Skip to main content
Log in

Non-intrusive Characterization of Shallow Soils and Utility Structures Below Pavements Using Rayleigh Waves

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

When surface waves are used to characterize soils under a pavement, their presence causes problems during the analysis of the signals due mainly to the presence of Lamb waves and higher Rayleigh-wave modes in the signals. Recent studies have shown that these problems can be mitigated if the seismic source is placed on the surface of the soil while leaving the receivers on the pavement. However, the presence of a pavement at the surface of the soil does influence the propagation of Rayleigh waves even if it does not prevent its characterization. We show how we utilized the generalized S transform and the multi-modal analysis of surface waves to identify and separate the different Rayleigh-wave modes. Using 3D numerical models and experimental models, we show that the thickness of the pavement affects the energy distribution of the different Rayleigh-wave modes and that increasing the pavement thickness increases the chances of mode misidentification problems since the energy of the waves tend to travel on higher modes. We also demonstrate that for an underground profile of a given depth, the thickness of the soil layer has more importance than the thickness of the pavement on the Rayleigh-wave propagation energy and velocity. The influence of the pavement on the group and phase velocities of the fundamental Rayleigh-wave propagation mode is also shown to depend on their frequency (wavelength). We present two case studies at the end of the manuscript to confirm the conclusions established based on numerical and experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Addo, K. O., & Robertson, P. K. (1992). Shear-waves velocity measurement of soils using Rayleigh waves. Canadian Geotechnical Journal,29, 558–568.

    Google Scholar 

  • Anbazhagan, P., & Sitharam, T. G. (2008). Mapping of average shear wave velocity for Bangalore region: A case study. Journal of Environmental and Engineering Geophysics,13, 69–84.

    Google Scholar 

  • Askari, R., & Hejazi, S. H. (2015). Estimation of surface-wave group velocity using slant stack in the generalized S-transform domain. Geophysics,8, EN83–EN92.

    Google Scholar 

  • Assous, S., & Boashash, B. (2012). Evaluation of the modified s-transform for time-frequency synchrony analysis and source localisation. EURASIP Journal on Advances in Signal Processing,49, 1.

    Google Scholar 

  • Bathe, K., & Wilson, E. (1976). Numerical methods in finite element analysis. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Beaty, K. S., Schmitt, D. R., & Sacchi, M. (2002). Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure. Geophysical Journal International,151, 622–631.

    Google Scholar 

  • Boaga, J., Cassiani, G., Strobbia, C. L., & Vignoli, G. (2013). Mode misidentification in Rayleigh waves: Ellipticity as a cause and a cure. Geophysics,78, EN17–EN28.

    Google Scholar 

  • Boashash, B. (2015). Time-frequency signal analysis and processing—a comprehensive reference. New York: Academic Press.

    Google Scholar 

  • Brent, R. P. (1973). Algorithms for minimization without derivatives. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Djurovic, I., Sejdic, E., & Jiang, J. (2008). Frequency-based window width optimization for S-transform. AEÜ International Journal of Electronics and Communications,62, 245–250.

    Google Scholar 

  • Faure, R.-M., Lefebvre, G., Karray, M., & Hémond, G. 2007. The MASW method for testing tunnel lining integrity. In Proceedings of the 33rd ITA-AITES world tunnel congress—underground space—the 4th dimension of metropolises, vol. 2, pp. 1475–1480.

  • Feng, S., Takeshi, S., & Hiroaki, Y. (2005). Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations. Exploration Geophysics,36, 26–33.

    Google Scholar 

  • Fichtner, A. (2011). Full seismic waveform modeling and inversion: AGEM. Berlin: Springer.

    Google Scholar 

  • Foinquinos, R., Roesset, J. M., & Stokoe, K. H. (1995). Response of pavement systems to dynamic loads imposed by nondestructive tests. Transportation Research Record,1504, 57–67.

    Google Scholar 

  • Forsythe, G. E., Malcolm, M. A., & Moler, C. B. (1976). Computer methods for mathematical computations. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Foti, S., Comina, C., Boiero, D., & Socco, L. V. (2009). Non-uniqueness in surface wave inversion and consequences on seismic site response analyses. Soil Dynamics and Earthquake Engineering,29, 982–993.

    Google Scholar 

  • Foti, S., Lai, C., Rix, G., & Strobbia, C. (2014). Surface wave methods for near-surface characterization. Boca Raton: CRC Press.

    Google Scholar 

  • Gao, L., Xia, J., & Pan, Y. (2014). Misidentification caused by leaky surface wave in high-frequency surface-wave method. Geophysical Journal International,199, 1452–1462.

    Google Scholar 

  • Gucunski, N., Ganji, V., & Maher, M. H. (1996). Effects of obstacles on Rayleigh wave dispersion obtained from the SASW test. Soil Dynamics and Earthquake Engineering,15, 223–231.

    Google Scholar 

  • Jones, R. (1962). Surface wave technique for measuring elastic properties and thickness of roads: Theoretical development. British Journal of Applied Physics,13, 21–29.

    Google Scholar 

  • Karray, M. 1999. Utilisation de l’analyze modale des ondes de Rayleigh comme outil d’investigation géotechnique in situ. PhD thesis, Université de Sherbrooke.

  • Karray, M., Hussien, M. N., Paquet-Boucher, B., & Ethier, Y. 2016. Anomaly detection under roads by the Multi Modal Analysis of Surface waves (MMASW). In Presented at the 69e Conférence Canadienne de géotechnique.

  • Karray, M., & Lefebvre, G. (2008). Significance and evaluation of Poisson’s ratio in Rayleigh wave testing. Canadian Geotechnical Journal,45, 624–635.

    Google Scholar 

  • Karray, M., & Lefebvre, G. (2009a). Detection of cavities beneath pavements by modal analysis of surface waves (Rayleigh waves) (MASW). Canadian Geotechnical Journal,46, 424–437.

    Google Scholar 

  • Karray, M., & Lefebvre, G. (2009b). Techniques for mode separation in Rayleigh wave testing. Soil Dynamics and Earthquake Engineering,29, 607–619.

    Google Scholar 

  • Karray, M., Lefebvre, G., Ethier, Y., & Bigras, A. (2010). Assessment of deep compaction of the peribonka dam foundation using “modal analysis of surface waves” (MASW). Canadian Geotechnical Journal,47, 312–326.

    Google Scholar 

  • Kausel, E., & Rosset, J. M. (1981). Stiffness matrices for layered soils. Bulletin of the Seismological Society of America,71, 1743–1761.

    Google Scholar 

  • Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. Journal of Soil Mechanics and Foundations Division ASCE,99, 421–427.

    Google Scholar 

  • Kulesh, M., Holschneider, M., Diallo, M. S., Xie, Q., & Scherbaum, F. (2005). Modeling of wave dispersion using continuous wavelet transforms. Pure and Applied Geophysics,162, 843–885.

    Google Scholar 

  • Lai, C. G., Foti, S., & Rix, G. J. (2005). Propagation of data uncertainty in surface wave inversion. Journal of Engineering and Environmental Geophysics,10, 219–228.

    Google Scholar 

  • Li, D., and J. Castagna 2013, Modified S-transform in time-frequency analysis of seismic data, In 83rd Annual International Meeting, SEG, Expanded Abstracts, pp. 1377–1380.

  • Luo, Y., Xia, J., Miller, R. D., Xu, Y., Liu, J., & Liu, Q. (2009). Rayleigh-wave mode separation by high-resolution linear Radon transform. Geophysical Journal International,179(1), 254–256.

    Google Scholar 

  • Mánica, M., Ovando, E., & Botero, E. (2014). Assessment of damping models in FLAC. Computers and Geotechnics,59, 12–20.

    Google Scholar 

  • McFadden, P., Cook, J., & Forster, L. (1999). Decomposition of gear vibration signals by the generalised S transform. Mechanical Systems and Signal Processing,13, 691–707.

    Google Scholar 

  • Mi, B., Xia, J., Shen, C., Wang, L., Hu, Y., & Cheng, F. (2017). Horizontal resolution of multichannel analysis of surface waves. Geophysics,82, EN51–EN66.

    Google Scholar 

  • Miller, R. D., Xia, J., Park, C. B., & Ivanov, J. (1999). Multichannel analysis of surface waves to map bedrock. The Leading Edge,18, 1392–1396.

    Google Scholar 

  • Moukadem, A., Bouguila, Z., Abdeslam, D. O., & Dieterlen, A. (2015). A new optimized Stockwell transform applied on synthetic and real non-stationary signals. Digital Signal Processing,46, 226–238.

    Google Scholar 

  • Mulargia, F., Castellaro, S., & Vinco, G. (2015). Measuring shear wave velocity, Vs, of a hidden layer: An application to soil improvement under roads. Canadian Geotechnical Journal,52, 721–731.

    Google Scholar 

  • Nazarian, S., & Stokoe, K. H. 1985. In situ determination of elastic moduli of pavement systems by spectral-analysis-of-surface-waves method (practical aspects). Research Report 368-1F, Center for Transportation Research, University of Texas Austin.

  • Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics,64, 800–808.

    Google Scholar 

  • Pinnegar, C. R., & Mansinha, L. (2003). The S-transform with windows of arbitrary and varying shape. Geophysics,68, 381–385.

    Google Scholar 

  • Rix, G. J. (2005). Near-surface site characterization using surface waves. In C. G. Lai & K. Wilmanski (Eds.), Surface waves in geomechanics: Direct and inverse modeling for soils and rocks (pp. 1–46). New York: Springer.

    Google Scholar 

  • Roesset, J. M. (1998). Nondestructive dynamic testing of soils and pavements. Tamkang Journal of Science and Engineering,1, 61–80.

    Google Scholar 

  • Ryden, N., & Lowe, M. J. S. (2004). Guided wave propagation in three-layer pavement structures. Journal of the Acoustical Society of America,116, 2902–2913.

    Google Scholar 

  • Ryden, N., Park, C. B., Ulriksen, P., & Miller, R. D. 2002. Branching of dispersion curve in surface wave testing of pavements. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 10–14.

  • Schwab, F. A., & Knopoff, L. (1972). Fast surface wave and free mode computations. In B. A. Bolt (Ed.), Methods in computational physics (pp. 87–180). New York: Academic Press.

    Google Scholar 

  • Sejdic, E., Djurovic, I., & Jiang, J. (2008). A window width optimized S-transform. EURASIP Journal on Advanced Signal Processing,2008, 59.

    Google Scholar 

  • Stanković, L. (2001). A measure of some time–frequency distributions concentration. Signal Processing,81, 621–631.

    Google Scholar 

  • Stockwell, R. G., Mansinha, L., & Lowe, R. P. (1996). Localization of the complex spectrum: The S transform. IEEE Transactions on Signal Processing,44, 998–1001.

    Google Scholar 

  • Stokoe, K. H., & Nazarian, S. 1984. In situ shear wave velocity from spectral analysis of surface waves. In 8th World Conference on Earthquake Engineering, vol. 3, pp. 31–38.

  • Stokoe II K. H., & Nazarian, S. 1985. Use of Rayleigh waves in liquefaction studies, measurement and use of shear wave velocity for evaluating dynamic soil properties. In: Proceedings of a geotechnical engineering division session at ASCE convention, pp. 1–17.

  • Tary, J. B., Herrera, R. H., Han, J., & Baan, M. (2014). Spectral estimation—what is new? What is next? Reviews of Geophysics,52, 723–749.

    Google Scholar 

  • Tokimatsu, K., Kuwayama, S., Tamura, S., & Miyadera, Y. (1991). Vs determination from steady state Rayleigh wave method. Soils and Foundations,31, 153–163.

    Google Scholar 

  • Tolstoy, I. 1973. Wave propagation: McGraw-Hill international series in the earth and planetary science.

  • Tremblay, S. P. (2018). Développement d’une procédure non intrusive basée sur la propagation des ondes élastiques pour l’évaluation de l’état des structures en béton enfouis du réseau de distribution d’Hydro-Québec. PhD thesis, Université de Sherbrooke.

  • Tremblay, S. P., Karray, M., Chekired, M., Bessette, C., & Jinga, L. (2017). Inspection of the lids of shallowly buried concrete structures based on the propagation of surface waves. Journal of Applied Geophysics,136, 19–34.

    Google Scholar 

  • Tremblay, S. P., Karray, M., Chekired, M., Bessette, C., & Jinga, L. (2018). Inspection of the lids of shallowly buried concrete structures based on the propagation of surface waves—PART II. Journal of Applied Geophysics,148, 55–69.

    Google Scholar 

  • Vidale, R. F. (1964). The dispersion of stress waves in layered media overlaying a half space of lesser acoustic rigidity. PhD thesis, University of Wisconsin.

  • Xia, J., Chen, C., Tian, G., Miller, R. D., & Ivanov, J. (2005). Resolution of high-frequency Rayleigh-wave data. Journal of Environmental and Engineering Geophysics,10, 99–110.

    Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., & Tian, G. (2003). Inversion of high frequency surface waves with fundamental and higher modes. Journal of Applied Geophysics,52, 45–57.

    Google Scholar 

  • Zhang, S. X., & Chan, L. S. (2003). Possible effects of misidentified mode number on Rayleigh wave inversion. Journal of Applied Geophysics,53, 17–29.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the MTQ and Hydro-Québec for their financial support throughout this research project. The authors would also like to thank the anonymous reviewers as well as Assoc. Prof. Andrew R Gorman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon-Pierre Tremblay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tremblay, SP., Mhenni, A., Karray, M. et al. Non-intrusive Characterization of Shallow Soils and Utility Structures Below Pavements Using Rayleigh Waves. Pure Appl. Geophys. 177, 737–762 (2020). https://doi.org/10.1007/s00024-019-02333-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02333-x

Keywords

Navigation