Skip to main content
Log in

Atmospheric and Ionospheric Signatures Associated with the 15 January 2022 Cataclysmic Hunga-Tonga Volcanic Eruption: A Multi-layer Observation

  • Research
  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Hunga-Tonga volcanic eruption occurred on 15 January 2022 generated different modes of atmospheric and ionospheric waves. Using the Geostationary Operational Environment Satellite-17 (GOES-17), Aqua and Global Positioning System (GPS) satellite observations, an atmospheric and ionospheric multi-layer study of the Tonga volcano induced signatures over the New Zealand region is performed. The visible and infrared channel data of GOES-17 and Atmospheric Infrared Sounder (AIRS) data from NASA Aqua satellite confirm the presence of a highly convective zone and occurrence of concentric Lamb and gravity waves at lower atmospheric altitudes. The Total Electron Content (TEC) derived from 175 GPS stations covering the entire New Zealand region brings out two dominant modes of Travelling Ionospheric Disturbances (TIDs) having periodicity between 30 and 50 min. These two different modes having the phase speeds of 542 m/s and 354 m/s are allied to atmospheric gravity waves and Lamb wave triggered gravity waves respectively and are observed to propagate towards the south-west direction over the New Zealand region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

GPS data over New Zealand region can be obtained from GeoNet New Zealand (https://www.geonet.org.nz/data/types/geodetic). The 4‐km resolution brightness temperature data are available from NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/GPM_MERGIR_1/summary). AIRS data can be obtained online (http://doi.org/10.17616/R34J42). The GOES-17 data is available online (https://noaa-goes17.s3.amazonaws.com/index.html#ABI-L2-MCMIPF/).

Abbreviations

GOES-17:

Geostationary operational environment satellite-17

GPS:

Global positioning system

AIRS:

Atmospheric infrared sounder

TEC:

Total electron content

TIDs:

Travelling ionospheric disturbances

GES DISC:

Goddard earth sciences data and information services center

GW:

Gravity wave

FTEC:

Filtered TEC

References

  • Janowiak, J., Joyce, B., & Xie, P. P. (2017). In A. Savtchenko (Ed.), NCEP/CPC L3 half hourly 4km global (60S – 60N) merged IR V1. Greenbelt, MD: Goddard earth sciences data and information services center (GES DISC), Accessed 21 May 2022. https://doi.org/10.5067/P4HZB9N27EKU.

  • Adam, D., (2022). Tonga volcano eruption created puzzling ripples in earth’s atmosphere, News: Jan 18, 2022. Nature. https://www.na-ture.com/articles/d41586-022-00127-1

  • Amores, A., Monserrat, S., Marcos, M., Argüeso, D., Villalonga, J., Jordà, G., & Gomis, D. (2022). Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption. Geophysical Research Letters, 49, e2022GL098240. https://doi.org/10.1029/2022GL098240

    Article  Google Scholar 

  • Artru, J., Ducic, V., Kanamori, H., Lognonné, P., & Murakami, M. (2005). Ionospheric detection of gravity waves induced by Tsunamis. Geophysical Journal International, 160, 840–848. https://doi.org/10.1111/j.1365-246X.2005.02552.x

    Article  Google Scholar 

  • Astafyeva, E. (2019). Ionospheric detection of natural hazards. Reviews of Geophysics, 3, 673. https://doi.org/10.1029/2019rg000668

    Article  Google Scholar 

  • Azeem, I., Walterscheid, R. L., & Crowley, G. (2018). Investigation of acoustic waves in the ionosphere generated by a deep convection system using distributed networks of GPS receivers and numerical modeling. Geophysical Research Letters, 45, 8014–8021. https://doi.org/10.1029/2018GL078107

    Article  Google Scholar 

  • Bates, S., & Carlowicz, M. (2022). 16 Feb. Tonga volcano plume reached the mesosphere. NASA Earth Observatory. https://earthobservatory.nasa.gov/images/149474/tonga-volcano-plume-reached-the-mesosphere. Accessed 22 April 2022

  • Cheng, K., & Huang, Y.-N. (1992). Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. Journal of Geophysical Research, 97(A11), 16995–17004. https://doi.org/10.1029/92JA01462

    Article  Google Scholar 

  • Donn, W. L., & Balachandran, N. K. (1981). Mount St. Helens eruption of 18 May, 1980: Air waves and explosive yield. Science, 213, 539–541. https://doi.org/10.1126/science.213.4507.539

    Article  Google Scholar 

  • Francis, S. H. (1973). Acoustic-gravity modes and large- scale traveling ionospheric disturbances of a realistic dissipative atmosphere. Journal of Geophysical Research, 78, 2278–2301.

    Article  Google Scholar 

  • Garvin, J. (2022). Dramatic changes at Hunga Tonga-Hunga Ha‘apai. Available at: https://earthobservatory.nasa.gov/images/149367/dramatic-changes-at-hunga-tonga-hunga-haapai.

  • Harkrider, D., & Press, F. (1967). The Krakatoa air-sea waves: An example of pulse propagation in coupled systems. Geophysical Journal of the Royal Astronomical Society, 13, 149–159. https://doi.org/10.1111/j.1365-246X.1967.tb02150.x

    Article  Google Scholar 

  • Hoffmann, L., & Alexander, M. J. (2010). Occurrence frequency of convective gravity waves during the North American thunderstorm season. Journal of Geophysical Research, 115, D20111. https://doi.org/10.1029/2010JD014401.

    Article  Google Scholar 

  • Hoffmann, L., Xue, X., & Alexander, M. J. (2013). A global view of stratospheric gravity wave hotspots located with atmospheric infrared sounder observations. Journal of Geophysical Research: Atmospheres, 118, 416–434. https://doi.org/10.1029/2012JD018658

    Article  Google Scholar 

  • Jin, S. G., Occhipinti, G., & Jin, R. (2015). GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Reviews, 147, 54–64. https://doi.org/10.1016/j.earscirev.2015.05.003

    Article  Google Scholar 

  • Klostermeyer, J. (1977). Lamb waves originating in nongeostrophic disturbances: A case study. Journal of Geophysical Research, 82, 1441–1448.

    Article  Google Scholar 

  • Lin, J.-T., Rajesh, P. K., Lin, C. C. H., Chou, M.-Y., Liu, J.-Y., Yue, J., Hsiao, T.-Y., Tsai, H.-F., Chao, H.-M., & Kung, M.-M. (2022). Rapid conjugate appearance of the giant ionospheric lamb wave signatures in the northern hemisphere after Hunga-Tonga volcano eruptions. Geophysical Research Letters, 49, e2022GL098222. https://doi.org/10.1029/2022GL098222

    Article  Google Scholar 

  • Lindzen, R. S., & Blake, D. (1972). Lamb waves in the presence of realistic distributions of temperature and dissipation. Journal of Geophysical Research, 77, 2166–2176. https://doi.org/10.1029/jc077i012p02166

    Article  Google Scholar 

  • Liu, C. H., Klostermeyer, J., Yeh, K. C., Jones, T. B., Robinson, T., Holt, O., Leitinger, R., Ogawa, T., Sinno, K., Kato, S., & Ogawa, T. (1982). Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980. Journal of Geophysical Research, 87(A8), 6281–6290.

    Article  Google Scholar 

  • Matoza, R. S., Fee, D., Assink, J. D., Iezzi, A. M., Green, D. N., Kim, K., Toney, L., Lecocq, T., Krishnamoorthy, S., Lalande, J.-M., Nishida, K., Gee, K. L., Haney, M. M., Ortiz, H. D., Brissaud, Q., Martire, L., Rolland, L., Vergados, P., Nippress, A., Park, J., Shani-Kadmiel, S., Witsil, A., Arrowsmith, S., Caudron, C., Watada, S., Perttu, A. B., Taisne, B., Mialle, P., Le Pichon, A., Vergoz, J., Hupe, P., Blom, P. S., Waxler, R., De Angelis, S., Snively, J. B., Ringler, A. T., Anthony, R. E., Jolly, A. D., Kilgour, G., Averbuch, G., Ripepe, M., Ichihara, M., Arciniega-Ceballos, A., Astafyeva, E., Ceranna, L., Cevuard, S., Che, I.-Y., De Negri, R., Ebeling, C. W., Evers, L. G., Franco-Marin, L. E., Gabrielson, T. B., Hafner, K., Harrison, R. G., Komjathy, A., Lacanna, G., Lyons, J., Macpherson, K. A., Marchetti, E., McKee, K. F., Mellors, R. J., Mendo-Pérez, G., Mikesell, T. D., Munaibari, E., Oyola-Merced, M., Park, I., Pilger, C., Ramos, C., Ruiz, M. C., Sabatini, R., Schwaiger, H. F., Tailpied, D., Talmadge, C., Vidot, J., Webster, J., & Wilson, D. C. (2022). Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science. https://doi.org/10.1126/science.abo7063

    Article  Google Scholar 

  • Mayr, H. G., Talaat, E. R., & Wolven, B. C. (2013). Global propagation of gravity waves generated with the whole atmosphere transfer function model. Journal of Atmospheric and Solar-Terrestrial Physics, 104, 7–17. https://doi.org/10.1016/j.jastp.2013.08.001

    Article  Google Scholar 

  • Nishida, K., Kobayashi, N., & Fukao, Y. (2014). Background lamb waves in the earth’s atmosphere. Geophysical Journal International, 196, 312–316. https://doi.org/10.1093/gji/ggt413

    Article  Google Scholar 

  • Otsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., & Tsugawa, T. (2013). GPS observations of medium-scale traveling ionospheric disturbances over Europe. Annales Geophysicae, 31, 163–172. https://doi.org/10.5194/angeo-31-163-2013

    Article  Google Scholar 

  • Pekeris, C. L. (1939). The propagation of a pulse in the atmosphere. Proceedings of the Royal Society of London Series A, 171, 434–449.

    Google Scholar 

  • Roberts, D. H., Klobuchar, J. A., Fougere, P. F., & Hendrickson, D. H. (1982). Large-amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens. Journal of Geophysical Research. https://doi.org/10.1029/JA087iA08p06291

    Article  Google Scholar 

  • Rolland, L. M., Lognonné, P., Astafyeva, E., Kherani, E. A., Kobayashi, N., Mann, M., & Munekane, H. (2011). The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space, 63(7), 853–857. https://doi.org/10.5047/eps.2011.06.020

    Article  Google Scholar 

  • Seemala, G. K. (2011). GPS-TEC analysis application read me. USA: Institute for Scientific Research, Boston College.

    Google Scholar 

  • Shults, K., Astafyeva, E., & Adourian, S. (2016). Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. Journal of Geophysical Research: Space Physics, 121, 10303–10315. https://doi.org/10.1002/2016JA023382

    Article  Google Scholar 

  • Song, Q., Ding, F., Zhang, X., Liu, H., Mao, T., Zhao, X., & Wang, Y. (2019). Medium-scale traveling ionospheric disturbances induced by Typhoon Chan-hom over China. Journal of Geophysical Research: Space Physics, 124, 2223–2237. https://doi.org/10.1029/2018JA026152

    Article  Google Scholar 

  • Themens, D. R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., Mccaffrey, A., Prikryl, P., Reid, B., Wood, A., & Jayachandran, P. T. (2022). Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophysical Research Letters, 49, e2022GL.98158. https://doi.org/10.1029/2022GL098158

    Article  Google Scholar 

  • Thomas, D., Bagiya, M. S., Sunil, P. S., Rolland, L., Sunil, A. S., Mikesell, T. D., Nayak, S., Mangalampalli, S., & Ramesh, D. S. (2018). Revelation of early detection of coseismic ionospheric perturbations in GPS-TEC from realistic modelling approach: Case study. Scientific Reports, 8, 12105. https://doi.org/10.1038/s41598-018-30476-9

    Article  Google Scholar 

  • Valladares, C. E., & Hei, M. A. (2012). Measurement of the characteristics of TIDs using small and regional networks of GPS receivers during the campaign of 17–30 July 2008. International Journal of Geophysics, 2012, 548784. https://doi.org/10.1155/2012/548784

    Article  Google Scholar 

  • Yue, J., Miller, S. D., Hoffmann, L., & Straka, W. C. (2014). Stratospheric and mesospheric concentric gravity waves over tropical cyclone Mahasen: Joint AIRS and VIIRS satellite observations. Journal of Atmospheric and Solar-Terrestrial Physics, 119, 83–90. https://doi.org/10.1016/j.jastp.2014.07.003

    Article  Google Scholar 

  • Zhang, S.-R., Vierinen, J., Aa, E., Goncharenko, L. P., Erickson, P. J., Rideout, W., Coster, A. J., & Spicher, A. (2022). 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via lamb waves. Frontiers in Astronomy and Space Sciences, 9, 871275. https://doi.org/10.3389/fspas.2022.871275

    Article  Google Scholar 

  • Zhi-Qiang, C., Qing-Ni, H., & Su-Rong, Z. (2013). Using satellite data to analyze the initiation and evolution of deep convective clouds. Atmospheric and Oceanic Science Letters, 6(6), 445–450. https://doi.org/10.3878/j.issn.1674-2834.13.0007

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the New Zealand GeoNet project for providing the data used in this study. K. K. Ajith thanks National Atmospheric Research Laboratory, Gadanki, India for the Research Associate fellowship. A. S. Sunil thank the University Post-Doctoral Fellowships – 2021 of Cochin University of Science and Technology, Kochi, India for the research fellowship. Rose Mary Shaju sincerely thank the Cochin University of Science and Technology for research fellowship.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

KKA, ASS, and PSS proposed the topic and conceived and designed the study. KKA, ASS and DT drafted the manuscript and carried out the data analysis. PK and RMS have prepared the 2D TEC map using GeoNet New Zealand GPS-TEC data. PK performed the Lamb wave extraction from the GOES-17 data. All authors actively discussed, reviewed and approved the final manuscript.

Corresponding author

Correspondence to K. K. Ajith.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 13722 KB)

Supplementary file2 (MP4 2424 KB)

Supplementary file3 (MP4 4596 KB)

Supplementary file4 (DOCX 84 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajith, K.K., Sunil, A.S., Sunil, P.S. et al. Atmospheric and Ionospheric Signatures Associated with the 15 January 2022 Cataclysmic Hunga-Tonga Volcanic Eruption: A Multi-layer Observation. Pure Appl. Geophys. 179, 4267–4277 (2022). https://doi.org/10.1007/s00024-022-03172-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03172-z

Keywords

Navigation