Skip to main content
Log in

Characteristics of Radiation and Propagation of Seismic Waves in Northern Finland, Estimated Based on Records of Local Earthquakes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The characteristics of radiation and propagation of seismic waves required in various seismological applications, especially in seismic hazard assessment, are estimated in northern Finland based on records of local earthquakes (~ 80 records from four stations, Mw ~ 1.5 to 4.1, h ~ 3 to 25 km). Northern Finland possesses relatively low seismic activity; however, rather strong earthquakes occurred there in the past. We applied coda-normalization method to estimate the quality factor Q(f)~ Q0fn and then verified and corrected the Q(f) estimates at low frequencies by stochastic simulations. We obtained Q0~ 80 to 100, n ~ 1.1 to 1.2 for hypocentral distances of ~ 20 to 150 km, and Q0~ 180 to 350, n ~ 0.7 to 0.9 for hypocentral distances of ~ 150 to 320 km. Other parameters were estimated by the empirical methods and stochastic simulation of local earthquakes (ML > 2.0). We estimated the stress drop (∆σ ~ 200 bars), geometrical spreading (as a two-segment function: 1/R for R ~ 0 to 80 km and 1/80 for R ~ 80 to 300 km), the duration of seismic motion depending on the hypocentral distance, kappa value (κ ~ 0.001 to 0.03 s), and some other parameters. The obtained high estimates of the stress drop, along with rather high Q values, may result in noticeably increased (compared to those that could be expected on average) PGA estimates in seismic hazard assessment in northern Finland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aki, K. (1980a). Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Physics of the Earth and Planetary Interiors, 21(1), 50–60.

    Article  Google Scholar 

  • Aki, K. (1980b). Scattering and attenuation of shear waves in the lithosphere. Journal of Geophysical Research, 85, 6496–6504.

    Article  Google Scholar 

  • Aki, K., & Chouet, B. (1975). Origin of coda-waves: source, attenuation and scattering effects. Journal of Geophysical Research, 80, 3322–3342.

    Article  Google Scholar 

  • Aki, K., & Richards, P. G. (1980). Quantitative seismology, theory and methods. San Francisco: Freeman.

    Google Scholar 

  • Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysics Research. https://doi.org/10.1029/2008JB005821.

    Article  Google Scholar 

  • Anderson, J. G. (1986). Seismic strain rates in the central and eastern US. Bulletin of the Seismological Society of America, 76, 273–290.

    Google Scholar 

  • Atkinson, G. M. (1996). The high-frequency shape of the source spectrum for Earthquakes in Eastern and Western Canada. Bulletin of the Seismological Society of America, 86(1A), 106–112.

    Google Scholar 

  • Atkinson, G. M. (2004). Empirical attenuation of ground-motion spectral amplitudes in southeastern Canada and the northeastern United States. Bulletin of the Seismological Society of America, 94, 1979–1995.

    Article  Google Scholar 

  • Atkinson, G. M., & Mereu, R. (1992). The shape of ground motion attenuation curves in southeastern Canada. Bulletin of the Seismological Society of America, 82, 2014–2031.

    Google Scholar 

  • Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160, 635–676.

    Article  Google Scholar 

  • Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24, 99–138.

    Article  Google Scholar 

  • Boore, D. M., & Joyner, W. B. (1997). Site amplifications for generic rock sites. Bulletin of the Seismological Society of America, 87, 327–341.

    Google Scholar 

  • Boore, D. M., & Thompson, E. M. (2014). Path durations for use in the stochastic-method simulation of ground motions. Bulletin of the Seismological Society of America, 104(5), 2541–2552.

    Article  Google Scholar 

  • Burger, R. W., Sommerville, P. G., Barker, J. S., Herrmann, R. B., & Helmberger, D. V. (1987). The effect of crustal structure on strong ground motion attenuation relations in eastern North America. Bulletin of the Seismological Society of America, 77, 420–439.

    Google Scholar 

  • Calais, E., Camelbeeck, T., Stein, S., Liu, M., & Craig, T. J. (2016). A new paradigm for large earthquakes in stable continental plate interiors. Geophysical Research Letters. https://doi.org/10.1002/2016GL070815.

    Article  Google Scholar 

  • Cantore, L., Oth, A., Parolai, S., & Bindi, D. (2011). Attenuation, source parameters and site effects in the Irpinia-Basilicata region (southern Apennines, Italy). Journal of Seismology, 15(2), 375–389.

    Article  Google Scholar 

  • Chapman, M. S., & Godbee, R. W. (2012). Modeling geometrical spreading and the relative amplitudes of vertical and horizontal high-frequency ground motions in Eastern North America. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120110081.

    Article  Google Scholar 

  • Craig, T. J., Calais, E., Fleitout, L., Bollinger, L., & Scotti, O. (2016). Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes. Geophysical Research Letters. https://doi.org/10.1002/2016GL069359.

    Article  Google Scholar 

  • Grad, M., Czuba, W., Luosto, U., & Zuchniak, M. (1998). QR—Factors in the crystalline uppermost crust in Finland from rayleigh surface waves. Geophysica, 34(3), 115–129.

    Google Scholar 

  • Grad, M., & Luosto, U. (1992). Fracturing of the crystalline uppermost crust beneath the SVEKA profile in Central Finland. Geophysica, 28, 53–66.

    Google Scholar 

  • Gusev, A. A., & Shumilina, L. S. (2000). Modeling the intensity–magnitude–distance relation based on the concept of an incoherent extended earthquake source. Journal of Volcanology and Seismology, 21, 443–463.

    Google Scholar 

  • Halldorsson, B., & Papageorgiou, A. S. (2005). Calibration of the specific barrier model to earthquakes of different tectonic regions. Bulletin of the Seismological Society of America, 95(4), 1276–1300.

    Article  Google Scholar 

  • Hanks, T. C., & McGuire, R. K. (1981). The character of high-frequency strong ground motion. Bulletin of the Seismological Society of America, 71, 2071–2095.

    Google Scholar 

  • Hansen, R., McNamara, D., & Van Ark, E. (1998). Lg propagation characteristics in Continental Alaska. EOS, Transactions American Geophysical Union, 79.

  • Herrmann, R. B., & Kijko, A. (1983). Modeling some empirical vertical component Lg relations. Bulletin of the Seismological Society of America, 73, 157–171.

    Google Scholar 

  • Janik, T., Kozlovskaya, E., Heikkinen, P., Yliniemi, J., & Silvennoinen, H. (2009). Evidence for preservation of crustal root beneath the Proterozoic Lapland-Kola orogen (northern Fennoscandian shield) derived from P- and S- wave velocity models of POLAR and HUKKA wide-angle reflection and refraction profiles and FIRE4 reflection transect. Journal of Geophysical Research. https://doi.org/10.1029/2008JB005689.

    Article  Google Scholar 

  • Janik, T., Kozlovskaya, E., & Yliniemi, J. (2007). Crust-mantle boundary in the central Fennoscandian shield: constraints from wide-angle P- and S-wave velocity models and new results of reflection profiling in Finland. Journal of Geophysical Research. https://doi.org/10.1029/2006JB004681.

    Article  Google Scholar 

  • Johnston, A. C. (1996). Seismic moment assessment of earthquakes in stable continental regions—I. Instrumental seismicity. Geophysical Journal International, 124(2), 381–414.

    Article  Google Scholar 

  • Kanamori, H. (1994). Mechanics of Earthquakes. Annual Review of Earth and Planetary Sciences, 22, 207–237.

    Article  Google Scholar 

  • Kanamori, H., & Allen, C. R. (1986). Earthquake repeat time and average stress drop. Earthquake Source Mechanics, 37, 227–235.

    Google Scholar 

  • Kennett, B. L. N. (1986). Lg waves and structural boundaries. Bulletin of the Seismological Society of America, 76, 1133–1141.

    Google Scholar 

  • Kern, H., Walther, C. H., Flueh, E. R., & Marker, M. (1993). Seismic properties of rocks exposed in the POLAR profile region-constraints on the interpretation of the refraction data. Precambrian Research, 64, 169–187.

    Article  Google Scholar 

  • Klose, C. D., & Seeber, L. (2007). Shallow seismicity in stable continental regions. Seismological Research Letters, 78(5), 554–562.

    Article  Google Scholar 

  • Kozlovskaya, E., Elo, S., Hjelt, S.-E., Yliniemi, J., Pirttijärvi, M., & Svekalapko, S. T. W. G. (2004). 3D density model of the crust of southern and central Finland obtained from joint interpretation of SVEKALAPKO crustal P-wave velocity model and gravity data. Geophysical Journal International, 158, 827–848.

    Article  Google Scholar 

  • Kozlovskaya, E., Narkilahti, J., Nevalainen, J., Hurskainen, R., & Silvennoinen, H. (2016). Seismic observations at the Sodankylä Geophysical Observatory: history, present and the future. Geoscientific Instrumentation Methods and Data Systems, 5, 365–382.

    Article  Google Scholar 

  • Kvamme, L. B., & Havskov, J. (1989). Q in southern Norway. Bulletin of the Seismological Society of America, 79, 1575–1588.

    Google Scholar 

  • Luosto, U. (1997). Structure of the Earth’s crust in Fennoscandia as revealed from refraction and wide-angle reflection studies. Geophysica, 33(1), 3–16.

    Google Scholar 

  • McNamara, D. (2000). Frequency dependent Lg attenuation in South-Central Alaska. Geophysical Research Letters, 27(23), 3949–3952.

    Article  Google Scholar 

  • Ottemoller, L., & Havskov, J. (2003). Moment magnitude determination for local and regional Earthquakes based on source spectra. Bulletin of the Seismological Society of America, 93(1), 203–214.

    Article  Google Scholar 

  • Ou, G.-B., & Herrmann, R. B. (1990). A statistical model for ground motion produced by earthquakes at local and regional distances. Bulletin of the Seismological Society of America, 80, 1397–1417.

    Google Scholar 

  • Pavlenko, O. V. (2013). Simulation of ground motion from strong earthquakes of Kamchatka region (1992–1993) at rock and soil sites. Pure and Applied Geophysics, 170, 571–595.

    Article  Google Scholar 

  • Pavlenko, O. V. (2016). The Q-factor estimates for the crust and upper mantle in the vicinity of Sochi and Anapa (North Caucasus), Izvestiya. Physics of the Solid Earth, 52(3), 353–363.

    Article  Google Scholar 

  • Pavlenko, V. A., & Pavlenko, O. V. (2016). The seismic wave absorption in the crust and upper mantle in the vicinity of the Kislovodsk Seismic Station, Izvestiya. Physics of the Solid Earth, 52(4), 492–502.

    Article  Google Scholar 

  • Pavlenko, O. V., & Wen, K.-L. (2008). Estimation of nonlinear soil behavior during the 1999 Chi-Chi, Taiwan, Earthquake. Pure and Applied Geophysics, 165, 373–407.

    Article  Google Scholar 

  • Pedersen, H. A., & Campillo, M. (1991). Depth dependence of Q beneath the Baltic Shield inferred from modelling of short period seismograms. Geophysical Research Letters, 18, 1755–1758.

    Article  Google Scholar 

  • Petukhin, A., Irikura, K., Ohmi, S., & Kagawa, T. (2003). Estimation of Q-values in the seismogenic and aseismic layers in the Kinki Region, Japan, by elimination of geometrical spreading effect using ray approximation. Bulletin of the Seismological Society of America, 93, 1498–1515.

    Article  Google Scholar 

  • Rautian, T. G., Khalturin, V. I., Martynov, V. G., & Molnar, P. (1978). Preliminary analysis of the spectral content of P and S waves from local earthquakes in the Garm, Tajikistan region. Bulletin of the Seismological Society of America, 68(4), 949–971.

    Google Scholar 

  • Roumelioti, Z., & Beresnev, I. A. (2003). Stochastic Finite-Fault modeling of ground motions from the 1999 Chi-Chi, Taiwan, Earthquake: application to rock and soil sites with implications for nonlinear site response. Bulletin of the Seismological Society of America, 93, 1691–1702.

    Article  Google Scholar 

  • Sandoval, S., Kissling, E., Ansorge, J., & Svekalapko, S. T. W. G. (2003). High-Resolution body wave tomography beneath the SVEKALAPKO array: I. A priori 3D crustal model and associated traveltime effects on teleseismic wavefronts. Geophysical Journal International, 153, 75–87.

    Article  Google Scholar 

  • Sandoval, S., Kissling, E., Ansorge, J., & Svekalapko, S. T. W. G. (2004). High-Resolution body wave tomography beneath the SVEKALAPKO array: II. Anomalous upper mantle structure beneath central Baltic Schield. Geophysical Journal International, 157, 200–214.

    Article  Google Scholar 

  • Scherneck, H.-G., Lidbergb, M., Haasa, R., Johanssona, J. M., & Milnec, G. A. (2010). Fennoscandian strain rates from BIFROST GPS: A gravitating, thick-plate approach. Journal of Geodynamics, 50, 19–26.

    Article  Google Scholar 

  • Schön, J. H. (1996). Physical properties of rocks: Fundamentals and principles of petrophysics. Handbook of geophysical exploration: Seismic exploration (book 18). Oxford: Pergamon.

    Google Scholar 

  • Silvennoinen, H., Kozlovskaya, E., & Kissling, E. (2016). POLENET/LAPNET teleseismic P-wave traveltime tomography model of the upper mantle beneath northern Fennoscandia. Solid Earth, 7, 425–439.

    Article  Google Scholar 

  • Silvennoinen, H., Kozlovskaya, E., Kissling, E., Kosarev, G., & POLENET/LAPNET Working Group. (2014). A new Moho boundary map for the northern Fennoscandian Shield based on combined controlled-source seismic and receiver function data. GeoResJ, 1–2, 19–32.

    Article  Google Scholar 

  • Somerville, P. (2014). Scaling Relations between seismic moment and rupture area of earthquakes in stable continental regions, PB2015-101775/XAB; PEER-2014/14.

  • Steensma, G., & Biswas, N. (1988). Frequency dependent characteristics of coda wave quality factor in central and south-central Alaska. Pure Applied Geophysics, 128, 295–307.

    Article  Google Scholar 

  • Trifunac, M. D., & Brady, A. G. (1975). A study on the Duration of Strong Earthquake Ground Motion. Bulletin of the Seismological Society of America, 65, 581–626.

    Google Scholar 

  • Varpasuo, P. (2008). The update of the seismic probabilistic site hazard assessment for Loviisa NPP in Finland. Proc. 14th World Conf. Earthq. Eng., Beijing, China, 12-17 October.

  • Vogfjord, K. S., & Langston, C. A. (1996). Characteristics of short-period wave propagation in regions of Fennoscandia, with emphasis on Lg. Bulletin of the Seismological Society of America, 86, 1873–1895.

    Google Scholar 

  • Wang, C. Y., & Herrmann, B. B. (1980). A numerical study of P-, SV-, and SH-wave generation in a plane layered medium. Bulletin of the Seismological Society of America, 70, 1015–1036.

    Google Scholar 

Download references

Acknowledgements

The study used the data of northern Finland Seismological Network that is a part of EPOS (European Plate Observing System) research infrastructure and national FIN-EPOS infrastructure. The study was supported by the Academy of Finland (Grant no. 299324) and University of Oulu (Finland). We are thankful to the SGO computer specialist Riitta Hurskainen for the assistance with data preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Pavlenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, O., Kozlovskaya, E. Characteristics of Radiation and Propagation of Seismic Waves in Northern Finland, Estimated Based on Records of Local Earthquakes. Pure Appl. Geophys. 175, 4197–4223 (2018). https://doi.org/10.1007/s00024-018-1919-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1919-5

Keywords

Navigation