Skip to main content
Log in

Fully Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Subduction zone earthquakes can produce significant seafloor deformation and devastating tsunamis. Real subduction zones display remarkable diversity in fault geometry and structure, and accordingly exhibit a variety of styles of earthquake rupture and tsunamigenic behavior. We perform fully coupled earthquake and tsunami simulations for three subduction zones: the Japan Trench, the Nankai Trough, and the Cascadia Subduction Zone. We use data from seismic surveys, drilling expeditions, and laboratory experiments to construct detailed 2D models of the subduction zones with realistic geometry, structure, friction, and prestress. Greater prestress and rate-and-state friction parameters that are more velocity-weakening generally lead to enhanced slip, seafloor deformation, and tsunami amplitude. The Japan Trench’s small sedimentary prism enhances shallow slip, but has only a small effect on tsunami height. In Nankai where there is a prominent splay fault, frictional parameters and off-fault material properties both influence the choice of rupture pathway in complex ways. The splay generates tsunami waves more efficiently than the décollement. Rupture in Cascadia is buried beneath the seafloor, but causes a tsunami that is highly complex due to the rough seafloor bathymetry. Neglecting compliant sediment layers leads to substantially different rupture behavior and tsunami height. We demonstrate that horizontal seafloor displacement is a major contributor to tsunami generation in all subduction zones studied. We document how the nonhydrostatic response of the ocean at short wavelengths smooths the initial tsunami source relative to commonly used approach for setting tsunami initial conditions. Finally, we determine self-consistent tsunami initial conditions by isolating tsunami waves from seismic and acoustic waves at a final simulation time and backpropagating them to their initial state using an adjoint method. We find no evidence to support claims that horizontal momentum transfer from the solid Earth to the ocean is important in tsunami generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aldam, M., Xu, S., Brener, E. A., Ben Zion, Y., & Bouchbinder, E. (2017). Nonmonotonicity of the frictional bimaterial effect. Journal of Geophysical Research: Solid Earth, 122(10), 8270–8284.

    Google Scholar 

  • Ando, M. (1975). Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan. Tectonophysics, 27(2), 119–140.

    Google Scholar 

  • Andrews, D. J., & Ben Zion, Y. (1997). Wrinkle like slip pulse on a fault between different materials. Journal of Geophysical Research, 102, 553–571.

    Google Scholar 

  • Audet, P., Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2009). Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457(7225), 76.

    Google Scholar 

  • Benson, B. E., Atwater, B. F., Yamaguchi, D. K., Amidon, L. J., Brown, S. L., & Lewis, R. C. (2001). Renewal of tidal forests in Washington State after a subduction earthquake in AD 1700. Quaternary Research, 56(2), 139–147.

    Google Scholar 

  • Bilek, S. L., & Lay, T. (1999). Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400(6743), 443.

    Google Scholar 

  • Blanpied, M. L., Lockner, D. A., & Byerlee, J. D. (1995). Frictional slip of granite at hydrothermal conditions. Journal of Geophysical Research: Solid Earth, 100(B7), 13045–13064.

    Google Scholar 

  • Briggs, R. W., Sieh, K., Meltzner, A. J., Natawidjaja, D., Galetzka, J., Suwargadi, B., et al. (2006). Deformation and slip along the Sunda megathrust in the great 2005 Nias-Simeulue earthquake. Science, 311(5769), 1897–1901.

    Google Scholar 

  • Chester, F. M., Rowe, C., Ujiie, K., Kirkpatrick, J., Regalla, C., Francesca Remitti, J., et al. (2013). Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake. Science, 342(6163), 1208–1211.

    Google Scholar 

  • Cocco, M., & Rice, J. R. (2002). Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. Journal of Geophysical Research: Solid Earth, 107(B2), 2.

    Google Scholar 

  • Cummins, P. R., & Kaneda, Y. (2000). Possible splay fault slip during the 1946 Nankai earthquake. Geophysical Research Letters, 27(17), 2725–2728.

    Google Scholar 

  • DeDontney, N., & Hubbard, J. (2012). Applying wedge theory to dynamic rupture modeling of fault junctions. Bulletin of the Seismological Society of America, 102(4), 1693–1711.

    Google Scholar 

  • Fleming, S. W., & Trehu, A. M. (1999). Crustal structure beneath the central Oregon convergent margin from potential field modeling: Evidence for a buried basement ridge in local contact with a seaward dipping backstop. Journal of Geophysical Research: Solid Earth, 104(B9), 20431–20447.

    Google Scholar 

  • Fluck, P., Hyndman, R. D., & Wang, K. (1997). Three dimensional dislocation model for great earthquakes of the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 102(B9), 20539–20550.

    Google Scholar 

  • Flueh, E. R., Fisher, M. A., Bialas, J., Childs, J. R., Klaeschen, D., Kukowski, N., et al. (1998). New seismic images of the Cascadia subduction zone from cruise SO108–ORWELL. Tectonophysics, 293(1), 69–84.

    Google Scholar 

  • Fujii, Y., Satake, K., Sakai, S., Shinohara, M., & Kanazawa, T. (2011). Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7), 55.

    Google Scholar 

  • Fujiwara, T., Kodaira, S., Kaiho, Y., Takahashi, N., & Kaneda, Y. (2011). The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis. Science, 334(6060), 1240–1240.

    Google Scholar 

  • Fulton, P. M., Brodsky, E. E., Kano, Y., Mori, J., Chester, F., Ishikawa, T., et al. (2013). Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements. Science, 342(6163), 1214–1217.

    Google Scholar 

  • Gettemy, G. L., & Tobin, H. J. (2003). Tectonic signatures in centimeter scale velocity-porosity relationships of Costa Rica convergent margin sediments. Journal of Geophysical Research: Solid Earth, 108(B10), 2494.

    Google Scholar 

  • Chris Goldfinger, C., Nelson, H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E., et al. (2012). Turbidite event history: Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. US Geological Survey Professional Paper, 1661, 170.

    Google Scholar 

  • Guilbault, J.-P., Clague, J. J., & Lapointe, M. (1996). Foraminiferal evidence for the amount of coseismic subsidence during a late Holocene earthquake on Vancouver Island, west coast of Canada. Quaternary Science Reviews, 15(8–9), 913–937.

    Google Scholar 

  • Gulick, S. P., Austin, J. A, Jr., McNeill, L. C., Bangs, N. L., Martin, K. M., Henstock, T. J., et al. (2011). Updip rupture of the 2004 Sumatra earthquake extended by thick indurated sediments. Nature Geoscience, 4(7), 453.

    Google Scholar 

  • Hirono, T., Tsuda, K., Tanikawa, W., Ampuero, J. P., Shibazaki, B., Kinoshita, M., et al. (2016). Near-trench slip potential of megaquakes evaluated from fault properties and conditions. Scientific reports, 6, 28184.

    Google Scholar 

  • Holbrook, W. S., Kent, G., Keranen, K., Johnson, H. P., Trehu, A., Tobin, H., et al. (2012). Cascadia fore arc seismic survey: Open-access data available. Eos, Transactions American Geophysical Union, 93(50), 521–522.

    Google Scholar 

  • Hower, J., Eslinger, E. V., Hower, M. E., & Perry, E. A. (1976). Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87(5), 725–737.

    Google Scholar 

  • Hubbert, M. K., & Rubey, W. W. (1959). Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin, 70(2), 115–166.

    Google Scholar 

  • Hyndman, R. D., & Wang, K. (1993). Thermal constraints on the zone of major thrust earthquake failure: The Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 98(B2), 2039–2060.

    Google Scholar 

  • Hyndman, R. D., Yamano, M., & Oleskevich, D. A. (1997). The seismogenic zone of subduction thrust faults. Island Arc, 6(3), 244–260.

    Google Scholar 

  • Ikari, M. J., Kameda, J., Saffer, D. M., & Kopf, A. J. (2015). Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku–Oki earthquake. Earth and Planetary Science Letters, 412, 35–41.

    Google Scholar 

  • Ikari, M. J., & Saffer, D. M. (2011). Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex. Geochemistry, Geophysics, Geosystems, 12(4), Q0AD11.

    Google Scholar 

  • Jennings, S., & Thompson, G. R. (1986). Diagenesis of Plio–Pleistocene sediments of the Colorado River delta, southern California. Journal of Sedimentary Research, 56(1), 89–98.

    Google Scholar 

  • Jeppson, T. N., Tobin, H. J., & Hashimoto, Y. (2018). Laboratory measurements quantifying elastic properties of accretionary wedge sediments: Implications for slip to the trench during the 2011 Mw 9.0 Tohoku-Oki earthquake. Geosphere, 14(4), 1411–1424.

    Google Scholar 

  • Kajiura, K. (1963). The leading wave of a tsunami. Bulletin of the Earthequake reserch Institute, 43, 535–571.

    Google Scholar 

  • Kame, N., Rice, J. R., & Dmowska, R. (2003). Effects of prestress state and rupture velocity on dynamic fault branching. Journal of Geophysical Research: Solid Earth, 108(B5), 2265.

    Google Scholar 

  • Kamei, R., Pratt, R. G., & Tsuji, T. (2012). Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone. Earth and Planetary Science Letters, 317, 343–353.

    Google Scholar 

  • Kanamori, H., & Kikuchi, M. (1993). The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature, 361(6414), 714–716.

    Google Scholar 

  • Kemp, A. C., Cahill, N., Engelhart, S. E., Hawkes, A. D., & Wang, K. (2018). Revising estimates of spatially variable subsidence during the AD 1700 Cascadia earthquake using a Bayesian foraminiferal transfer function. Bulletin of the Seismological Society of America, 108(2), 654–673.

    Google Scholar 

  • Kikuchi, M., Nakamura, M., & Yoshikawa, K. (2003). Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms. Earth, Planets and Space, 55(4), 159–172.

    Google Scholar 

  • Kimura, G., Hina, S., Hamada, Y., Kameda, J., Tsuji, T., Kinoshita, M., et al. (2012). Runaway slip to the trench due to rupture of highly pressurized megathrust beneath the middle trench slope: The tsunamigenesis of the 2011 Tohoku earthquake off the east coast of northern Japan. Earth and Planetary Science Letters, 339, 32–45.

    Google Scholar 

  • Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., et al. (2012). Coseismic fault rupture at the trench axis during the 2011 Tohoku-Oki earthquake. Nature Geoscience, 5(9), 646–650.

    Google Scholar 

  • Kopf, A., & Brown, K. M. (2003). Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts. Marine Geology, 202(3), 193–210.

    Google Scholar 

  • Kopp, H., & Kukowski, N. (2003). Backstop geometry and accretionary mechanics of the Sunda margin. Tectonics, 22(6), 1072.

    Google Scholar 

  • Kozdon, J. E., & Dunham, E. M. (2013). Rupture to the trench: Dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. Bulletin of the Seismological Society of America, 103(2B), 1275–1289.

    Google Scholar 

  • Kozdon, J. E., & Dunham, E. M. (2014). Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks. Earth and Planetary Science Letters, 396, 56–65.

    Google Scholar 

  • Kozdon, J. E., Dunham, E. M., & Nordstrom, J. (2013). Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. Journal of Scientific Computing, 55(1), 92–124.

    Google Scholar 

  • Lay, T., Ammon, C. J., Kanamori, H., Yamazaki, Y., Cheung, K. F., & Hutko, A. R. (2011). The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophysical Research Letters, 38(6).

  • Leonard, L. J., Currie, C. A., Mazzotti, S., & Hyndman, R. D. (2010). Rupture area and displacement of past Cascadia great earthquakes from coastal coseismic subsidence. Bulletin, 122(11–12), 2079–2096.

    Google Scholar 

  • Lotto, G. C., & Dunham, E. M. (2015). High-order finite difference modeling of tsunami generation in a compressible ocean from offshore earthquakes. Computational Geosciences, 19(2), 327–340.

    Google Scholar 

  • Lotto, G. C., Dunham, E. M., Jeppson, T. N., & Tobin, H. J. (2017). The effect of compliant prisms on subduction zone earthquakes and tsunamis. Earth and Planetary Science Letters, 458, 213–222.

    Google Scholar 

  • Lotto, G. C., Nava, G., & Dunham, E. M. (2017). Should tsunami simulations include a nonzero initial horizontal velocity? Earth, Planets and Space, 69(1), 117.

    Google Scholar 

  • Ma, S. (2012). A self-consistent mechanism for slow dynamic deformation and tsunami generation for earthquakes in the shallow subduction zone. Geophysical Research Letters, 39(11), L11310

    Google Scholar 

  • Ma, S., & Beroza, G. C. (2008). Rupture dynamics on a bimaterial interface for dipping faults. Bulletin of the Seismological Society of America, 98(4), 1642–1658.

    Google Scholar 

  • Maeda, T., & Furumura, T. (2013). FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion. Pure and Applied Geophysics, 170(1–2), 109–127.

    Google Scholar 

  • McCaffrey, R. (1997). Influences of recurrence times and fault zone temperatures on the age-rate dependence of subduction zone seismicity. Journal of Geophysical Research: Solid Earth, 102(B10), 22839–22854.

    Google Scholar 

  • McCrory, P. A., Blair, J. L., Waldhauser, F., & Oppenheimer, D. H. (2012). Juan de Fuca slab geometry and its relation to Wadati–Benioff zone seismicity. Journal of Geophysical Research: Solid Earth, 117(B9), B09306.

    Google Scholar 

  • Mitchell, E. K., Fialko, Y., & Brown, K. M. (2015). Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochemistry, Geophysics, Geosystems, 16(11), 4006–4020.

    Google Scholar 

  • Miura, S., Takahashi, N., Nakanishi, A., Tsuru, T., Kodaira, S., & Kaneda, Y. (2005). Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. Tectonophysics, 407(3), 165–188.

    Google Scholar 

  • Moore, G. F., Bangs, N. L., Taira, A., Kuramoto, S., Pangborn, E., & Tobin, H. J. (2007). Three-dimensional splay fault geometry and implications for tsunami generation. Science, 318(5853), 1128–1131.

    Google Scholar 

  • Moore, J. C., & Vrolijk, P. (1992). Fluids in accretionary prisms. Reviews of Geophysics, 30(2), 113–135.

    Google Scholar 

  • Mori, J., Chester, F. M., Eguchi, N., & Toczko, S. (2012). Japan Trench Fast Earthquake Drilling Project (JFAST). IODP Sci. Prosp, 343(10.2204).

  • Nakamura, Y., Kodaira, S., Cook, B. J., Jeppson, T., Kasaya, T., Yamamoto, Y., et al. (2014). Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low V p, high V p/V s in the transparent frontal prism. Earth, Planets and Space, 66(1), 121.

    Google Scholar 

  • Nakanishi, A., Takahashi, N., Park, J. O., Miura, S., Kodaira, S., Kaneda, Y., et al. (2002). Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone. Journal of Geophysical Research: Solid Earth, 107(B1), EPM-2.

    Google Scholar 

  • Nelson, A. R., Atwater, B. F., Bobrowsky, P. T., Bradley, L.-A., Clague, J. J., Carver, G. A., et al. (1995). Radiocarbon evidence for extensive plate-boundary rupture about 300 years ago at the Cascadia subduction zone. Nature, 378(6555), 371.

    Google Scholar 

  • Oleskevich, D. A., Hyndman, R. D., & Wang, K. (1999). The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. Journal of Geophysical Research: Solid Earth, 104(B7), 14965–14991.

    Google Scholar 

  • Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356), 373.

    Google Scholar 

  • Park, J. O., Tsuru, T., Kodaira, S., Cummins, P. R., & Kaneda, Y. (2002a). Splay fault branching along the Nankai subduction zone. Science, 297(5584), 1157–1160.

    Google Scholar 

  • Park, J. O., Tsuru, T., Takahashi, N., Hori, T., Kodaira, S., Nakanishi, A., & Kaneda, Y. (2002b). A deep strong reflector in the Nankai accretionary wedge from multichannel seismic data: Implications for underplating and interseismic shear stress release. Journal of Geophysical Research: Solid Earth, 107(B4), 2061.

    Google Scholar 

  • Peacock, S. M., Christensen, N. I., Bostock, M. G., & Audet, P. (2011). High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology, 39(5), 471–474.

    Google Scholar 

  • Plafker, G. (1972). Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implications for arc tectonics. Journal of Geophysical Research, 77(5), 901–925.

    Google Scholar 

  • Polet, J., & Kanamori, H. (2000). Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International, 142(3), 684–702.

    Google Scholar 

  • Raimbourg, H., Hamano, Y., Saito, S., Kinoshita, M., & Kopf, A. (2011). Acoustic and mechanical properties of Nankai accretionary prism core samples. Geochemistry, Geophysics, Geosystems, 12(4), Q0AD10.

    Google Scholar 

  • Rice, J. R. (1992). Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. In International geophysics (Vol. 51, pp. 475–503). Academic Press.

  • Saffer, D. M., & Marone, C. (2003). Comparison of smectite-and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts. Earth and Planetary Science Letters, 215(1), 219–235.

    Google Scholar 

  • Saffer, D. M., & Tobin, H. J. (2011). Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annual Review of Earth and Planetary Sciences, 39, 157–186.

    Google Scholar 

  • Sagiya, T., & Thatcher, W. (1999). Coseismic slip resolution along a plate boundary megathrust: The Nankai Trough, southwest Japan. Journal of Geophysical Research: Solid Earth, 104(B1), 1111–1129.

    Google Scholar 

  • Saito, T., & Tsushima, H. (2016). Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: Toward realistic tests of monitoring systems. Journal of Geophysical Research: Solid Earth, 121(11), 8175–8195.

    Google Scholar 

  • Sakaguchi, A., Chester, F., Curewitz, D., Fabbri, O., Goldsby, D., Kimura, G., et al. (2011). Seismic slip propagation to the updip end of plate boundary subduction interface faults: Vitrinite reflectance geothermometry on Integrated Ocean Drilling Program NanTro SEIZE cores. Geology, 39(4), 395–398.

    Google Scholar 

  • Satake, K. (1994). Mechanism of the 1992 Nicaragua tsunami earthquake. Geophysical Research Letters, 21(23), 2519–2522.

    Google Scholar 

  • Satake, K., Shimazaki, K., Tsuji, Y., & Ueda, K. (1996). Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379(6562), 246–249.

    Google Scholar 

  • Satake, K., Wang, K., & Atwater, B. F. (2003). Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. Journal of Geophysical Research: Solid Earth, 108(B11), 2535.

    Google Scholar 

  • Sato, M., Ishikawa, T., Ujihara, N., Yoshida, S., Fujita, M., Mochizuki, M., et al. (2011). Displacement above the hypocenter of the 2011 Tohoku–Oki earthquake. Science, 332(6036), 1395–1395.

    Google Scholar 

  • Sawai, M., Niemeijer, A. R., Hirose, T., & Spiers, C. J. (2017). Frictional properties of JFAST core samples and implications for slow earthquakes at the Tohoku subduction zone. Geophysical Research Letters, 44(17), 8822–8831.

    Google Scholar 

  • Sawai, M., Niemeijer, A. R., Plumper, O., Hirose, T., & Spiers, C. J. (2016). Nucleation of frictional instability caused by fluid pressurization in subducted blueschist. Geophysical Research Letters, 43(6), 2543–2551.

    Google Scholar 

  • Sells, C. L. (1965). The effect of a sudden change of shape of the bottom of a slightly compressible ocean. Philosophical Transactions of the Royal Society of London, 258(1092), 495–528.

    Google Scholar 

  • Seno, T. (2009). Determination of the pore fluid pressure ratio at seismogenic megathrusts in subduction zones: Implications for strength of asperities and Andean-type mountain building. Journal of Geophysical Research: Solid Earth, 114(B5), B05405.

    Google Scholar 

  • Shennan, I., Long, A. J., Rutherford, M. M., Green, F. M., Innes, J. B., Lloyd, J. M., et al. (1996). Tidal marsh stratigraphy, sea-level change and large earthquakes, I: A 5000 year record in Washington, USA. Quaternary Science Reviews, 15(10), 1023–1059.

    Google Scholar 

  • Shipley, T. H., McIntosh, K. D., Silver, E. A., & Stoffa, P. L. (1992). Three-dimensional seismic imaging of the Costa Rica accretionary prism: Structural diversity in a small volume of the lower slope. Journal of Geophysical Research: Solid Earth, 97(B4), 4439–4459.

    Google Scholar 

  • Skarbek, R. M., & Saffer, D. M. (2009). Pore pressure development beneath the decollement at the Nankai subduction zone: Implications for plate boundary fault strength and sediment dewatering. Journal of Geophysical Research: Solid Earth, 114(B7), B07401.

    Google Scholar 

  • Song, Y. T., Fu, L.-L., Zlotnicki, V., Ji, C., Hjorleifsdottir, V., Shum, C. K., et al. (2008). The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 tsunami. Ocean Modelling, 20(4), 362–379.

    Google Scholar 

  • Song, Y. T., Mohtat, A., & Yim, S. C. (2017). New insights on tsunami genesis and energy source. Journal of Geophysical Research: Oceans, 122(5), 4238–4256.

    Google Scholar 

  • Stein, S., & Okal, E. A. (2005). Seismology: Speed and size of the Sumatra earthquake. Nature, 434(7033), 581.

    Google Scholar 

  • Tamura, S., & Ide, S. (2011). Numerical study of splay faults in subduction zones: The effects of bimaterial interface and free surface. Journal of Geophysical Research: Solid Earth, 116(B10), B10309.

    Google Scholar 

  • Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23(8), 861–864.

    Google Scholar 

  • Tanioka, Y., & Satake, K. (1996). Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling. Geophysical Research Letters, 23(13), 1549–1552.

    Google Scholar 

  • Tanioka, Y., & Satake, K. (2001). Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake. Earth, Planets and Space, 53(4), 235–241.

    Google Scholar 

  • Tobin, H. J., & Moore, J. C. (1997). Variations in ultrasonic velocity and density with pore pressure in the decollement zone, northern Barbados Ridge accretionary prism. In Proceedings of the Ocean Drilling Program. Scientific results (pp. 125–136). National Science Foundation.

  • Tobin, H. J., Moore, J. C., & Moore, G. F. (1995). Laboratory measurement of velocity vs. effective stress in thrust faults of the Oregon accretionary prism: Implications for fault zone overpressure. In Proceedings of the Ocean Drilling Program. Scientific results (Vol. 146, pp. 349–358). Ocean Drilling Program.

  • Tobin, H. J., & Saffer, D. M. (2009). Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust. Nankai Trough subduction zone. Geology, 37(8), 679–682.

    Google Scholar 

  • Tse, S. T., & Rice, J. R. (1986). Crustal earthquake instability in relation to the depth variation of frictional slip properties. Journal of Geophysical Research: Solid Earth, 91(B9), 9452–9472.

    Google Scholar 

  • Tsuji, T., Kamei, R., & Pratt, R. G. (2014). Pore pressure distribution of a mega-splay fault system in the Nankai Trough subduction zone: Insight into up-dip extent of the seismogenic zone. Earth and Planetary Science Letters, 396, 165–178.

    Google Scholar 

  • Ujiie, K., Tanaka, H., Saito, T., Tsutsumi, A., Mori, J. J., Kameda, J., et al. (2013). Low coseismic shear stress on the Tohoku–Oki megathrust determined from laboratory experiments. Science, 342(6163), 1211–1214.

    Google Scholar 

  • Von Huene, R., Ranero, C. R., & Scholl, D. W. (2009). Convergent margin structure in high-quality geophysical images and current kinematic and dynamic models. In Subduction Zone Geodynamics (pp. 137–157). Springer.

  • Wang, C. (1980). Sediment subduction and frictional sliding in a subduction zone. Geology, 8(11), 530–533.

    Google Scholar 

  • Wang, K., & Hu, Y. (2006). Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge. Journal of Geophysical Research: Solid Earth, 111(B6), B06410.

    Google Scholar 

  • Wang, K., Mulder, T., Rogers, G. C., & Hyndman, R. D. (1995). Case for very low coupling stress on the Cascadia Ssubduction Fault. Journal of Geophysical Research: Solid Earth, 100(B7), 12907–12918.

    Google Scholar 

  • Wang, K., & Trehu, A. M. (2016). Invited review paper: Some outstanding issues in the study of great megathrust earthquakes—The Cascadia example. Journal of Geodynamics, 98, 1–18.

    Google Scholar 

  • Wang, K., Wells, R., Mazzotti, S., Hyndman, R. D., & Sagiya, T. (2003). A revised dislocation model of interseismic deformation of the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 108(B1).

  • Wang, P. L., Engelhart, S. E., Wang, K., Hawkes, A. D., Horton, B. P., Nelson, A. R., et al. (2013). Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates. Journal of Geophysical Research: Solid Earth, 118(5), 2460–2473.

    Google Scholar 

  • Webb, S. I. (2017). Interaction of structure and physical properties in accretionary wedges: examples from the Cascadia and Nankai Trough subduction zones. PhD thesis, University of Wisconsin, Madison.

  • Weertman, J. (1980). Unstable slippage across a fault that separates elastic media of different elastic constants. Journal of Geophysical Research: Solid Earth, 85(B3), 1455–1461.

    Google Scholar 

  • Wendt, J., Oglesby, D. D., & Geist, E. L. (2009). Tsunamis and splay fault dynamics. Geophysical Research Letters, 36(15), L15303.

    Google Scholar 

  • Witter, R. C., Kelsey, H. M., & Hemphill-Haley, E. (2003). Great Cascadia earthquakes and tsunamis of the past 6700 years, Coquille River estuary, southern coastal Oregon. Geological Society of America Bulletin, 115(10), 1289–1306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel C. Lotto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 383 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotto, G.C., Jeppson, T.N. & Dunham, E.M. Fully Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone. Pure Appl. Geophys. 176, 4009–4041 (2019). https://doi.org/10.1007/s00024-018-1990-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1990-y

Keywords

Navigation