Skip to main content
Log in

Estimation of Deep-Seated Faults Parameters from Gravity Data Using the Cuckoo Search Algorithm

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Cuckoo Search Algorithm (CSA) is a nature-inspired metaheuristic optimization algorithm. The optimization algorithm was inspired by the life story of a family of birds called the Cuckoo. In this paper, an application of the CSA, is implemented to estimate model parameters of deep-seated faults by using gravity anomalies. To increase the efficiency of the algorithm, parameter tuning studies are carried out for the optimum algorithm-based control parameters. In addition, the reliability and possible uncertainties of the obtained solutions were examined using probability density function analysis. The model parameters (z1, z2, α, x0 and ρ) for noisy and noise-free synthetic models were obtained by using CSA. These obtained parameters are very compatible with the true model parameters for noise-free data, similarly well-nigh compatible results for noisy data. As a result we can say that the method works successfully when applied to synthetic data. The technique is tested on three widely studied benchmark field data including gravity anomaly [Garber Fault (USA), Gazal Fault (Egypt), Mersa Matruh Fault (Egypt)]. In previous studies, various solution techniques have been used for the inversion of these field data and the compatibility of the model parameters obtained in this study with the values obtained from previous studies was compared. The results demonstrate that the CSA is a very effective and robust approach for the optimization of gravity anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The author confirms that the data supporting the findings of this study are available within the article.

References

  • Abdelrahman, E. M., & Bayoumi, A. I. (1989). Nomograms for delineating fault parameters from gravity data application to the Mersa Matruh Basin Egypt. Journal of African Earth Sciences, 9, 455–459.

    Google Scholar 

  • Abdelrahman, E. M., Bayoumi, A. I., Abdelhady, Y. E., Gobashy, M. M., & El-Araby, H. M. (1989). Gravity interpretation using correlation factors between successive least-squares residual anomalies. Geophysics, 54(12), 1614–1621.

    Google Scholar 

  • Abdelrahman, E. M., & El-Araby, T. M. (1996). Shape and depth solutions from moving average residual gravity anomalies. Journal of Applied Geophysics, 36, 89–95.

    Google Scholar 

  • Abdelrahman, E. M., El-Araby, T. M., El-Araby, H. M., & Abo-Ezz, E. R. (2001a). Three least squares minimization approaches to depth, shape, and amplitude coefficient determination from gravity data. Geophysics, 66, 1105–1109.

    Google Scholar 

  • Abdelrahman, E. M., El-Araby, T. M., El-Araby, H. M., & Abo-Ezz, E. R. (2001b). A new method for shape and depth determinations from gravity data. Geophysics, 66, 1774–1780.

    Google Scholar 

  • Abdelrahman, E. M., El-Araby, T. M., & Essa, K. S. (2003). Shape and depth solutions from third moving average residual gravity anomalies using the window curves method. Kuwait Journal of Science and Engineering, 30, 95–108.

    Google Scholar 

  • Abdelrahman, E. M., & Essa, K. S. (2015). Three least-squares minimization approaches to interpret gravity data due to dipping faults. Pure and Applied Geophysics, 172, 427–438.

    Google Scholar 

  • Abdelrahman, E. M., Essa, K. S., & Abo-Ezz, E. R. (2013). A least-squares window curves method to interpret gravity data due to dipping faults. Journal of Geophysics Engineering, 10, 025003.

    Google Scholar 

  • Abdelrahman, E. S., Gobashy, M., Abo-Ezz, E., & El-Araby, T. (2019). A new method for complete quantitative interpretation of gravity data due to dipping faults. Contributions to Geophysics and Geodesy, 49, 133–151.

    Google Scholar 

  • Abdelrahman, E. M., Radwan, A. H., Issawy, E. A., El-Araby, H. M., El-Araby, T. M., & Abo-Ezz, E. R. (1999). Gravity interpretation of vertical faults using correlation factors between successive least-squares residual anomalies. In Mining pribram symposium on mathematical methods in geology, MC2 (pp. 1–6).

  • Abdelrahman, E. M., & Sharafeldin, S. H. M. (1995). A least-squares minimization approach to shape determination from gravity data. Geophysics, 60, 589–590.

    Google Scholar 

  • Abdelrahman, E. M., Tealeb, A., & Ahmed, H. A. (1991). Gravity map of Kalabsha area, northwest of Aswan Lake, and its structural significance. Journal of Geodynamics, 14(1–4), 125–135.

    Google Scholar 

  • Alkan, H., & Balkaya, C. (2018). Parameter estimation by differential search algorithm from horizontal loop electromagnetic (HLEM) data. Journal of Applied Geophysics, 149, 77–94.

    Google Scholar 

  • Anderson, N., Essa, K. S., & Elhussein, M. (2020). A comparison study using particle swarm optimization inversion algorithm for gravity anomaly interpretation due to a 2D vertical fault structure. Journal of Applied Geophysics, 179, 104120.

    Google Scholar 

  • Balkaya, Ç. (2013). An implementation of differential evolution algorithm for inversion of geoelectrical data. Journal of Applied Geophysics, 98, 160–175.

    Google Scholar 

  • Barakat, M. G., & Darwish, M. (1987). Contribution to the lithostratigraphy of the lower cretaceous sequence in Mersa Matruh area, north Western Desert, Egypt. M.E.R.C Ain Shams University. Earth Science Series, 1, 48–66.

    Google Scholar 

  • Ben, U. C., Akpan, A. E., Enyinyi, E. O., & Awak, E. (2021). Novel technique for the interpretation of gravity anomalies over geologic structures with idealized geometries using the Manta ray foraging optimization. Journal of Asian Earth Sciences, 6, 100070.

    Google Scholar 

  • Bowin, C., Scheer, E., & Smith, W. (1986). Depth estimates from ratios of gravity, geoid, and gravity gradient anomalies. Geophysics, 51, 123–136.

    Google Scholar 

  • Braitenberg, C., Sampietro, D., Pivetta, T., Zuliani, D., Barbagallo, A., Fabris, P., et al. (2016). Gravity for detecting caves: Airborne and terrestrial simulations based on a comprehensive karstic cave benchmark. Pure and Applied Geophysics, 173, 1243–1264.

    Google Scholar 

  • Chakravarthi, V., Mallesh, K., & Ramamma, B. (2017). Basement depth estimation from gravity anomalies: Two 2.5D approaches coupled with the exponential density contrast model. Journal of Geophysics and Engineering, 14, 303–315.

    Google Scholar 

  • Chakravarthi, V., & Sundararajan, N. (2004). Ridge-regression algorithm for gravity inversion of fault structures with variable density. Geophysics, 69(6), 1394–1404.

    Google Scholar 

  • Chakravarthi, V., & Sundararajan, N. (2005). Invgrafalt: A Fortran code for Marquardt inversion of gravity anomalies of faulted beds with varying density. Computers & Geosciences, 31(10), 1234–1240.

    Google Scholar 

  • Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 39, 315–346.

    Google Scholar 

  • Coelho, A. C. Q. M., Menezes, P. T. L., & Mane, M. A. (2021). Gravity data as a faulting assessment tool for unconventional reservoirs regional exploration: The Sergipe-Alagoas Basin example. Journal of Natural Gas Science and Engineering, 94, 104077.

    Google Scholar 

  • Davis, J. C. (1973). Statistics and data analysis in geology (p. 550). Wiley.

    Google Scholar 

  • Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19–31.

    Google Scholar 

  • Ekinci, Y. L., Balkaya, Ç., & Göktürkler, G. (2019). Parameter estimations from gravity and magnetic anomalies due to deep-seated faults: Differential evolution versus particle swarm optimization. Turkish Journal of Earth Sciences, 28(6), 860–881.

    Google Scholar 

  • Ekinci, Y. L., Balkaya, Ç., Göktürkler, G., & Özyalın, Ş. (2021). Gravity data inversion for the basement relief delineation through global optimization: A case study from the Aegean Graben System, western Anatolia, Turkey. Geophysical Journal International, 224(2), 923–944.

    Google Scholar 

  • Eshaghzadeh, A., Dehghanpour, A., & Kalantari, R. A. (2019). Fault strike detection using satellite gravity data decomposition by discrete wavelets: A case study from Iran. Journal of Sciences, Islamic Republic of Iran, 30(1), 41–50. https://doi.org/10.22059/jsciences.2019.69631

    Article  Google Scholar 

  • Eshaghzadeh, A., & Hajian, A. (2020). Multivariable modified teaching learning based optimization (MM-TLBO) algorithm for inverse modeling of residual gravity anomaly generated by simple geometric shapes. Journal of Environmental and Engineering Geophysics, 25(4), 463–476. https://doi.org/10.32389/JEEG20-003

    Article  Google Scholar 

  • Eshaghzadeh, A., & Hajian, A. (2021). 2-D gravity inverse modelling of anticlinal structure using improved particle swarm optimization (IPSO). Arabian Journal of Geosciences, 14, 1378. https://doi.org/10.1007/s12517-021-07798-6

    Article  Google Scholar 

  • Eshaghzadeh, A., & Hajian, A. (2022). Modelling of residual gravity data due to a near surface dyke structure using damped SVD and marquardt inverse methods. Geofísica Internacional, 61(4), 325–350. https://doi.org/10.22201/igeof.00167169p.2022.61.4.2203

    Article  Google Scholar 

  • Essa, K. S. (2013). Gravity interpretation of dipping faults using the variance analysis method. Journal of Geophysics and Engineering, 10, 015003.

    Google Scholar 

  • Essa, K. S. (2021). Evaluation of the parameters of fault-like geologic structure from the gravity anomalies applying the particle swarm. Environmental Earth Sciences, 80, 489.

    Google Scholar 

  • Essa, K. S., & Gèraud, Y. (2020). Parameters estimation from the gravity anomaly caused by the two-dimensional horizontal thin sheet applying the global particle swarm algorithm. Journal of Petroleum Science and Engineering, 193, 107421.

    Google Scholar 

  • Essa, K. S., Géraud, Y., & Diraison, M. (2021b). Fault parameters assessment from the gravity data profiles using the global particle swarm optimization. Journal of Petroleum Science and Engineering, 207, 109129.

    Google Scholar 

  • Essa, K. S., Mehanee, S. A., & Elhussein, M. (2021a). Gravity data interpretation by a two-sided fault-like geologic structure using the global particle swarm technique. Physics of the Earth and Planetary Interiors, 311, 106631.

    Google Scholar 

  • Essa, K. S., Mehanee, S. A., Soliman, K. S., & Diab, Z. E. (2020). Gravity profile interpretation using the R-parameter imaging technique with application to ore exploration. Ore Geology Reviews, 126, 103695.

    Google Scholar 

  • Essa, K. S., & Munschy, M. (2019). Gravity data interpretation using the particle swarm optimization method with application to mineral exploration. Journal of Earth System Science, 128(5), 123.

    Google Scholar 

  • Evans, K., Beavan, J., & Simpson, D. (1991). Estimating aquifer parameters from analysis of forced fluctuations in well level: An example from the Nubian Formation near Aswan, Egypt: 1. Hydrogeological background and large-scale permeability estimates. Journal of Geophysical Research, 96, 12127–12137.

    Google Scholar 

  • Fat-Helbary, R. E., & Tealeb, A. A. (2002). A study of seismicity and earthquake hazard at the proposed Kalabsha Dam Site, Aswan, Egypt. Natural Hazards, 25, 117–133.

    Google Scholar 

  • Ferris, C. (1987). Gravity anomaly resolution at the Garber field. Geophysics, 52, 1570–1579.

    Google Scholar 

  • Fister, I., Yang, X. S., Fister, D., & Fister, I. (2014). Cuckoo search: a brief literature review. In X. S. Yang (Ed.), Cuckoo search and firefly algorithm. Studies in computational intelligence (Vol. 516, pp. 49–62). Springer.

    Google Scholar 

  • Gämperle, R., Müller, S. D., & Koumoutsakos, P. (2002). A parameter study for differential evolution. In A. Grmela & N. E. Mastorakis (Eds.), Advances in intelligent systems, fuzzy systems, evolutionary computation (pp. 293–298). WSEAS Press.

    Google Scholar 

  • Grant, F. S., & West, G. F. (1965). Interpretation theory in applied geophysics (p. 584). New York: McGraw Hill Co.

    Google Scholar 

  • Gupta, O. P. (1983). A least-squares approach to depth determination from gravity data. Geophysics, 48, 357–360.

    Google Scholar 

  • Issawi, B. (1969). The geology of Kurkur-Dungul area. Geological Survey of Egypt Paper, 46, 102.

    Google Scholar 

  • Joshi, A. S., Kulkarni, O., Kakandikar, G. M., & Nandedkar, V. M. (2017). Cuckoo search optimization—A review. Materials Today: Proceedings, 4, 7262–7269.

    Google Scholar 

  • Kirkland, D. W., Denison, R. E., & Rooney, M. A. (1995). Diagenetic alteration of Permian strata at oil fields of south central Oklahoma, USA. Marine and Petroleum Geology, 12(6), 629–644.

    Google Scholar 

  • Lelièvre, P. G., Farquharson, C. G., & Hurich, C. A. (2012). Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics, 77(1), K1–K15.

    Google Scholar 

  • Lichoro, C. M., Árnason, K., & Cumming, W. (2019). Joint interpretation of gravity and resistivity data from the Northern Kenya volcanic rift zone: Structural and geothermal significance. Geothermics, 77, 139–150.

    Google Scholar 

  • Lines, L. R., & Treitel, S. (1984). A review of least-squares inversion and its application to geophysical problems. Geophysical Prospecting, 32, 159–186.

    Google Scholar 

  • Martínez-Moreno, F. J., Galindo-Zaldívar, J., Pedrera, A., González-Castillo, L., Ruano, P., Calaforra, J. M., et al. (2015). Detecting gypsum caves with microgravity and ERT under soil water content variations (Sorbas, SE Spain). Engineering Geology, 193, 38–48.

    Google Scholar 

  • Mohan, N. L., Anandababu, L., & Rao, S. (1986). Gravity interpretation using the Melin transform. Geophysics, 51, 114–122.

    Google Scholar 

  • Mulugeta, B. D., Fujimitsu, Y., Nishijima, J., & Saibi, H. (2021). Interpretation of gravity data to delineate the subsurface structures and reservoir geometry of the Aluto-Langano geothermal field, Ethiopia. Geothermics, 94, 102093.

    Google Scholar 

  • Murthy, R. I. V., & Krishnamacharyulu, S. K. G. (1990). Automatic inversion of gravity anomalies of faults. Computers & Geosciences, 16, 539–548.

    Google Scholar 

  • Nettleton, L. L. (1976). Gravity and magnetic in oil exploration. Mc. Graw Hill Publication Co.

    Google Scholar 

  • Njeudjang, K., Essi, J. M. A., Kana, J. D., Teikeu, W. A., Nouck, P. N., Djongyang, N., et al. (2020). Gravity investigation of the Cameroon Volcanic Line in Adamawa region: Geothermal features and structural control. Journal of African Earth Sciences, 165, 103809.

    Google Scholar 

  • Obasi, A. I., Onwuemesi, A. G., & Romanus, O. M. (2016). An enhanced trend surface analysis equation for regional–residual separation of gravity data. Journal of Applied Geophysics, 135, 90–99.

    Google Scholar 

  • Odegard, M. E., & Berg, J. W. (1965). Gravity interpretation using the Fourier integral. Geophysics, 30, 424–438.

    Google Scholar 

  • Pallero, J., Fernandez-Martinez, J. L., Bonvalot, S., & Fudym, O. (2015). Gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. Journal of Applied Geophysics, 116, 180–191.

    Google Scholar 

  • Pawlowski, R. S. (1994). Green’s equivalent-layer concept in gravity band-pass filter design. Geophysics, 59, 69–76.

    Google Scholar 

  • Pham, L. T., Oksum, E., & Do, T. D. (2018). GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers and Geosciences, 120, 40–47.

    Google Scholar 

  • Price, K. V., Storn, R. M., & Lampinen, J. A. (2005). Differential evolution: A practical approach to global optimization. Springer-Verlag.

    Google Scholar 

  • Rao, K., & Biswas, A. (2021). Modeling and uncertainty estimation of gravity anomaly over 2D fault using very fast simulated annealing global optimization. Acta Geophysica, 69(5), 1735–1751.

    Google Scholar 

  • Rao, M. M. M., Murty, R. T. V., Murthy, K. S. R., & Vasudeva, R. Y. (2003). Application of natural generalised inverse technique in reconstruction of gravity anomalies due to a fault. Indian Journal of Pure and Applied Mathematics, 34, 31–47.

    Google Scholar 

  • Reid, A. B., Allsop, J. M., Granser, H., Millet, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55, 80–91.

    Google Scholar 

  • Rogers, S. M. (2001). Deposition and diagenesis of Mississippian chat reservoirs, North-Central Oklahoma. AAPG Bulletin, 85(1), 115–129.

    Google Scholar 

  • Rönkkönen, J., Kukkonen, S., & Price, K. (2005). Real-parameter optimization with differential evolution. In Proceedings of the IEEE congress on evolutionary computation (pp. 506–513), Edinburgh, UK.

  • Roy, A., Dubey, P. C., & Prasad, M. (2021). Gravity inversion for heterogeneous sedimentary basin with b-spline polynomial approximation using differential evolution algorithm. Geophysics, 86, F35–F47.

    Google Scholar 

  • Roy, A., & Kumar, T. S. (2021). Gravity inversion of 2D fault having variable density contrast using particle swarm optimization. Geophysical Prospecting, 69(6), 1358–1374.

    Google Scholar 

  • Roy, L., Agarwal, B. N. P., & Shaw, R. K. (1999). Estimation of shape factor and depth from gravity anomalies due to some simple sources. Geophysical Prospecting, 47, 4–158.

    Google Scholar 

  • Roy, L., Sen, M. K., Blankenship, D. D., Stoffa, P. L., & Richter, T. G. (2005). Inversion and uncertainty estimation of gravity data using simulated annealing: An application over Lake Vostok East Antarctica. Geophysics, 70(1), J1–J12.

    Google Scholar 

  • Saibi, H., & Toushmalani, R. (2015). Gravity inversion of a fault by Cuckoo optimization. In Near-surface Asia Pacific conference, Waikoloa, Hawaii, 7–10 July 2015. https://doi.org/10.1190/nsapc2015-052

  • Sawires, R., Peláez, J. A., Fat-Helbary, R. E., Ibrahim, H. A., & García Hernández, M. T. (2015). An updated seismic source model for Egypt. In A. Moustafa (Ed.), Earthquake engineering—From engineering seismology to optimal seismic design of engineering structures. Intech Open.

    Google Scholar 

  • Shaw, R. K., & Agarwal, P. (1990). The application of Walsh transforms to interpret gravity anomalies due to some simple geometrical shaped causative sources: A feasibility study. Geophysics, 55, 843–850.

    Google Scholar 

  • Silva, J. B., Costa, D. C., & Barbosa, V. C. (2006). Gravity inversion of basement relief and estimation of density contrast variation with depth. Geophysics, 71(5), J51–J58.

    Google Scholar 

  • Singh, A. (2020). Triangular grid-based fuzzy cross-update inversion of gravity data: Case studies from mineral exploration. Natural Resources Research, 29, 459–471.

    Google Scholar 

  • Thompson, D. T. (1982). EULDPH—A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47, 31–37.

    Google Scholar 

  • Toushmalani, R. (2013). Gravity inversion of a fault by particle swarm optimization (PSO). Springerplus, 2(1), 315.

    Google Scholar 

  • Toushmalani, R., Parsa, Z., & Esmaeili, A. (2014a). Comparison result of inversion of gravity data of a fault by cuckoo optimization and Levenberg–Marquardt methods. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(1), 418–427.

    Google Scholar 

  • Toushmalani, R., Parsa, Z., & Esmaeili, A. (2014b). Comparison result of inversion of gravity data of a fault by particle swarm optimization and cuckoo optimization methods. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(1), 428–437.

    Google Scholar 

  • Turan-Karaoğlan, S., & Göktürkler, G. (2021). Cuckoo search algorithm for model parameter estimation from self-potential data. Journal of Applied Geophysics, 194, 104461.

    Google Scholar 

  • Yang, X. S. (2014). Nature-inspired metaheuristic algorithms. Luniver Press. ISBN 978-0-12-416743-8.

    Google Scholar 

  • Yang, X.S., & Deb, S. (2009). Cuckoo search via Lévy flights. In: IEEE world congress on nature and biologically inspired computing (NaBIC) (pp. 210–214), Coimbatore, India.

  • Yuan, B., Song, L., Han, L., An, S., & Zhang, C. (2018). Gravity and magnetic field characteristics and hydrocarbon prospects of the Tobago Basin. Geophysical Prospecting, 66, 1586–1601.

    Google Scholar 

  • Zhou, X. (2013). Gravity inversion of 2D bedrock topography for heterogeneous sedimentary basins based on line integral and maximum difference reduction methods. Geophysical Prospecting, 61(1), 220–234.

    Google Scholar 

Download references

Acknowledgements

The authors thank to Dr. Reza Toushmalani and anonymous reviewer for their suggestions and many constructive comments, which significantly improved the earlier version of the paper. The CSA algorithm was implemented by using the MATLAB®, the software for numerical computation (http://www.mathworks.com/).

Funding

No funding has been received from any organization.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study, conception, and design. The authors’ detailed responsibilities are as follows: ŞÖ: methodology, data processing, code editing, figure preparation, writing; AT: data research, investigation, supervision, writing, reviewing and editing.

Corresponding author

Correspondence to Aykut Tunçel.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özyalın, Ş., Tunçel, A. Estimation of Deep-Seated Faults Parameters from Gravity Data Using the Cuckoo Search Algorithm. Pure Appl. Geophys. 180, 4147–4173 (2023). https://doi.org/10.1007/s00024-023-03368-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03368-x

Keywords

Navigation