Skip to main content
Log in

Differential Carbon Utilization by Bacteria in the Soil Surrounding and on Swine Carcasses with Dipteran Access Delayed

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Mass mortality events can saturate an environment with decomposing remains. We lack an understanding of such perturbations and the extent of disruption imposed on the local ecosystem. During such instances, normal patterns of colonization and decomposition of remains by necrophagous arthropods can be retarded resulting in delayed colonization due to the proximity of multiple corpses. Therefore, this study was initiated to investigate the impact of carcasses in close proximity with delayed arthropod access on the associated microbial metabolic community profiles and those in the soil immediately under and adjacent to the remains. Field trials were conducted during the summers of 2013 and 2014 in Texas, USA. Three groups of pig carcasses were accessed: those immediately colonized by dipteran species (i.e., primary invertebrate consumers of carrion) and those experiencing delayed dipteran access by 7 or 14 days. Meteorological data for 2013 showed that the mean temperature was 30.59 ± 7.81 °C, accumulated degree hours (ADH) was 30,131.50, and precipitation was 39.12 mm, while in 2014, the mean temperature was 29.27 ± 6.49 °C, ADH was 28,090.70, and total precipitation was 171.45 mm. Bacterial function on the remains in terms of carbon utilization was significantly different between the years as well as between carcass groups, suggesting an inter-kingdom correlation between bacteria and dipteran activity. In contrast, microbial function in the soil was inconsistent between trials, indicating stochasticity within the system, probably due to differences in abiotic factors such as temperature, ADH, and rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitkenhead-Peterson, J. A., Owings, C. G., Alexander, M. B., Larison, N., & Bytheway, J. A. (2012). Mapping the lateral extent of human cadaver decomposition with soil chemistry. Forensic Science International, 216, 127–134.

    Google Scholar 

  • Aneyo, I., Alafia, O., Doherty, F., Udoma, R., Balogun, B., & Adeola, A. (2020). Aerobic microbe community and necrophagous insects associated with decomposition of pig carrion poisoned with lead. Legal Medicine, 42, 101638.

    Google Scholar 

  • Barton, P. S. (2015). The role of carrion in ecosystems. In M. E. Benbow, J. Tomberlin, & A. Tarone (Eds.), Carrion ecology, evolution, and their application (pp. 273–290). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Barton, P. S., Cunningham, S. A., Lindenmayer, D. B., & Manning, A. D. (2013). The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia, 171, 761–772.

    Google Scholar 

  • Barton, P. S., Evans, M. J., Foster, C. N., Pechal, J. L., Bump, J. K., Quaggiotto, M. M., et al. (2019). Towards quantifying carrion biomass in ecosystems. Trends in Ecology and Evolution, 34, 950–961.

    Google Scholar 

  • Barton, B., & Jones, A. (2020). What’s left when the animals die: A field test of rotting feral pig carcasses demonstrates what happens when tons of creatures perish all at once, as in Australia’s bushfires. American Scientist, 108, 80–84.

    Google Scholar 

  • Baruzzi, C., Mason, D., Barton, B., & Lashley, M. (2018). Effects of increasing carrion biomass on food webs. Food Webs, 17, e00096.

    Google Scholar 

  • Bell, C. W., Acosta-Martinez, V., McIntyre, N. E., Cox, S., Tissue, D. T., & Zak, J. C. (2009). Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microbial Ecology, 58, 827–842.

    Google Scholar 

  • Benninger, L. A., Carter, D. O., & Forbes, S. L. (2008). The biochemical alteration of soil beneath a decomposing carcass. Forensic Science International, 180, 70–75.

    Google Scholar 

  • Biondini, M. E., Bonham, C. D., & Redente, E. F. (1985). Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetatio, 60, 25–36.

    Google Scholar 

  • Blandford, M. I., Katouli, M., Gilby, B. L., O’Dea, C., Olds, A. D., & Schlacher, T. A. (2019). Not all rotten fish stink: Microbial changes in decaying carcasses increase cytotoxicity and potential risks to animal scavengers. Estuarine, Coastal and Shelf Science, 227, 106350.

    Google Scholar 

  • Bornemissza, G. F. (1957). An analysis of arthropod succession in carrion and the effect of its decomposiion on the soil fauna. Australian Journal of Zoology, 5, 1–12.

    Google Scholar 

  • Burkepile, D. E., & Hay, M. E. (2006). Herbivore vs. nutrient control of marine primary producers: Context-dependent effects. Ecology, 87, 3128–3139.

    Google Scholar 

  • Cabin, R. J., & Mitchell, R. J. (2000). To Bonferroni or not to Bonferroni: When and how are the questions. Bulletin of the Ecological Society of America, 86, 246–248.

    Google Scholar 

  • Carter, D. O., & Tibbett, M. (2008). Cadaver decomposition and soil: Processes. Soil analysis in forensic taphonomy (pp. 29–52). Boca Raton: CRC Press.

    Google Scholar 

  • Carter, D. O., Yellowlees, D., & Tibbett, M. (2007). Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften, 94, 12–24.

    Google Scholar 

  • Carter, D. O., Yellowlees, D., & Tibbett, M. (2010). Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Science International, 200, 60–66.

    Google Scholar 

  • Castro, H. F., Classen, A. T., Austin, E. E., Norby, R. J., & Schadt, C. W. (2010). Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology, 76, 999–1007.

    Google Scholar 

  • Cook, K. L., Garland, J. L., Layton, A. C., Dionisi, H. M., Levine, L. H., & Sayler, G. S. (2006). Effect of microbial species richness on community stability and community function in a model plant-based wastewater processing system. Microbial Ecology, 52, 725–737.

    Google Scholar 

  • Crippen, T. L., Benbow, M. E., & Pechal, J. L. (2015). Microbial interactions during carrion decomposition. Carrion ecology, evolution, and their applications (pp. 31–64). Boca Raton: CRC Press.

    Google Scholar 

  • Curtis, M. A., Zenobia, C., & Darveau, R. P. (2011). The relationship of the oral microbiotia to periodontal health and disease. Cell Host and Microbe, 10, 302–306.

    Google Scholar 

  • Dangerfield, C. R., Frehner, E., Buechley, E., Şekercioğlu, Ç. H., & Brazelton, W. J. (2019). Succession of bacterial communities on carrion is independent of vertebrate scavengers. bioRxiv, 8, 744748.

    Google Scholar 

  • Dayton, P. K., Oliver, J. S., Thrush, S. F., & Hammerstrom, K. (2019). Bacteria defend carrion from scavengers. Antarctic Science, 31(1), 13–15.

    Google Scholar 

  • Dent, B. B., Forbes, S. L., & Stuart, B. H. (2004). Review of human decomposition processes in soil. Environmental Geology, 45(4), 576–585.

    Google Scholar 

  • Dethlefsen, L., Eckburg, P. B., Bik, E. M., & Relman, D. A. (2006). Assembly of the human intestinal microbiota. Trends in Ecology and Evolution, 21(9), 517–523.

    Google Scholar 

  • DeVault, T. L., Rhodes, O. E., Jr., & Shivik, J. A. (2003). Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos, 102(2), 225–234.

    Google Scholar 

  • Dibner, H., Mangca Valdez, C., & Carter, D. O. (2019). An experiment to characterize the decomposer community associated with carcasses (Sus scrofa domesticus) on Oahu, Hawaii. Journal of Forensic Sciences, 64, 1412–1420.

    Google Scholar 

  • Dickson, G. C., Poulter, R. T., Maas, E. W., Probert, P. K., & Kieser, J. A. (2011). Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Science International, 209, 1–10.

    Google Scholar 

  • Dilly, O., Bloem, J., Vos, A., & Munch, J. C. (2004). Bacterial diversity in agricultural soils during litter decomposition. Applied and Environmental Microbiology, 70, 468–474.

    Google Scholar 

  • Evans, W. E. D. (1963). The chemistry of death (p. 101). Springfield: Thomas.

    Google Scholar 

  • Farwig, N., Brandl, R., Siemann, S., Wiener, F., & Müller, J. (2014). Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia, 175(4), 1291–1300.

    Google Scholar 

  • Fuhrman, J. A. (2009). Microbial community structure and its functional implications. Nature, 459, 193–199.

    Google Scholar 

  • Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., et al. (2010). Diversity meets decomposition. Trends in Ecology and Evolution, 25(6), 372–380.

    Google Scholar 

  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248–2251.

    Google Scholar 

  • Grice, E. A., Kong, H. H., Conlan, S., Deming, C. B., Davis, J., Young, A. C., et al. (2009). Topographical and temporal diversity of the human skin microbiome. Science, 324, 1190–1192.

    Google Scholar 

  • Halffter, G., & Edmonds, W. D. (1982). The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach (p. 176). Mexico City: Instituto de Ecologica.

    Google Scholar 

  • Hanski, I. (1987). Carrion fly community dynamics: patchiness, seasonality and coexistence. Ecological Entomology, 12, 257–266.

    Google Scholar 

  • Heo, C. C. (2016). Sensitivity of arthropod and microbial communities associated with vertebrate carrion in response to delayed blow fly access: Implication for carrion ecology and forensic entomology (Doctoral dissertation). College Station, TX, USA: Texas A&M University.

    Google Scholar 

  • Heo, C. C., Teel, P. D., Banfield, M. M., & Tomberlin, J. K. (2019). Soil arthropod community responses to carrion with delayed insect access. Food Webs, 20, e00118.

    Google Scholar 

  • Higley, L., & Haskell, N. (2009). Insect development and forensic entomology. Forensic entomology, the utility of arthropods in legal investigations (pp. 389–405). Boca Raton: CRC Press.

    Google Scholar 

  • Howard, G. T., Duos, B., & Watson-Horzelski, E. J. (2010). Characterization of the soil microbial community associated with the decomposition of a swine carcass. International Biodeterioration and Biodegradation, 64, 300–304.

    Google Scholar 

  • Hyde, E. R., Haarmann, D. P., Lynne, A. M., Bucheli, S. R., & Petrosino, J. F. (2013). The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One, 8(10), e77733.

    Google Scholar 

  • Hyde, E. R., Haarmann, D. P., Petrosino, J. F., Lynne, A. M., & Bucheli, S. R. (2014). Initial insights into bacterial succession during human decomposition. International Journal of Legal Medicine, 129, 661–671.

    Google Scholar 

  • Iancu, L., Junkins, E. N., & Purcarea, C. (2018). Characterization and microbial analysis of first recorded observation of Conicera similis Haliday (Diptera: Phoridae) in forensic decomposition study in Romania. Journal of Forensic and Legal Medicine, 58, 50–55.

    Google Scholar 

  • Iancu, L., Necula-Petrareanu, G., & Purcarea, C. (2020). Potential bacterial biomarkers for insect colonization in forensic cases: preliminary quantitative data on Wohlfahrtiimonas chitiniclastica and Ignatzschineria indica dynamics. Scientific Reports, 10, 1–8.

    Google Scholar 

  • Janzen, D. H. (1977). Why fruits rot, seeds mold, and meat spoils. The American Naturalist, 111, 691–713.

    Google Scholar 

  • Junkins, E. N., Speck, M., & Carter, D. O. (2019). The microbiology, pH, and oxidation reduction potential of larval masses in decomposing carcasses on Oahu. Hawaii. Journal of Forensic and Legal Medicine, 67, 37–48.

    Google Scholar 

  • Kim, H. Y., Seo, J., Kim, T. H., Shim, B., Cha, S. M., & Yu, S. (2017). Pyrosequencing-based assessment of microbial community shifts in leachate from animal carcass burial lysimeter. Science of the Total Environment, 587, 232–239.

    Google Scholar 

  • Lal, R. (1993). Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil and Tillage Research, 27, 1–8.

    Google Scholar 

  • Lashley, M. A., Jordan, H. R., Tomberlin, J. K., & Barton, B. T. (2018). Indirect effects of larval dispersal following mass mortality events. Ecology, 99, 491–493.

    Google Scholar 

  • Lauber, C. L., Metcalf, J. L., Keepers, K., Ackermann, G., Carter, D. O., & Knight, R. (2014). Vertebrate decomposition is accelerated by soil microbes. Applied and Environmental Microbiology, 80, 4920–4929.

    Google Scholar 

  • Matuszewski, S., Hall, M. J., Moreau, G., Schoenly, K. G., Tarone, A. M., & Villet, M. H. (2019). Pigs vs people: the use of pigs as analogues for humans in forensic entomology and taphonomy research. International Journal of Legal Medicine, 134, 1–18.

    Google Scholar 

  • McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities (Vol. 28). Gleneden Beach, OR: MjM software design.

    Google Scholar 

  • McLaren, J. R. (2014). Ecology: Diversity in the afterlife. Nature, 509, 173–174.

    Google Scholar 

  • Metcalf, J. L., Parfrey, L. W., Gonzalez, A., Lauber, C. L., Knights, D., Ackermann, G., et al. (2013). A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife, 2, e01104.

    Google Scholar 

  • Moleón, M., Selva, N., & Sánchez-Zapata, J. A. (2020). The components and spatiotemporal dimension of carrion biomass quantification. Trends in Ecology and Evolution, 35, 91–92.

    Google Scholar 

  • Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M. H. H., Oksanen, M. J., et al. (2007). The vegan package. Community Ecology Package, 10, 631–637.

    Google Scholar 

  • Payne, J. A., Mead, F. W., & King, E. W. (1968). Hemiptera associated with pig carrion. Annals of the Entomological Society of America, 61, 565–567.

    Google Scholar 

  • Pechal, J. L., Crippen, T. L., Benbow, M. E., Tarone, A. M., Dowd, S., & Tomberlin, J. K. (2014). The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. International Journal of Legal Medicine, 128, 193–205.

    Google Scholar 

  • Pechal, J. L., Crippen, T. L., Cammack, J. A., Tomberlin, J. K., & Benbow, M. E. (2019). Microbial communities of salmon resource subsidies and associated necrophagous consumers during decomposition: Potential of cross-ecosystem microbial dispersal. Food Webs, 19, e00114.

    Google Scholar 

  • Pechal, J. L., Crippen, T. L., Tarone, A. M., Lewis, A. J., Tomberlin, J. K., & Benbow, M. E. (2013). Microbial community functional change during vertebrate carrion decomposition. PLoS One, 8, e79035.

    Google Scholar 

  • Putman, R. J. (1978). Patterns of carbon dioxide evolution from decaying carrion. 1. Decomposition of small mammal carrion in temperate systems. Oikos, 31, 47–57.

    Google Scholar 

  • Ramette, A., & Tiedje, J. M. (2007). Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings of the National Academy of Sciences, 104, 2761–2766.

    Google Scholar 

  • Saison, C., Degrange, V., Oliver, R., Millard, P., Commeaux, C., Montange, D., et al. (2006). Alteration and resilience of the soil microbial community following compost amendment: Effects of compost level and compost-borne microbial community. Environmental Microbiology, 8, 247–257.

    Google Scholar 

  • Seybold, C. A., Herrick, J. E., & Brejda, J. J. (1999). Soil resilience: A fundamental component of soil quality. Soil Science, 164, 224–234.

    Google Scholar 

  • Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., et al. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156, 997–1005.

    Google Scholar 

  • Singh, B., Minick, K. J., Strickland, M. S., Wickings, K. G., Crippen, T. L., Tarone, A. M., et al. (2018). Temporal and spatial impact of human cadaver decomposition on soil bacterial and arthropod community structure and function. Frontiers in Microbiology, 8, 2616.

    Google Scholar 

  • Strickland, M. S., Lauber, C., Fierer, N., & Bradford, M. A. (2009). Testing the functional significance of microbial community composition. Ecology, 90, 441–451.

    Google Scholar 

  • Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems (Vol. 5). Univ. of California Press.

  • R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Tomberlin, J. K., Barton, B. T., Lashley, M. A., & Jordan, H. R. (2017). Mass mortality events and the role of necrophagous invertebrates. Current Opinion in Insect Science, 23, 7–12.

    Google Scholar 

  • Torres, P. A., Abril, A. B., & Bucher, E. H. (2005). Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biology and Biochemistry, 37, 49–54.

    Google Scholar 

  • Towne, E. G. (2000). Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia, 122, 232–239.

    Google Scholar 

  • Weber, K. P., & Legge, R. L. (2010). Community-level physiological profiling. Bioremediation (pp. 263–281). New York: Humana Press.

    Google Scholar 

  • Weiss, S., Carter, D. O., Metcalf, J. L., & Knight, R. (2016). Carcass mass has little influence on the structure of gravesoil microbial communities. International Journal of Legal Medicine, 130, 253–263.

    Google Scholar 

  • Zogg, G. P., Zak, D. R., Ringelberg, D. B., White, D. C., MacDonald, N. W., & Pregitzer, K. S. (1997). Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal, 61, 475–481.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Aaron Tarone for his comments and technical support throughout the field and laboratory work. Also, the authors would like to acknowledge the following people for their help in the field and laboratory work: Meaghan Pimsler, Baneshwar Singh, Jonathan Cammack, Brandon Lyons, Le Zheng, Michael Banfield, and Caitlin Evers. A special thanks to Micky Eubanks, Loriann Garcia, and the Texas A&M Field Laboratory. The first author wishes to extend his appreciation to the Ministry of Higher Education, Government of Malaysia, and Universiti Teknologi MARA (UiTM) for the scholarship provided for his study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Chin Heo.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, C.C., Crippen, T.L., Thornton, S.N. et al. Differential Carbon Utilization by Bacteria in the Soil Surrounding and on Swine Carcasses with Dipteran Access Delayed. Pure Appl. Geophys. 178, 717–734 (2021). https://doi.org/10.1007/s00024-020-02608-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02608-8

Keywords

Navigation