Skip to main content
Log in

Drought Assessment in the Sardinia Region (Italy) During 1922–2011 Using the Standardized Precipitation Index

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this article, the Standardized Precipitation Index (SPI), at both the short- and long-time scale, has been evaluated to analyse drought in the Sardinia region (Italy). In fact, while the short-time scale SPI describes droughts that affect plant life and farming, the long-time scale SPI influences the way water supplies/reserves are managed. Initially, with the aim to detect the most important drought episodes that affected the region each month, the percentage of rain gauges showing severe or extreme drought values was evaluated. Then, in order to evaluate the temporal evolution of the SPI values, a trend analysis was performed. Results evidenced that, at the short-time scale, the observation period was characterized by several dry episodes while, at the long-time scale, the majority of the drought events were detected after 1980. Moreover, marked negative trends of the SPI values in winter, in the wet season and at the annual scale were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. A. (1970). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications Inc.

    Google Scholar 

  • Angelidis, P., Maris, F., Kotsovinos, N., & Hrissanthou, V. (2012). Computation of drought index SPI with alternative distribution functions. Water Resources Management, 26, 2453–2473.

    Article  Google Scholar 

  • Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., & Sutera, A. (2003). Spatial variability of drought: an analysis of SPI in Sicily. Water Resources Management, 17, 273–296.

    Article  Google Scholar 

  • Bordi, I., Fraedrich, K., & Sutera, A. (2009). Observed drought and wetness trends in Europe: an update. Hydrology and Earth System Sciences, 13, 1519–1530.

    Article  Google Scholar 

  • Brunetti, M., Caloiero, T., Coscarelli, R., Gullà, G., Nanni, T., & Simolo, C. (2012). Precipitation variability and change in the Calabria region (Italy) from a high resolution daily dataset. International Journal of Climatology, 32, 55–73.

    Article  Google Scholar 

  • Buttafuoco, G., & Caloiero, T. (2014). Drought events at different timescales in southern Italy (Calabria). Journal of Maps, 10, 529–537.

    Article  Google Scholar 

  • Buttafuoco, G., Caloiero, T., & Coscarelli, R. (2015). Analyses of drought events in Calabria (southern Italy) using standardized precipitation index. Water Resources Management, 29, 557–573.

    Article  Google Scholar 

  • Buttafuoco, G., Caloiero, T., Ricca, N., & Guagliardi, I. (2018). Assessment of drought and its uncertainty in a southern Italy area (Calabria region). Measurement, 113, 205–210.

    Article  Google Scholar 

  • Caloiero, T. (2017). Drought analysis in New Zealand using the standardized precipitation index. Environmental Earth Sciences, 76, 569.

    Article  Google Scholar 

  • Caloiero, T. (2018). SPI trend analysis of New Zealand applying the ITA technique. Geosciences, 8, 101.

    Article  Google Scholar 

  • Caloiero, T., Buttafuoco, G., Coscarelli, R., & Ferrari, E. (2014). Spatial and temporal characterization of climate at regional scale using homogeneous monthly precipitation and air temperature data: an application in Calabria (southern Italy). Hydrology Research, 46, 629–646.

    Article  Google Scholar 

  • Caloiero, T., Coscarelli, R., Ferrari, E., & Sirangelo, B. (2015). Analysis of dry spells in southern Italy (Calabria). Water, 7, 3009–3023.

    Article  Google Scholar 

  • Caloiero, T., Coscarelli, R., Ferrari, E., & Sirangelo, B. (2016). An analysis of the occurrence probabilities of wet and dry periods through a stochastic monthly rainfall model. Water, 8, 39.

    Article  Google Scholar 

  • Caloiero, T., Sirangelo, B., Ferrari, E., & Coscarelli, R. (2018). Occurrence probabilities of wet and dry periods in southern Italy through the SPI evaluated on synthetic monthly precipitation series. Water, 10, 336.

    Article  Google Scholar 

  • Cancelliere, A., Di Mauro, G., Bonaccorso, B., & Rossi, G. (2007). Drought forecasting using the standardised precipitation index. Water Resources Management, 21, 801–819.

    Article  Google Scholar 

  • Capra, A., Consoli, S., & Scicolone, B. (2013). Long-term climatic variability in Calabria and effects on drought and agrometeorological parameters. Water Resources Management, 27, 601–617.

    Article  Google Scholar 

  • Capra, A., & Scicolone, B. (2012). Spatiotemporal variability of drought on a short–medium time scale in the Calabria Region (southern Italy). Theoretical and Applied Climatology, 3, 471–488.

    Article  Google Scholar 

  • Delitala, A. M. S., Cesari, D., Chessa, P. A., & Neil-Ward, M. (2000). Precipitation over Sardinia (Italy) during the 1946–1993 rainy seasons and associated large-scale climate variations. International Journal of Climatology, 22, 519–541.

    Article  Google Scholar 

  • Di Lena, B., Vergni, L., Antenucci, F., Todisco, F., & Mannocchi, F. (2014). Analysis of drought in the region of Abruzzo (central Italy) by the standardized precipitation index. Theoretical and Applied Climatology, 115, 41–52.

    Article  Google Scholar 

  • Estrela, T., & Vargas, E. (2012). Drought management plans in the European Union. Water Resources Management, 26, 1537–1553.

    Article  Google Scholar 

  • Fang, K., Gou, X., Chen, F., Davi, N., & Liu, C. (2013). Spatiotemporal drought variability for central and eastern Asia over the past seven centuries derived from tree-ring based reconstructions. Quaternary International, 283, 107–116.

    Article  Google Scholar 

  • Feng, S., Hu, Q., & Oglesby, R. J. (2011). Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dynamics, 37, 569–586.

    Article  Google Scholar 

  • Fink, A. H., Brücher, T., Krüger, A., Leckebush, G. C., Pinto, J. G., & Ulbrich, U. (2004). The 2003 European summer heatwaves and drought-synoptic diagnosis and impacts. Weather, 59, 209–216.

    Article  Google Scholar 

  • Golian, S., Mazdiyasni, O., & AghaKouchak, A. (2015). Trends in meteorological and agricultural droughts in Iran. Theoretical and Applied Climatology, 119, 679–688.

    Article  Google Scholar 

  • Guttman, N. B. (1999). Accepting the standardized precipitation index: Acalculating algorithm. Journal of the American Water Resources Association, 35, 311–323.

    Article  Google Scholar 

  • Hua, T., Wang, X. M., Zhang, C. X., & Lang, L. L. (2013). Temporal and spatial variations in the palmer drought severity index over the past four centuries in arid, semiarid, and semihumid east Asia. Chinese Science Bulletin, 58, 4143–4152.

    Article  Google Scholar 

  • IPCC. (2013). Summary for policymakers. Fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kendall, M. G. (1962). Rank correlation methods. New York: Hafner Publishing Company.

    Google Scholar 

  • Khan, S., Gabriel, H. F., & Rana, T. (2008). Standard precipitation index to track drought and assess impact of rainfall on watertables in irrigation areas. Irrigation and Drainage Systems, 22, 159–177.

    Article  Google Scholar 

  • Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C., Apel, H., Aronica, G. T., et al. (2017). Adaptation to flood risk: results of international paired flood event studies. Earth’s Future, 5, 953–965.

    Article  Google Scholar 

  • Livada, I., & Assimakopoulos, V. D. (2007). Spatial and temporal analysis of drought in Greece using the Standardized Precipitation Index (SPI). Theoretical and Applied Climatology, 89, 143–153.

    Article  Google Scholar 

  • Lloyd-Huhes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International Journal of Climatology, 22, 1571–1592.

    Article  Google Scholar 

  • Logan, K. E., Brunsell, N. A., Jones, A. R., & Feddema, J. J. (2010). Assessing spatiotemporal variability of drought in the US central plains. Journal of Arid Environments, 74, 247–255.

    Article  Google Scholar 

  • Manatsa, D., Mukwada, G., Siziba, E., & Chinyanganya, T. (2010). Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the Standardized Precipitation Index (SPI). Theoretical and Applied Climatology, 102, 287–305.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scale. Preprints 8th conference on applied climatology (pp. 179–184). Anaheim: American Meteorological Society.

    Google Scholar 

  • Mehta, A. V., & Yang, S. (2008). Precipitation climatology over Mediterranean Basin from ten years of TRMM measurements. Advances in Geosciences, 17, 87–91.

    Article  Google Scholar 

  • Mendicino, G., Senatore, A., & Versace, P. (2008). A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean climate. Journal of Hydrology, 357, 282–302.

    Article  Google Scholar 

  • Minetti, J. L., Vargas, W. M., Poblete, A. G., de la Zerda, L. R., & Acuña, L. R. (2010). Regional droughts in southern South America. Theoretical and Applied Climatology, 102, 403–415.

    Article  Google Scholar 

  • Montaldo, N., & Sarigu, A. (2017). Potential links between the North Atlantic Oscillation and decreasing precipitation and runoff on a Mediterranean area. Journal of Hydrology, 553, 419–437.

    Article  Google Scholar 

  • Patel, N. R., & Yadav, K. (2015). Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India. Natural Hazards, 77, 663–677.

    Article  Google Scholar 

  • Raziei, T., Saghafian, B., Paulo, A. A., Pereira, L. S., & Bordi, I. (2009). Spatial patterns and temporal variability of drought in western Iran. Water Resources Management, 23, 439–455.

    Article  Google Scholar 

  • Reale, M., & Lionello, P. (2013). Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Natural Hazards and Earth System Sciences, 13, 1707–1722.

    Article  Google Scholar 

  • Sirangelo, B., Caloiero, T., Coscarelli, R., & Ferrari, E. (2015). A stochastic model for the analysis of the temporal change of dry spells. Stochastic Environmental Research and Risk Assessment, 29, 143–155.

    Article  Google Scholar 

  • Sirangelo, B., Caloiero, T., Coscarelli, R., & Ferrari, E. (2017). Stochastic analysis of long dry spells in Calabria (southern Italy). Theoretical and Applied Climatology, 127, 711–724.

    Article  Google Scholar 

  • Soldati, M., & Marchetti, M. (2017). Landscapes and landforms of Italy. Germany: Springer.

    Book  Google Scholar 

  • Sönmez, F. K., Kömüscü, A. Ü., Erkan, A., & Turgu, E. (2005). An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. Natural Hazards, 35, 243–264.

    Article  Google Scholar 

  • Thom, H. C. S. (1958). A note on the gamma distribution. Monthly Weather Review, 86, 117–122.

    Article  Google Scholar 

  • Vergni, L., & Todisco, F. (2011). Spatio-temporal variability of precipitation temperature and agricultural drought indices in central Italy. Agricultural and Forest Meteorology, 151, 301–313.

    Article  Google Scholar 

  • Vicente-Serrano, S. M. (2006). Differences in spatial patterns of drought on different time sales. An analysis of the Iberian Peninsula. Water Resources Management, 20, 37–60.

    Article  Google Scholar 

  • Wu, H., Hayes, M. J., Wilhite, D. A., & Svoboda, M. D. (2005). The effect in the length of record in the standardized precipitation index calculation. International Journal of Climatology, 25, 505–520.

    Article  Google Scholar 

  • Zaidman, M. D., Rees, H. G., & Young, A. R. (2012). Spatio-temporal development of streamflow droughts in north-west Europe. Hydrology and Earth System Sciences, 5, 733–751.

    Google Scholar 

  • Zargar, A., Sadiq, R., Naser, B., & Han, F. I. (2011). A review of drought indices. Environmental Review, 19, 333–349.

    Article  Google Scholar 

  • Zhai, L., & Feng, Q. (2009). Spatial and temporal pattern of precipitation and drought in Gansu Province Northwest China. Natural Hazards, 49, 1.

    Article  Google Scholar 

  • Zhai, J., Su, B., Krysanova, V., Vetter, T., Gao, C., & Jiang, T. (2010). Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. Journal of Climate, 23, 649–663.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Caloiero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caloiero, T., Veltri, S. Drought Assessment in the Sardinia Region (Italy) During 1922–2011 Using the Standardized Precipitation Index. Pure Appl. Geophys. 176, 925–935 (2019). https://doi.org/10.1007/s00024-018-2008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2008-5

Keywords

Navigation