Skip to main content
Log in

Certain Contact Metrics as Ricci Almost Solitons

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We show that if a compact K-contact metric is a gradient Ricci almost soliton, then it is isometric to a unit sphere S 2n+1. Next, we prove that if the metric of a non-Sasakian (κ, μ)-contact metric is a gradient Ricci almost soliton, then in dimension 3 it is flat and in higher dimensions it is locally isometric to E n+1 ×  S n (4). Finally, a couple of results on contact metric manifolds whose metric is a Ricci almost soliton and the potential vector field is point wise collinear with the Reeb vector field of the contact metric structure were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aquino C., Barros A., Ribeiro E. Jr.: Some applications of the Hodge–de Rahm decomposition to Ricci solitons. Results Math. 60, 245–254 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barros A., Ribeiro E. Jr.: Some characterizations for compact almost Ricci solitons. Proc. Am. Math. Soc. 140(3), 213–223 (2012)

    Article  MathSciNet  Google Scholar 

  3. Barros, A., Batista, R., Ribeiro, E., Jr.: Compact almost Ricci solitons with constant scalar curvature are gradient, Preprint, arXiv:1209.2720v1 [math DG] (2012)

  4. Blair D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhauser, Boston (2002)

    Book  MATH  Google Scholar 

  5. Blair D.E., Koufogiorgos T., Papantoniou B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91, 189–214 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyer C.P., Galicki K.: Einstein manifolds and contact geometry. Proc. Am. Math. Soc. 129, 2419–2430 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyer C.P., Galicki K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  8. Cho J.T., Sharma R.: Contact geometry and Ricci solitons. Int. J. Geom. Methods Math. Phy. 7(6), 951–960 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ghosh, A.: Ricci solitons and contact metric manifolds. Glasgow Math. J. (2012) (published on line)

  10. Ghosh A., Sharma R., Cho J.T.: Contact metric manifolds with η-parallel torsion tensor. Ann. Glob Anal. Geom. 34, 287–299 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hamilton, R.S.: The Ricci flow: an introduction. In: Mathematics and General Relativity (Santa Cruz, CA, 1986), pp. 237–262. Contemp. Math., vol. 71. American Math.Soc., New York (1988)

  12. Hasegawa, I., Seino, M.: Some remarks on Sasakian geometry-applications of Myer’s theorem and the canonical affine connection. J. Hokkaido Univ. Educ. 32(section IIA), 1–7 (1981)

    Google Scholar 

  13. Obata M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14, 333–340 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  14. Olszak Z.: On contact metric manifolds. Tohoku Math. J. 34, 247–253 (1979)

    Article  MathSciNet  Google Scholar 

  15. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, Preprint, http://arXiv.orgabsmath.DG/02111159

  16. Perrone D.: Homogeneous contact Riemannian three-manifols. Illinois J. Math. 42, 243–256 (1998)

    MATH  MathSciNet  Google Scholar 

  17. Perrone D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differ. Geom. Appl. 20, 367–378 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pigola S., Rigoli M., Rimoldi M., Setti A.: Ricci almost solitons. Ann. Scuola. Norm. Sup. Pisa. CL Sc. (5) X, 757–799 (2011)

    MathSciNet  Google Scholar 

  19. Sharma R.: Certain results on K-contact and (k,μ)-contact manifolds. J. Geom. 89, 138–147 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tanno S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12, 700–717 (1968)

    MATH  MathSciNet  Google Scholar 

  21. Yano K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Ghosh.

Additional information

Dedicated to the memory of my father.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A. Certain Contact Metrics as Ricci Almost Solitons. Results. Math. 65, 81–94 (2014). https://doi.org/10.1007/s00025-013-0331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-013-0331-9

Mathematics Subject Classification (2010)

Keywords

Navigation