Skip to main content
Log in

A Micromechanical-Based Investigation on the Frictional Behaviour of Artificially Bonded Analogue Sedimentary Rock with Calcium Carbonate

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The frictional behaviour of geological interfaces has garnered a significant amount of research attention in geophysics and geomechanics with major applications in the characterization of sediments, the analysis of hydrocarbon reservoirs and the study of deep rock mechanics problems. In the present study, we investigated the tribological behaviour of analogue sedimentary rock by performing grain-scale experiments on natural sand particles bonded with calcium carbonate (CaCO3) at their contacts. The cementation was achieved by artificially forming calcium carbonate sediments around the contact area of two particles with chemical solutions based on a newly developed laboratory method by the authors. By differentiating the stage of the chemical reaction when the solution was applied to the specimen, two types of artificial bonds were created, named as (i) the gel type and (ii) the precipitation type. The sediment crystals formed from the two bonding types were distinct based on observations from digital microscope and scanning electron microscope images. Quantitative analysis was performed based on energy-dispersive X-ray spectroscopy, and the results revealed that the percentage of calcium carbonate formed from the precipitation-type cementation was higher than its counterpart. The grain-scale experiments revealed brittle type of breakage of the bonding from both tension and monotonic shearing tests on the analogue rock specimens. A significant influence of the magnitude of normal load was noticed on the shearing strength of both types of bonded specimens, while the gel type of bonding exhibited higher mechanical strength in either tension or shearing tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CLBS:

Clean grains of Leighton Buzzard sand

DM:

Digital Microscope

EDS:

Energy-dispersive spectroscopy

F N :

Normal load (or confining load)

F T :

Shear load (or tangential load)

F T/F N :

Normalized shear load

(F T/F N)CP :

Peak normalized shearing load

(F T/F N)CR :

Residual normalized shearing load

(F T/F N)UC :

Normalized shearing load (or coefficient of friction) for uncemented grains

K T :

Tangential stiffness

K T 0 :

Initial tangential stiffness (corresponding to 0.0002 mm of shearing displacement)

(K T 0)C :

Initial tangential stiffness of cemented specimens

(K T 0)UC :

Initial tangential stiffness of uncemented specimens

LBS:

Leighton Buzzard sand

SEM:

Scanning electron microscope

δ fracture :

Fracture (shearing) displacement threshold

δ sli p :

Slip (shearing) displacement threshold

References

  • Acharya, S. S. S. (2004). Characterisation of cyclic behaviour of calcite cemented calcareous soils. PhD Thesis, University of Western Australia.

  • Al Omari, M. M. H., Rashid, I. S., Qinna, N. A., Jaber, A. M., & Badwan, A. A. (2016). Calcium carbonate. In H. G. Brittain (Ed.), Profiles of drug substances, excipients and related methodology (Vol. 41, pp. 31–132). Academic Press.

    Google Scholar 

  • Allman, M. A., & Poulos, H. G. (1988). Stress-strain behaviour of an artificially cemented calcareous soil. In Proceedings of the international conference of calcareous sediments, Perth, Balkema (pp. 51–60). Rotterdam.

  • Al-Thawadi, S. (2008). High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. PhD Thesis, Murdoch University.

  • Baig, S., Picornell, M., & Nazarian, S. (1997). Low strain shear moduli of cemented sands. Journal of Geotechnical and Geoenvironmental Engineering, 123(6), 540–545.

    Google Scholar 

  • Bandara, K. M. A. S., Ranjith, P. G., & Rathnaweera, T. D. (2020b). Laboratory-scale study on proppant behaviour in unconventional oil and gas reservoir formations. Journal of Natural Gas Science and Engineering, 78, 103329.

    Google Scholar 

  • Bandara, K. M. A. S., Ranjith, P. G., Rathnaweera, T. D., Wanniarachchi, W. A. M., & Yang, S. Q. (2020a). Crushing and embedment of proppant packs under cyclic loading: An insight to enhanced unconventional oil/gas recovery. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2020.02.017 Published online.

    Article  Google Scholar 

  • Barreto, D. (2009). Numerical and experimental investigation into the behaviour of granular materials under generalised stress states (Ph.D. thesis). University of London, Department of Civil Engineering, Imperial College of Science, Technology and Medicine.

  • Bernabé, Y., Fryer, D., & Hayes, J. (1992). The effect of cement on the strength of granular rocks. Geophysical Research Letters, 19(14), 1511–1514.

    Google Scholar 

  • Boggs, S., Jr. (2006). Principles of sedimentation and stratigraphy (4th ed.). Pearson Prentice Hall.

    Google Scholar 

  • Boneh, Y., Chang, J. C., Lockner, D. A., & Reches, Z. (2014). Evolution and wear and friction along experimental faults. Pure and Applied Geophysics, 171, 3125–3141.

    Google Scholar 

  • Burbank, M. B., Weaver, T. J., Green, T. L., Williams, B. C., & Crawford, R. L. (2011). Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiology Journal, 28(4), 301–312.

    Google Scholar 

  • Carter, J., Johnston, I., Fahey, M., Chapman, G., Novello, E., & Kaggwa, W. (1988). Triaxial testing of North Rankin calcarenite. In Proceedings of the International Conference for Calcareous Sediments, Perth, Australia, Balkema (pp. 515–530). Rotterdam.

  • Chang, C. S & Kabir. M. G. (1994). Mechanics for brittle and ductile behavior of cemented sands. In Proceedings of Thirteenth International Conference on Soil Mechanics and Foundation Engineering, New Delhi (pp. 369–372). Rotterdam.

  • Chen, X., Carpenter, B. M., & Reches, Z. E. (2020). Asperity failure control of stick-slip along brittle faults. Pure and Applied Geophysics, 177(7), 3225–3242. https://doi.org/10.1007/s00024-020-02434-y.

    Article  Google Scholar 

  • Chester, F. M., & Logan, J. M. (1986). Implications for mechanical properties of brittle faults from observations of the Punchbowl Fault Zone, California. Pure and Applied Geophysics, 124, 79–106.

    Google Scholar 

  • Chiu, C.-C., Weng, M.-C., & Huang, T.-H. (2015). Biconcave bond model for cemented granular material. Journal of Geoengineering, 10(3), 91–103.

    Google Scholar 

  • Chiu, C. C., Weng, M. C., & Huang, T. H. (2017). Characterization of clastic rock using a biconcave bond model of DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 41, 422–441.

    Google Scholar 

  • Chu, J., Stabnikov, V., & Ivanov, V. (2012). Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiology Journal, 29(6), 544–549.

    Google Scholar 

  • Coop, M. R., & Atkinson, J. H. (1993). The mechanics of cemented carbonate sands. Géotechnique, 43(1), 53–67.

    Google Scholar 

  • David, C., Menendez, B., & Bernabe, Y. (1998). The mechanical behaviour of synthetic sandstone with varying brittle cement content. International Journal of Rock Mechanics and Mining Sciences, 35(6), 759–770.

    Google Scholar 

  • de Bono, J., McDowell, G., & Wanatowski, D. (2015). Investigating the micro mechanics of cemented sand using DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 39, 655–675.

    Google Scholar 

  • Delenne, J. Y., El Youssoufi, M. S., Cherblanc, F., & Bénet, J. C. (2004). Mechanical behaviour and failure of cohesive granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 1577–1594.

    Google Scholar 

  • Ding, X., & Zhang, L. (2014). A new contact model to improve the simulated ratio of unconfined compressive strength to tensile strength in bonded particle models. International Journal of Rock Mechanics and Mining Sciences, 69, 111–119.

    Google Scholar 

  • Dorostkar, O., Guyer, R. A., Johnson, P. A., Marone, C., & Carmeliet, J. (2017). On the micromechanics of slip events in sheared, fluid saturated fault gouge. Geophysical Research Letters, 44(12), 6101–6108. https://doi.org/10.1002/2017GL073768

    Article  Google Scholar 

  • Duan, K., & Kwok, C. (2015). Discrete element modeling of anisotropic rock under Brazilian test conditions. International Journal of Rock Mechanics and Mining Sciences, 78, 46–56.

    Google Scholar 

  • Duan, K., Kwok, C., & Ma, X. (2017). DEM simulations of sandstone under true triaxial compressive tests. Acta Geotechnica, 12, 495–510.

    Google Scholar 

  • Dutton, S. P. (2008). Calcite cement in Permian deep-water sandstones, Delaware Basin, West Texas: Origin, distribution, and effect on reservoir properties. American Association of Petroleum Geologists Bulletin, 92(6), 765–787.

    Google Scholar 

  • Engelder, J. T., Logan, J. M., & Handin, J. (1975). The sliding characteristics of sandstone on quartz fault-gouge. Pure and Applied Geophysics, 113(1), 69–86.

    Google Scholar 

  • Feng, K., Montoya, B., & Evans, T. (2017). Discrete element method simulations of bio-cemented sands. Computers and Geotechnics, 85, 139–150.

    Google Scholar 

  • Grotzinger, J., & Jordan, T. H. (2014). Understanding earth (7th ed.). Macmillan Learning, WH Freeman and Company.

    Google Scholar 

  • Guillard, F., Marks, B., & Einav, I. (2017). Dynamic X-ray radiography reveals particle size and shape orientation fields during granular flow. Scientific Reports, 7(1), 8155.

    Google Scholar 

  • Guo, N., & Zhao, J. D. (2016). Multiscale insights into classical geomechanics problems. International Journal for Numerical and Analytical Methods in Geomechanics, 40(3), 367–390.

    Google Scholar 

  • Guo, Y., & Morgan, J. K. (2006). The frictional and micromechanical effects of grain comminution in fault gouge from distinct element simulations. Journal of Geophysical Research, 111, B12406. https://doi.org/10.1029/2005JB004049

    Article  Google Scholar 

  • Haeri, S. M., Hamidi, A., Hosseini, S. M., Asghari, E., & Toll, D. G. (2006). Effect of cement type on the mechanical behavior of a gravely sand. Geotechnical and Geological Engineering, 24, 335–360.

    Google Scholar 

  • He, H., & Senetakis, K. (2020). A micromechanical study of shale rock-proppant composite interface. Journal of Petroleum Science and Engineering, 184, 106542. https://doi.org/10.1016/j.petrol.2019.106542 Published online.

    Article  Google Scholar 

  • Hecht, C. A. (2004). Geomechanical models for clastic grain packing. Pure and Applied Geophysics, 161, 331–349.

    Google Scholar 

  • Hecht, C. A., Bönsch, C., & Bauch, E. (2005). Relations of rock structure and composition to petrophysical and geomechanical rock properties: Examples from permocarboniferous red-beds. Rock Mechanics and Rock Engineering, 38(3), 197–216.

    Google Scholar 

  • Hsieh, Y.-M., Li, H.-H., Huang, T.-H., & Jeng, F.-S. (2008). Interpretations on how the macroscopic mechanical behavior of sandstone affected by microscopic properties—revealed by bonded-particle model. Engineering Geology, 99(1–2), 1–10.

    Google Scholar 

  • Huang, J., & Airey, D. (1998). Properties of artificially cemented carbonate sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 492–499.

    Google Scholar 

  • Huang, X., Hanley, K. J., O’Sullivan, C., & Kwok, C. Y. (2014). Exploring the influence of interparticle friction on critical state behaviour using DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 38(12), 1276–1297.

    Google Scholar 

  • Ismail, M., Joer, H., & Randolph, M. (2000). Sample preparation technique for artificially cemented soils. Geotechnical Testing Journal, 23(2), 171–177.

    Google Scholar 

  • Ivanov, V., & Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/technology, 7, 139–153.

    Google Scholar 

  • Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., & Griswold, J. P. (2011). Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience, 4(2), 116–121.

    Google Scholar 

  • Jiang, M., Sun, Y., Li, L., & Zhu, H. (2012). Contact behavior of idealized granules bonded in two different interparticle distances: An experimental investigation. Mechanics of Materials, 55, 1–15.

    Google Scholar 

  • Jiang, M., Yu, H., & Harris, D. (2006). Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8), 723–761.

    Google Scholar 

  • Jiang, M., Zhang, W., Sun, Y., & Utili, S. (2013). An investigation on loose cemented granular materials via DEM analyses. Granular Matter, 15, 65–84.

    Google Scholar 

  • Kashizadeh, E., Mukherjee, A., & Tordesillas, A. (2020). Experimental and numerical investigation on heap formation of granular soil sparsely cemented by bacterial calcification. Powder Technology, 360, 253–263.

    Google Scholar 

  • Kasyap, S. S., & Senetakis, K. (2018). A micromechanical experimental study of kaolinite-coated sand grains. Tribology International, 126, 206–217.

    Google Scholar 

  • Kasyap, S. S., & Senetakis, K. (2020). An experimental investigation on the tribological behaviour of nominally flat quartz grains with gouge material in dry, partial saturated and submersed conditions. Pure and Applied Geophysics, 177(7), 3283–3300.

    Google Scholar 

  • Kasyap, S. S., & Senetakis, K. (2021). Micromechanical-based experimental and analytical studies on rate effects and stick-slip instability of smooth quartz surfaces in the presence of plastic and non-plastic gouges. International Journal for Numerical and Analytical Methods in Geomechanics, 45(6), 776–793.

    Google Scholar 

  • Kasyap, S. S., Senetakis, K., Coop, M. R., & Zhao, J. (2021). Micromechanical behaviour in shearing of reproduced flat LBS grains with strong and weak artificial bonds. Acta Geotechnica, 16(5), 1355–1376. https://doi.org/10.1007/s11440-020-01101-9

    Article  Google Scholar 

  • Kawamoto, R., Andò, E., Viggiani, G., & Andrade, J. E. (2018). All you need is shape: Predicting shear banding in sand with LS-DEM. Journal of the Mechanics and Physics of Solids, 111, 375–392.

    Google Scholar 

  • Kim, K. Y., Suh, H. S., Yun, T. S., Moon, S. W., & Seo, Y. S. (2016). Effect of particle shape on the shear strength of fault gouge. Geosciences Journal, 20(3), 351–359.

    Google Scholar 

  • Kucharski, E., Price, G., Li, H., & Joer, H. (1996). Engineering properties of CIPS cemented calcareous sand. In Proceedings of the 30th International Geological Congress (volume 23; pp. 449–460). Brill Academic Publishers.

  • Lade, P. V., & Overton, D. D. (1989). Cementation effects in frictional materials. Journal of Geotechnical Engineering, 115(10), 1373–1387.

    Google Scholar 

  • Liu, C., Zheng, H., Hu, Z., Yin, Q., & Li, S. (2012). Characteristics of carbonate cementation in clastic rocks from the Chang 6 sandbody of Yanchang formation, southern Ordos Basin. Science China Earth Sciences, 55(1), 58–66.

    Google Scholar 

  • Liu, L., Liu, H., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Canadian Geotechnical Journal, 56(10), 1502–1513.

    Google Scholar 

  • Liu, S., Huang, S., Shen, Z., Lü, Z., & Song, R. (2014). Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu area, Sichuan Province, China. Science China Earth Sciences, 57(5), 1077–1092.

    Google Scholar 

  • Liu, Y. J., Wang, L. Z., Hong, Y., Zhao, J. D., & Yin, Z. Y. (2020). A coupled CFD-DEM investigation of internal erosion of gap graded soil: Coupling effect of confining pressure and fines content. International Journal for Numerical and Analytical Methods in Geomechanics, 44(18), 2473–2500. https://doi.org/10.1002/nag.3151.

    Article  Google Scholar 

  • Lucas, A., Mangeney, A., & Ampuero, J. P. (2014). Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nature Communications, 5, 3417.

    Google Scholar 

  • Mair, K., & Abe, S. (2011). Breaking up: Comminution mechanisms in sheared simulated fault gouge. Pure and Applied Geophysics, 168, 2277–2288.

    Google Scholar 

  • Marone, C., & Cox, S. J. D. (1994). Scaling of rock friction constitutive parameters: The effects of surface roughness and cumulative offset on friction of gabbro. Pure and Applied Geophysics, 143(1–3), 359–385.

    Google Scholar 

  • Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233.

    Google Scholar 

  • Molenaar, N., & Venmans, A. (1993). Calcium carbonate cementation of sand: A method for producing artificially cemented samples for geotechnical testing and a comparison with natural cementation processes. Engineering Geology, 35(1–2), 103–122.

    Google Scholar 

  • Mollon, G., Quacquarelli, A., Ando, E., & Viggiani, G. (2020). Can friction replace roughness in the numerical simulaiton of granular materials? Granular Matter, 22(2), 42. https://doi.org/10.1007/s10035-020-1004-5

    Article  Google Scholar 

  • Moore, D. E., Lockner, D. A., Ito, H., Ikeda, R., Tanaka, H., & Omura, K. (2009). Geometry of the Nojima fault at Nojima-Hirabayashi, Japan–II. Microstructures and their implications for permeability and strength. Pure and Applied Geophysics, 166, 1669–1691.

    Google Scholar 

  • Mujah, D., Shahin, M. A., & Cheng, L. (2017). State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34(6), 524–537.

    Google Scholar 

  • Nafisi, A., Montoya, B. M., & Evans, T. M. (2020). Shear strength envelopes of biocemented sands with varying particle size and cementation level. Journal of Geotechnical and Geoenvironmental Engineering, 146(3), 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201

    Article  Google Scholar 

  • Pestana, J. M., & Salvati, L. A. (2006). Small-strain behavior of granular soils. I: Model for cemented and uncemented sands and gravels. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 1071–1081.

    Google Scholar 

  • Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329–1364.

    Google Scholar 

  • Rempe, M., Smith, S., Mitchell, T., Hirose, T., & Di Toro, G. (2017). The effect of water on strain localization in calcite fault gouge sheared at seismic slip rates. Journal of Structural Geology, 97, 104–117.

    Google Scholar 

  • Ren, J., Li, S., He, H., & Senetakis, K. (2021). The tribological behavior of iron tailing sand grain contacts in dry, water and biopolymer immersed states. Granular Matter, 23(1), 12. https://doi.org/10.1007/s10035-020-01068-0.

    Article  Google Scholar 

  • Salifu, E., MacLachlan, E., Iyer, K. R., Knapp, C. W., & Tarantino, A. (2016). Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Engineering Geology, 201, 96–105.

    Google Scholar 

  • Sammis, C. G., & Biegel, R. L. (1989). Fractals, fault-gouge, and friction. Pure and Applied Geophysics., 131(1–2), 255–271.

    Google Scholar 

  • Sandeep, C. S., He, H., & Senetakis, K. (2018). An experimental micromechanical study of sand grain contacts behavior from different geological environments. Engineering Geology, 246, 176–186.

    Google Scholar 

  • Sandeep, C. S., & Senetakis, K. (2017). Exploring the micromechanical sliding behavior of typical quartz grains and completely decomposed volcanic granules subjected to repeating shearing. Energies, 10(3), 370.

    Google Scholar 

  • Sandeep, C. S., & Senetakis, K. (2018a). The tribological behavior of two potential-landslide Saprolitic rocks. Pure and Applied Geophysics, 175(12), 4483–4499.

    Google Scholar 

  • Sandeep, C. S., & Senetakis, K. (2018b). Effect of Young’s modulus and surface roughness on the inter-particle friction of granular materials. Materials, 11(2), 217.

    Google Scholar 

  • Sandeep, C. S., & Senetakis, K. (2018c). Grain-scale mechanics of quartz sand under normal and tangential loading. Tribology International, 117, 261–271.

    Google Scholar 

  • Sandeep, C. S., & Senetakis, K. (2019). An experimental investigation of the microslip displacement of geological materials. Computers and Geotechnics, 107, 55–67.

    Google Scholar 

  • Senetakis, K., & Coop, M. R. (2015). Micro-mechanical experimental investigation of grain-to-grain sliding stiffness of quartz minerals. Experimental Mechanics, 55, 1187–1190.

    Google Scholar 

  • Shi, Z., Jiang, T., Jiang, M., Liu, F., & Zhang, N. (2015). DEM investigation of weathered rocks using a novel bond contact model. Journal of Rock Mechanics and Geotechnical Engineering, 7(3), 327–336.

    Google Scholar 

  • Smith, S. A. F., Nielsen, S., & Di Toro, G. (2015). Strain localization and the onset of dynamic weakening in calcite fault gouge. Earth and Planetary Science Letters, 413, 25–36.

    Google Scholar 

  • Soon, N. W., Lee, L. M., Khun, T. C., & Ling, H. S. (2014). Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 140(5), 04014006.

    Google Scholar 

  • Tang, C. L., Hu, J. C., Lin, M. L., Angelier, J., Lu, C. Y., & Chan, Y. C. (2009). The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation. Engineering Geology, 106(1–2), 1–19.

    Google Scholar 

  • Thomson, P., Ellis, R., Chiarella, D., & Hier-Majumder, S. (2020). Microstructural analysis from X-ray CT images of the brae formation sandstone, North Sea. Frontiers in Earth Science, 8, 246. https://doi.org/10.3389/feart.2020.00246.

    Article  Google Scholar 

  • Utili, S., & Nova, R. (2008). DEM analysis of bonded granular geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 32(17), 1997–2031.

    Google Scholar 

  • Utili, S., Zhao, T., & Houlsby, G. T. (2015). 3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power. Engineering Geology, 186, 3–16.

    Google Scholar 

  • Verberne, B. A., Niemeijer, A. R., De Bresser, J. H., & Spiers, C. J. (2015). Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20–600 C: Implications for natural faults in limestones. Journal of Geophysical Research: Solid Earth, 120(12), 8169–8196. https://doi.org/10.1002/2015JB012292

    Article  Google Scholar 

  • Verberne, B. A., Spiers, C. J., Niemeijer, A. R., De Bresser, J. H. P., De Winter, D. A. M., & Plümper, O. (2014). Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure and Applied Geophysics, 171, 2617–2640.

    Google Scholar 

  • Wang, W., Coop, M. R., & Senetakis, K. (2019b). The development of a micromechanical apparatus applying combined normal-shear-bending forces to natural sand grains with artificial bonds. Geotechnical Testing Journal, 42(4), 1090–1099. https://doi.org/10.1520/GTJ20170453

    Article  Google Scholar 

  • Wang, W., Pan, J., Jin, F., Cui, C., & Wang, B. (2019a). Effect of cement matrix on mechanical properties of cemented granular materials. Powder Technology, 350, 107–116.

    Google Scholar 

  • Wang, Y.-H., & Leung, S.-C. (2008a). A particulate-scale investigation of cemented sand behavior. Canadian Geotechnical Journal, 45, 29–44.

    Google Scholar 

  • Wang, Y., & Leung, S. (2008b). Characterization of cemented sand by experimental and numerical investigations. Journal of Geotechnical and Geoenvironmental Engineering, 134(7), 992–1004.

    Google Scholar 

  • Weng, M.-C., & Li, H.-H. (2012). Relationship between the deformation characteristics and microscopic properties of sandstone explored by the bonded-particle model. International Journal of Rock Mechanics and Mining Sciences, 56, 34–43.

    Google Scholar 

  • Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement. PhD Thesis, Murdoch University.

  • Wu, H. R., Guo, N., & Zhao, J. D. (2018). Multiscale modeling and analysis of compaction bands in high-porosity sandstones. Acta Geotechnica, 13(3), 575–599. https://doi.org/10.1007/s11440-017-0560-2

    Article  Google Scholar 

  • Wu, H. R., Zhao, J. D., & Guo, N. (2019). Multiscale modeling of compaction bands in saturated high-porosity sandstones. Engineering Geology, 261, 105282. https://doi.org/10.1016/j.enggeo.2019.105282

    Article  Google Scholar 

  • Xiao, P., Liu, H., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal, 56(12), 1849–1862.

    Google Scholar 

  • Xiao, P., Liu, H., Xiao, Y., Stuedlein, A. W., & Evans, T. M. (2018). Liquefaction resistance of bio-cemented calcareous sand. Soil Dynamics and Earthquake Engineering, 107, 9–19.

    Google Scholar 

  • Xiong, D., Azmy, K., & Blamey, N. J. (2016). Diagenesis and origin of calcite cement in the Flemish Pass Basin sandstone reservoir (Upper Jurassic): Implications for porosity development. Marine and Petroleum Geology, 70, 93–118.

    Google Scholar 

  • Yang, Z., Zou, C., He, S., Li, Q., He, Z., Wu, H., Cao, F., Meng, X., Wang, F., & Xiao, Q. (2010). Formation mechanism of carbonate cemented zones adjacent to the top overpressured surface in the central Junggar Basin, NW China. Science China Earth Sciences, 53(4), 529–540.

    Google Scholar 

  • Yimsiri, S., & Soga, K. (2000). Micromechanics-based stress-strain behaviour of soils at small strains. Géotechnique, 50(5), 559–571.

    Google Scholar 

  • Yu, B., Dong, H., & Ruan, Z. (2008). Mechanism for calcite dissolution and its contribution to development of reservoir porosity and permeability in the Kela 2 gas field, Tarim Basin, China. Science China Earth Sciences, 51, 567–578.

    Google Scholar 

  • Zhang, Y., Shao, J., de Saxcé, G., Shi, C., & Liu, Z. (2019). Study of deformation and failure in an anisotropic rock with a three-dimensional discrete element model. International Journal of Rock Mechanics and Mining Sciences, 120, 17–28.

    Google Scholar 

  • Zhao, J. D., Jiang, M. J., Soga, K., & Luding, S. (2016). Micro origins for macro behavior in granular media. Granular Matter, 18(3), 59. https://doi.org/10.1007/s10035-016-0662-9

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was fully supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, project no. (CityU 11210419), titled "Experimental micromechanical study on the influence of environment-soil and fluid-soil interactions at the grain contact interfaces", and project no. (CityU 11214218), titled "Micromechanical investigation of bonded granular geo-materials".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Senetakis.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest with this submission.

Ethical Approval

The study described in this manuscript has not been published in other form elsewhere nor is it being considered for publication. All authors of this manuscript made substantial contributions to the work and have approved the final version of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., He, H. & Senetakis, K. A Micromechanical-Based Investigation on the Frictional Behaviour of Artificially Bonded Analogue Sedimentary Rock with Calcium Carbonate. Pure Appl. Geophys. 178, 4461–4486 (2021). https://doi.org/10.1007/s00024-021-02875-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02875-z

Keywords

Navigation