Skip to main content
Log in

Joint Inversion of DC Resistivity and Magnetic Data, Constrained by Cross Gradients, Compactness and Depth Weighting

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this paper we perform a 2-D joint inversion of DC resistivity and magnetic data, constrained by cross-gradients. Inspired by methods developed for potential fields, we introduce into both the separate and joint inversion algorithms also compactness and depth weighting functions, under the form of a model weighting-function. These constraints, usually not considered for DC resistivity inversion, reveal to be decisive for its joint inversion with magnetic data. A linear approximated forward problem of the resistivity is used for the joint inversion so that both the resistivity and magnetic problems are expressed as a linear integral equation under the form of a Fredholm integral of 1st kind. To examine the feasibility of the joint inversion algorithm, we first test the method with two synthetic cases: a thick dyke in a two-layered medium and a cavity located above a conductor. A third synthetic case involves a multisource model. The results are encouraging, revealing that the cross-gradient constraint is an effective tool to improve the separate inversions of DC resistivity and magnetic data. The joint inversion algorithm is also applied to data in the archeological area of the old Pompeii city, nearby Naples. Comparing the results of joint and separate inversions, we obtain a significant improvement in the interpretation of both kind of data in terms of buried walls of an ancient roman villa. In all the studied cases, the cross-gradient constraint appears to be a key-diagnostic tool to assess whether actual coherence is gained among DC resistivity and magnetic susceptibility models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Al-Garni, M. A. (2011). Magnetic and DC resistivity investigation for groundwater in a complex subsurface terrain. Arabian Journal of Geosciences, 4(3–4), 385–400.

    Google Scholar 

  • Bennington, N. L., Zhang, H., Thurber, C. H., & Bedrosian, P. A. (2015). Joint inversion of seismic and magnetotellurics data in the Parkfield region of California using the normalized cross-gradient constraint. Pure and Applied Geophysics, 172(5), 1033–1052.

    Google Scholar 

  • Berge, P. A., Berryman, J. G., Bertete-Aguirre, H., Bonner, B.P., Roberts, J.J., & Wildenschild, D., 2000. Joint inversion of geophysical data for site characterization and restoration monitoring, LLNL Rep. UCRL-ID-128343, Proj. 55411, Lawrence Livermore Natl. Lab., Livermore, Calif.

  • Bhattacharyya, B. (1964). Magnetic anomalies due to prism-shaped bodies with arbitrary polarization. Geophysics, 29, 517.

    Google Scholar 

  • Boulanger, O., & Chouteau, M. (2001). Constraints in 3D gravity inversion. Geophysical Prospecting, 49, 265–280.

    Google Scholar 

  • Cella, F., & Fedi, M. (2012). Inversion of potential field data using the structural index as weighting function rate decay. Geophysical Prospecting, 60, 313–336.

    Google Scholar 

  • Dell’Aversana, P. (2014). Integrated geophysical models (pp. 1–257). HOUTEN: EAGE Publications.

    Google Scholar 

  • Dimri, V. P. (1992). Deconvolution and inverse theory: application to geophysical problems. Amsterdam: Elsevier Sc. Publishers B.V.

    Google Scholar 

  • Doetsch, J., Linde, N., & Binley, A. (2011). Structural joint inversion of time-lapse cross hole ERT and GPR traveltime data. Geophysical Research Letters, 37(6), L24404.

    Google Scholar 

  • Drahor, M. G., Kurtulmuş, T. Ö., Berge, M. A., Hartmann, M., & Speidel, M. A. (2008). Magnetic imaging and electrical resistivity tomography studies in a Roman military installation found in Satala archaeological site, northeastern Anatolia, Turkey. Journal of Archaeological Science, 35(2), 259–271.

    Google Scholar 

  • Fang, H., Zhang, H., Yao, H., Allam, A., Zigone, D., Ben-Zion, Y., et al. (2016). A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region. Journal of Geophysical Research-Solid Earth, 121, 3557–3569.

    Google Scholar 

  • Fedi, M., & Rapolla, M. (1999). 3-D inversion of gravity and magnetic data with depth resolution. Geophysics, 64, 452–460.

    Google Scholar 

  • Fregoso, E., & Gallardo, L. A. (2009). Cross gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics, 74(4), 31–42.

    Google Scholar 

  • Gallardo, L. A., & Meju, M. A. (2003). Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophysical Research Letters, 30(13), 1658.

    Google Scholar 

  • Gallardo, L. A., & Meju, M. A. (2004). Joint two-dimensional DC resistivity and seismic travel time inversion with cross gradients constraints. Journal of Geophysical Research Solid Earth, 109, B03311.

    Google Scholar 

  • Gallardo, L. A., & Meju, M. A. (2011). Structure coupled multiphysics imaging in geophysical sciences. Reviews of Geophysics, 49, RG1003. https://doi.org/10.1029/2010rg000330.

    Article  Google Scholar 

  • Ganguli, S. S., Kumar, G. K., Vedanti, N., & Dimri, V. P. (2016). A regularized Wiener–Hopf filter for inverting models with magnetic susceptibility. Geophysical Prospecting, 64(2), 456–468.

    Google Scholar 

  • Gómez-Treviño, E. (1987). Nonlinear integral equations for electromagnetic inverse problems. Geophysics, 52(9), 1297–1302.

    Google Scholar 

  • Grant, F., & West, F. G. (1965). Interpretation theory in applied geophysics. New York: McGraw-Hill.

    Google Scholar 

  • Guillen, A., & Menichetti, V. (1984). Gravity and magnetic inversion with minimization of a specific functional. Geophysics, 49, 1354–1360.

    Google Scholar 

  • Gündoğdu, N. Y., & Candansayar, M. E. (2018). Three-dimensional regularized inversion of DC resistivity data with different stabilizing functionals. Geophysics, 83(6), E399–E407.

    Google Scholar 

  • Günther, T., Rücker, C., & Spitzer, K. (2006). Three-dimensional modelling and inversion of dc resistivity data incorporating topography—II. Inversion. Geophysical Journal International, 166(2), 506–517.

    Google Scholar 

  • Haber, E., & Oldenburg, D. W. (1997). Joint inversion: A structural approach. Inverse Problems, 13, 63–77.

    Google Scholar 

  • Hayley, K., Pidisecky, A., & Bentley, L. (2011). Simultaneous time-lapse electrical resistivity inversion. Journal of Applied Geophysics, 75(2), 401–411.

    Google Scholar 

  • Hu, W. Y., Abubakar, A., & Habashy, T. M. (2009). Joint electromagnetic and seismic inversion using structural constraints. Geophysics, 74, R99–R109.

    Google Scholar 

  • Joulidehsar, F., Moradzadeh, A., & Doulati Ardejani, F. (2018). An improved 3D joint inversion method of potential field data using cross-gradient constraint and LSQR method. Pure and Applied Geophysics, 175, 4389–4409.

    Google Scholar 

  • Karavul, C., Dedebali, Z., Keskinsezer, A., & Demirkol, A. (2010). Magnetic and electrical resistivity image survey in a buried Adramytteion ancient city in Western Anatolia, Turkey. International Journal of Physical Sciences, 5(6), 876–883.

    Google Scholar 

  • Last, B. J., & Kubik, K. (1983). Compact gravity inversion. Geophysics, 48(6), 713–721.

    Google Scholar 

  • Le, C. V. A., Harris, B., Pethick, A. M., Takougang, E. M. T., & Howe, B. (2016). Semiautomatic and automatic cooperative inversion of seismic and magnetotellurics data. Survey in Geophysics, 37(5), 845–896.

    Google Scholar 

  • Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61, 394–408.

    Google Scholar 

  • Li, Y., & Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics, 63(1), 109–119.

    Google Scholar 

  • Li, Y., & Oldenburg, D. W. (2007). Inversion of 3-D DC resistivity data using an approximate inverse mapping. Geophysical Journal International, 116(3), 527–537.

    Google Scholar 

  • Li, C. W., Xiong, B., Qiang, J. K., & Lü, Y. Z. (2012). Multiple linear system techniques for 3D finite element method modeling of direct current resistivity. Journal of Central South University, 19, 424–432.

    Google Scholar 

  • Loke, M. H., & Dahlin T. D., (1997). A combined Gauss-Newton and Quasi-Newton inversion method for the interpretation of apparent resistivity pseudosections. In 3rd EEGS Meeting.

  • Loke, M. H., & Barker, R. D. (1995). Least squares deconvolution of apparent resistivity pseudo-sections. Geophysics, 60, 1682–1690.

    Google Scholar 

  • Loke, M. H., Ian, A., & Torleif, D. (2003). A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34, 182–187.

    Google Scholar 

  • Menke, W. (2012). Geophysical data analysis, discrete inverse theory. Amsterdam: Academic Press.

    Google Scholar 

  • Molodtsov, D. M., Troyan, V. N., Roslov, Y. V., & Zerilli, A. (2013). Joint inversion of seismic traveltimes and magnetotellurics data with a directed structural constraint. Geophysical Prospecting, 61(6), 1218–1228.

    Google Scholar 

  • Musil, M., Maurer, H. R., & Green, A. G. (2003). Discrete tomography and joint inversion for loosely connected or unconnected physical properties: Application to cross-hole seismic and geo-radar data sets. Geophysical Journal International, 153, 389–402.

    Google Scholar 

  • Ogaya, X., Alcalde, J., Marzán, I., Ledo, J., Queralt, P., Marcuello, A., et al. (2016). Joint interpretation of magnetotellurics, seismic, and well-log data in Hontomín (Spain). Solid Earth, 7, 1–15.

    Google Scholar 

  • Orlando, L. (2005). Joint interpretation of geophysical data for archaeology. A case study. Subsurface Sensing Technologies and Applications, 6(2), 235–250.

    Google Scholar 

  • Paoletti, V., Hansen, P. C., Hansen, M. F., & Fedi, M. (2014). A computationally efficient tool for assessing the depth resolution in large-scale potential-field inversion. Geophysics, 79(4), A33–A38. https://doi.org/10.1190/geo2014-0017.1.

    Article  Google Scholar 

  • Paoletti, V., Ialongo, S., Florio, G., Fedi, M., & Cella, F. (2013). Self-constrained inversion of potential fields. Geophysical Journal International, 195(2), 854–869.

    Google Scholar 

  • Perez-Flores, M. A., Méndez-Delgado, S., & Gomez-Treviño, E. (2001). Imaging low frequency and dc electromagnetic fields using a simple linear approximation. Geophysics, 66, 1067–1081.

    Google Scholar 

  • Pilkington, M. (2009). 3D magnetic data-space inversion with sparseness constraints. Geophysics, 74, 7–15.

    Google Scholar 

  • Portniaguine, O., & Zhdanov, M. S. (1999). Focusing geophysical inversion images. Geophysics, 64, 874–887.

    Google Scholar 

  • Sasaki, Y. (1994). 3-D resistivity inversion using the finite-element method. Geophysics, 59(11), 1839–1848.

    Google Scholar 

  • Silva, J., Medeiros, W., & Barbosa, V. (2001). Potential-field inversion: Choosing the appropriate technique to solve a geologic problem. Geophysics, 66(2), 511–520.

    Google Scholar 

  • Sultan, S. A., Mansour, S. A., Santos, F. M., & Helaly, A. S. (2009). Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area, South Eastern Desert, Egypt. Journal of Geophysics and Engineering, 6(4), 345.

    Google Scholar 

  • Takam Takougang, E. M., Harris, B., Kepic, A., & Le, C. V. (2015). Cooperative joint inversion of 3D seismic and magnetotelluric data: With application in a mineral province. Geophysics, 80(4), R175–R187.

    Google Scholar 

  • Tillmann A., & Stocker T., (2000). A new approach for the joint inversion of seismic and geoelectric data. In Paper Presented at 63rd EAGE Conference and Technical Exhibition. Eur. Assoc. of Geosci. And Eng., Amsterdam.

  • Vatankhah, S., Ardestani, V. E., & Renaut, R. A. (2014). Automatic estimation of the regularization parameter in 2D focusing gravity inversion: Application of the method to the Safo manganese mine in the northwest of Iran. Journal of Geophysics and Engineering, 11(4), 45001.

    Google Scholar 

  • Wang, K. P., Tan, H. D., & Wang, T. (2017). 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory. Applied Geophysics, 14(2), 279–290.

    Google Scholar 

  • Wang, W., Xiaoping, W., & Klaus, S. (2013). Three-dimensional DC anisotropic resistivity modelling using finite elements on unstructured grids. Geophysical Journal International, 193, 734–746.

    Google Scholar 

  • Wiese, T., Greenhalgh, S., Zhou, B., Greenhalgh, M., & Marescot, L. (2015). Resistivity inversion in 2-D anisotropic media: Numerical experiments. Geophysical Journal International, 201(1), 247–266.

    Google Scholar 

  • Young, C. T., & Droege, R. D. (1986). Archaeological applications of resistivity and magnetic methods at Fort Wilkins State Park, Michigan. Geophysics, 51(3), 568–575.

    Google Scholar 

  • Zhang, G., Lu, Q. T., & Zhang, G. B. (2018). Joint Interpretation of geological, magnetic, AMT, and ERT data for mineral exploration in the Northeast of Inner Mongolia, China. Pure and Applied Geophysics, 175(3), 989–1002.

    Google Scholar 

  • Zhang, V. J., & Revil, A. (2015). 2D joint inversion of geophysical data using petrophysical clustering and facies deformation. Geophysics, 80(5), M69–M88.

    Google Scholar 

  • Zhdanov, M. S. (2002). Geophysical inverse theory and regularization problems. Amsterdam: Elsevier.

    Google Scholar 

  • Zhdanov, M. S. (2009). Geophysical electromagnetic theory and methods. Amsterdam: Elsevier.

    Google Scholar 

  • Zhou, J. J., Xiu, C. X., & Zhang, X. D. (2015). Simultaneous structure-coupled joint inversion of gravity and magnetic data based on a damped least-squares technique. International Journal of Geosciences, 6, 172e179. https://doi.org/10.4236/ijg.2015.62011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Oskooi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfinezhad, R., Oskooi, B. & Fedi, M. Joint Inversion of DC Resistivity and Magnetic Data, Constrained by Cross Gradients, Compactness and Depth Weighting. Pure Appl. Geophys. 177, 4325–4343 (2020). https://doi.org/10.1007/s00024-020-02457-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02457-5

Keywords

Navigation