathSciNet  Google Scholar 

  8. Dallinger, R., Ruotsalainen, H., Wichman, R., Rupp, M.: Adaptive pre-distortion techniques based on orthogonal polynomials. In: Conference Record of the 44th Asilomar Conference on Signals, Systems and Computers, IEEE pp. 1945–1950 (2010)

  9. Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, vol. 155, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  10. Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton (1989)

    Google Scholar 

  11. Ghanmi, A.: Operational formulae for the complex Hermite polynomials \(H_{p, q}(z, \bar{z})\). Integr. Transf. Spec. Funct. 24(11), 884–895 (2013)

    Article  Google Scholar 

  12. Ghanmi, A.: Mehler’s formulas for the univariate complex Hermite polynomials and applications. Math. Methods Appl. Sci. 40(18), 7540–7545 (2017)

    Article  MathSciNet  Google Scholar 

  13. Górska, K., Horzela, A., Szafraniec, F.H.: Holomorphic Hermite polynomials in two variables. Holomorphic Hermite polynomials in two variables. J. Math. Anal. Appl. 470(2), 750–769 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ismail, M.E.H.: Analytic properties of complex Hermite polynomials. Trans. Am. Math. Soc. 368(2), 1189–1210 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ismail, M.E.H., Simeonov, P.: Complex Hermite polynomials: their combinatorics and integral operators. Proc. Am. Math. Soc. 143(4), 1397–1410 (2015)

    Article  MathSciNet  Google Scholar 

  16. Intissar, A., Intissar, A.: Spectral properties of the Cauchy transform on \(L^2(\mathbb{C};e^{-|z|^2}d\lambda )\). J. Math. Anal. Appl. 313(2), 400–418 (2006)

    Article  MathSciNet  Google Scholar 

  17. Itô, K.: Complex multiple Wiener integral. Jpn. J. Math. 22, 63–86 (1952)

    Article  MathSciNet  Google Scholar 

  18. Zhi-Guo, L.: On the ternary Hermite polynomials. arXiv:1707.08708v1 (2017)

  19. Matsumoto, H.: Quadratic Hamiltonians and associated orthogonal polynomials. J. Funct. Anal. 140, 218–255 (1996)

    Article  MathSciNet  Google Scholar 

  20. Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung. J. Reine Angew. Math. 66, 161–176 (1866)

    MathSciNet  Google Scholar 

  21. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Cambridge Philos. Soc. 45, 99–124 (1949)

    Article  MathSciNet  Google Scholar 

  22. Raich, R., Zhou, G.: Orthogonal polynomials for complex Gaussian processes. IEEE Trans. Signal Process. 52(10), 2788–2797 (2004)

    Article  MathSciNet  Google Scholar 

  23. Rainville, E.D.: Special Functions. Chelsea Publishing Co., Bronx, N.Y. (1960)

    MATH  Google Scholar 

  24. Thangavelu, S.: Harmonic Analysis on the Heisenberg Group. Progress in Mathematics, vol. 159. Birkhäuser Boston Inc, Boston, MA (1998)

    Book  Google Scholar 

  25. Wong, M.W.: Weyl Transforms. Universitext. Springer, New York (1998)

    Google Scholar 

  26. Wünsche, A.: Transformations of Laguerre 2D-polynomials and their applications to quasiprobabilities. J. Phys. A. 21, 3179–3199 (1999)

    Article  Google Scholar 

  27. Shigekawa, I.: Eigenvalue problems of Schrödinger operator with magnetic field on compact Riemannian manifold. J. Funct. Anal. 75, 92–127 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allal Ghanmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanmi, A., Lamsaf, K. Bivariate Poly-analytic Hermite Polynomials. Results Math 76, 3 (2021). https://doi.org/10.1007/s00025-020-01313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01313-1

Keywords

Mathematics Subject Classification

Navigation