Skip to main content
Log in

Edge Enhancement of Magnetic Sources Using the Tilt Angle and Derivatives of Directional Analytic Signals

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The analytic signal (AS1) has been widely used for mapping geological features from magnetic data. Some enhanced versions of the AS1 have been introduced to improve its effectiveness. Here, we compare the performance of these filters and introduce a filter obtained from the tilt angle and the directional analytic signals. For better performance on low latitudes, the directional analytic signals are obtained from the vertical integral of the magnetic anomaly rather than its magnetic potential. The proposed filter shows an apparent performance improvement in mapping the edges of magnetic sources, as shown with synthetic models and real example from the Olympic Peninsula, USA. The great advantage of the proposed technique is that the obtained result has lower influence from the magnetization vector direction than the AS1 and other related techniques. The findings demonstrate that the present method not only outlines the boundaries more precisely and clearly, but also reveals the presence of several structures obscured by nonmagnetic sediment in the study area, which are not determined by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Arogundade, A. B., Ajama, O. D., Ayinde, I. S., Falade, S. C., & Awoyemi, M. O. (2023). Investigation of structural controls on the drainage system of north-western Nigeria. Acta Geophysica. https://doi.org/10.1007/s11600-022-01007-y

    Article  Google Scholar 

  • Beiki, M. (2010). Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics, 75(6), 159–174.

    Google Scholar 

  • Beiki, M., Clark, D. A., Austin, J. R., & Foss, C. A. (2012). Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data. Geophysics, 77(6), J23–J37.

    Google Scholar 

  • Blakely, R. J., Wells, R. E. & Weaver, C. S. (1999). Puget Sound aeromagnetic maps and data, US Geological Survey Open-File Report 99–514. Retrieved September 9, 2022, from https://pubs.usgs.gov/of/1999/of99-514/.

  • Blakely, R. J. (1995). Potential theory in gravity and magnetic applications. Cambridge University Press.

    Google Scholar 

  • Blakely, R. J., Sherrod, B. L., Hughes, J. F., Anderson, M. L., Wells, R. E., & Weaver, C. S. (2009). Saddle Mountain fault deformation zone, Olympic Peninsula, Washington: Western boundary of the Seattle uplift. Geosphere, 5, 105–125.

    Google Scholar 

  • Bournas, N., & Baker, H. A. (2001). Interpretation of magnetic anomalies using the horizontal gradient analytic signal. Annals of Geophysics, 44, 505–526.

    Google Scholar 

  • Cella, F., Fedi, M., & Florio, G. (2009). Toward a full multiscale approach to interpret potential fields. Geophysical Prospecting, 57, 543–557.

    Google Scholar 

  • Chen, A. G., Zhou, T. F., Liu, D. J., & Zhang, S. (2017). Application of an enhanced theta-based filter for potential field edge detection: A case study of the Luzong ore district. Chinese Journal of Geophysics, 60(2), 203–218.

    Google Scholar 

  • Cooper, G. R. J. (2009). Balancing images of potential-field data. Geophysics, 74(3), L17–L20.

    Google Scholar 

  • Cooper, G. R. J. (2014). Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction. Geophysics, 79, J55–J60.

    Google Scholar 

  • Cooper, G. R. J. (2022). Enhancing potential field data using its dip angle. Near Surface Geophysics, 20(3), 229–237.

    Google Scholar 

  • Cooper, G. R. J., & Cowan, D. (2006). Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32(10), 1585–1591.

    Google Scholar 

  • Cooper, G. R. J., & Cowan, D. R. (2008). Edge enhancement of potential-field data using normalized statistics. Geophysics, 73(3), H1–H4.

    Google Scholar 

  • Cordell, L. (1979), Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin. 30th Field conference New Mexico. New Mexico Geological Society Guidebook, pp. 59–64.

  • Dwivedi, D., & Chamoli, A. (2021). Source edge detection of potential field data using wavelet decomposition. Pure and Applied Geophysics, 178, 919–938.

    Google Scholar 

  • Ekinci, Y. L., Balkaya, Ç., Şeren, A., Kaya, M. A., & Lightfoot, C. S. (2014). Geomagnetic and geoelectrical prospection for buried archaeological remains on the Upper City of Amorium, a Byzantine city in midwestern Turkey. Journal of Geophysics and Engineering, 11(1), 015012.

    Google Scholar 

  • Ekinci, Y. L., Ertekin, C., & Yigitbas, E. (2013). On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: Synthetic simulations and a case study from the Aegean graben system (western Anatolia, Turkey). Journal of Geophysics and Engineering, 10(3), 035005.

    Google Scholar 

  • Fedi, M. (2002). Multiscale derivative analysis: A new tool to enhance detection of gravity source boundaries at various scales. Geophysical Research Letters, 29(2), 1029.

    Google Scholar 

  • Ferreira, F. J. F., de Souza, J., de Bongiolo, A. B. S., & de Castro, L. G. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3), J33–J41.

    Google Scholar 

  • Florio, G., Fedi, M., & Pasteka, R. (2006). On the application of Euler deconvolution to the analytic signal. Geophysics, 71(6), L87–L93.

    Google Scholar 

  • Guo, C. W., Xing, Z., Wang, L. F., Ma, Y., & Huan, H. F. (2020). Three-directional analytic signal analysis and interpretation of magnetic gradient tensor. Applied Geophysics, 17(2), 285–296.

    Google Scholar 

  • Haney, M., Johnston, C., Li, Y., & Nabighian, M. (2003). Envelopes of 2D and 3D magnetic data and their relationship to the analytic signal: Preliminary results: 73rd Annual International Meeting, SEG, Expanded Abstracts, 592–595

  • Hidalgo-Gato, M. C., & Barbosa, V. C. F. (2015). Edge detection of potential-field sources using scale-space monogenic signal: Fundamental principles. Geophysics, 80(5), J27–J36.

    Google Scholar 

  • Hsu, S. K., Coppense, D., & Shyu, C. T. (1996). High- resolution detection of geologic boundaries from potential field anomalies: An enhanced analytic signal technique. Geophysics, 61, 1947–1957.

    Google Scholar 

  • Ibraheem, I. M., Aladad, H., Alnaser, M. F., & Stephenson, R. (2021). TAS: A new novel phase-based filter for detection of unexploded ordnances. Remote Sensing, 13, 4345.

    Google Scholar 

  • Ibraheem, I. M., Tezkan, B., Ghazala, H., & Othman, A. A. (2023). A new edge enhancement filter for the interpretation of magnetic field data. Pure and Applied Geophysics, 180, 2223–2240.

    Google Scholar 

  • Kafadar, O. (2022). Applications of the Kuwahara and Gaussian filters on potential field data. Journal of Applied Geophysics, 198, 104583.

    Google Scholar 

  • Kha, V. T., Vuong, V. H., Thanh, D. D., Hung, Q. D., & Anh, D. L. (2018). Improving a maximum horizontal gradient algorithm to determine geological body boundaries and fault systems based on gravity data. Journal of Applied Geophysics, 152, 161–166.

    Google Scholar 

  • Li, X. (2006). Understanding 3D analytic signal amplitude. Geophysics, 71(2), L13–L16.

    Google Scholar 

  • Ma, G., Liu, C., & Huang, D. (2015). The removal of additional edges in the edge detection of potential field data. Journal of Applied Geophysics., 114, 168–173.

    Google Scholar 

  • Mace, C. G., & Keranen, K. M. (2012). Oblique fault systems crossing the Seattle Basin: Geophysical evidence for additional shallow fault systems in the central Puget Lowland. Journal of Geophysical Research, 117, B03105.

    Google Scholar 

  • Miller, H. G., & Singh, V. (1994). Potential field tilt a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.

    Google Scholar 

  • Nabighian, M. N. (1972). The analytic signal of two dimensional magnetic bodies with polygonal crosssection: Its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507–517.

    Google Scholar 

  • Nasuti, Y., & Nasuti, A. (2018). NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies. Geophysical Journal International, 214(1), 36–45.

    Google Scholar 

  • Nasuti, Y., Nasuti, A., & Moghadas, D. (2019). STDR: A novel approach for enhancing and edge detection of potential field data. Pure and Applied Geophysics, 176(2), 827–841.

    Google Scholar 

  • Pham, L. T., Erdinc, O., & Do, T. D. (2019a). Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geodaetica Et Geophysica, 54, 143–155.

    Google Scholar 

  • Pham, L. T., Erdinc, O., Do, T. D., Le-Huy, M., Vu, M. D., & Nguyen, V. D. (2019b). LAS: A combination of the analytic signal amplitude and the generalised logistic function as a novel edge enhancement of magnetic data. Contributions to Geophysics and Geodesy, 49(4), 425–440.

    Google Scholar 

  • Pham, L. T., Erdinc, O., Do, T. D., & Vu, M. D. (2021). Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges. Bulletin of the Mineral Research and Exploration, 165, 53–62.

    Google Scholar 

  • Pham, L. T., Erdinc, O., Le, D. V., Ferreira, F. J. F., & Le, S. T. (2022). Edge detection of potential field sources using the softsign function. Geocarto International, 37(14), 4255–4268.

    Google Scholar 

  • Pham, L. T., Vu, T. V., Le-Thi, S., & Trinh, P. T. (2020). Enhancement of potential field source boundaries using an improved logistic filter. Pure and Applied Geophysics, 177, 5237–5249.

    Google Scholar 

  • Prasad, K. N. D., Pham, L. T., & Singh, A. P. (2022). A novel filter “ImpTAHG” for edge detection and a case study from Cambay Rift Basin, India. Pure and Applied Geophysics, 179, 2351–2364.

    Google Scholar 

  • Rao, D. B., & Babu, N. R. (1991). A rapid method for three-dimensional modeling of magnetic anomalies. Geophysics, 56(11), 1729–1737.

    Google Scholar 

  • Roest, W. R. J., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116–125.

    Google Scholar 

  • Saibi, H., Aboud, E., & Ehara, S. (2012). Analysis and Interpretation of gravity data from the Aluto-Langano geothermal field of Ethiopia. Acta Geophysica, 60(2), 318–336.

    Google Scholar 

  • Saibi, H., Amir, G., & Mohamed, F. S. (2019). Subsurface structural mapping using gravity data of AlAin region, Abu Dhabi Emirate, United Arab Emirates. Geophysical Journal International, 216, 1201–1213.

    Google Scholar 

  • Salem, A., Williams, S., Samson, E., Fairhead, D., Ravat, D., & Blakely, R. J. (2010). Sedimentary basins reconnaissance using the magnetic tilt-depth method. Exploration Geophysics, 41, 198–209.

    Google Scholar 

  • Saltus, R. W., Blakely, R. J., Haeussler, P. J., & Wells, R. E. (2005). Utility of aeromagnetic studies for mapping of potentially active faults in two forearc basins: Puget Sound, Washington, and Cook Inlet, Alaska. Earth, Planets and Space, 57(8), 781–793.

    Google Scholar 

  • Sertcelik, I., & Kafadar, O. (2012). Application of edge detection to potential field data using eigenvalue analysis of structure tensor. Journal of Applied Geophysics, 84, 86–94.

    Google Scholar 

  • Sertcelik, I., Kafadar, O., & Kurtulus, C. E. (2013). Use of the two dimensional Gabor filter to interpret magnetic data over the Marmara Sea Turkey. Pure and Applied Geophysics, 170(5), 887–894.

    Google Scholar 

  • Weihermann, J. D., Ferreira, F. J. F., Oliveira, S. P., Cury, L. F., & de Souza, J. (2018). Magnetic interpretation of the Paranaguá Terrane, southern Brazil by signum transform. Journal of Applied Geophysics, 154, 116–127.

    Google Scholar 

  • Wijns, C., Perez, C., & Kowalczyk, P. (2005). Theta map: Edge detection in magnetic data. Geophysics, 70, 39–43.

    Google Scholar 

  • Yao, Y., Huang, D., Yu, X., & Chai, B. (2015). Edge interpretation of potential field data with the normalized enhanced analytic signal. Acta Geodaetica Et Geophysica, 51(1), 125–136.

    Google Scholar 

  • Yuan, Y. & Geng, M. (2014). Directional total horizontal derivatives of gravity gradient tensor and their application to delineate the edges. 76th EAGE Conference & Exhibition 2014.

  • Yuan, Y., Gao, J. Y., & Chen, L. N. (2016). Advantages of horizontal directional Theta method to detect the edges of full tensor gravity gradient data. Journal of Applied Geophysics, 130, 53–61.

    Google Scholar 

  • Yuan, Y., & Yu, Q. (2015). Edge detection in potential-field gradient tensor data by use of improved horizontal analytic signal methods. Pure and Applied Geophysics, 172(2), 461–472.

    Google Scholar 

  • Zareie, V., & Moghadam, R. H. (2019). The application of theta method to potential field gradient tensor data for edge detection of complex geological structures. Pure and Applied Geophysics, 176, 4983–5001.

    Google Scholar 

  • Zhang, H. L., Ravat, D., Marangoni, Y. R., & Hu, X. Y. (2014). NAV-Edge: Edge detection of potential-field sources using normalized anisotropy variance. Geophysics, 79(3), J43–J53.

    Google Scholar 

  • Zhang, X., Yu, P., Tang, R., Xiang, Y., & Zhao, C. J. (2016). Edge enhancement of potential field data using an enhanced tilt angle. Exploration Geophysics, 46(3), 276–283.

    Google Scholar 

Download references

Acknowledgements

The authors thank editor Rezene Mahatsente, reviewers Yunus Levent Ekinci, Henglei Zhang, and an anonymous reviewer for their constructive comments that greatly improved the original manuscript. The authors also thank GRJ Cooper for his very useful comments in an earlier stage of this work.

Funding

The present work was supported by National Council of Technological and Scientific Development (CNPq, Grant Number 316376/2021-3).

Author information

Authors and Affiliations

Authors

Contributions

LTP and SPO contributed to establish the basis of the method and to write the manuscript. Luan Thanh Pham contributed to the development of computer program related to the method.

Corresponding author

Correspondence to Luan Thanh Pham.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, L.T., Oliveira, S.P. Edge Enhancement of Magnetic Sources Using the Tilt Angle and Derivatives of Directional Analytic Signals. Pure Appl. Geophys. 180, 4175–4189 (2023). https://doi.org/10.1007/s00024-023-03375-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03375-y

Keywords

Navigation