Skip to main content
Log in

Statistical Features of the 2010 Beni-Ilmane, Algeria, Aftershock Sequence

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The aftershock sequence of the 2010 Beni-Ilmane (M W 5.5) earthquake is studied in depth to analyze the spatial and temporal variability of seismicity parameters of the relationships modeling the sequence. The b value of the frequency–magnitude distribution is examined rigorously. A threshold magnitude of completeness equal to 2.1, using the maximum curvature procedure or the changing point algorithm, and a b value equal to 0.96 ± 0.03 have been obtained for the entire sequence. Two clusters have been identified and characterized by their faulting type, exhibiting b values equal to 0.99 ± 0.05 and 1.04 ± 0.05. Additionally, the temporal decay of the aftershock sequence was examined using a stochastic point process. The analysis was done through the restricted epidemic-type aftershock sequence (RETAS) stochastic model, which allows the possibility to recognize the prevailing clustering pattern of the relaxation process in the examined area. The analysis selected the epidemic-type aftershock sequence (ETAS) model to offer the most appropriate description of the temporal distribution, which presumes that all events in the sequence can cause secondary aftershocks. Finally, the fractal dimensions are estimated using the integral correlation. The obtained D 2 values are 2.15 ± 0.01, 2.23 ± 0.01 and 2.17 ± 0.02 for the entire sequence, and for the first and second cluster, respectively. An analysis of the temporal evolution of the fractal dimensions D −2, D 0, D 2 and the spectral slope has been also performed to derive and characterize the different clusters included in the sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Aki, K. (1965). Maximum likelihood estimate of b in the formula Log N = a − bM and its confidence limits. Bulletin of the Earthquake Research Institute University of Tokyo, 43, 237–239.

    Google Scholar 

  • Amorèse, D. (2007). Applying a change-point detection method on frequency-magnitude distribution. Bulletin of the Seismological Society of America, 97, 1742–1749.

    Article  Google Scholar 

  • Ayadi, A., & Bezzeghoud, M. (2015). Seismicity of Algeria from 1365 to 2013: maximum observed intensity map (MOI2014). Seism. Res. Lett., 86, 236–244.

    Article  Google Scholar 

  • Beauval, C., Hainzl, S., & Scherbaum, F. (2006). The impact of the spatial uniform distribution of seismicity on probabilistic seismic-hazard estimation. Bulletin of the Seismological Society of America, 96, 2465–2471.

    Article  Google Scholar 

  • Beldjoudi, H., Delouis, B., Djellit, H., Yelles-Chaouche, A., Gharbi, S., & Abacha, I. (2016). The Beni-Ilmane (Algeria) seismic sequence of May 2010: seismic sources and stress tensor calculations. Tectonophysics, 670, 101–114.

    Article  Google Scholar 

  • Bezzeghoud, M., & Buforn, E. (1999). Source parameters of the 1992 Melilla (Spain, M w = 4.8), 1994 Alhoceima (Morocco, M w = 5.8) and 1994 Mascara (Algeria, M w = 5.7) earthquakes and seismotectonic implications. Bulletin of the Seismological Society of America, 89, 359–372.

    Google Scholar 

  • Caccamo, D., Barbieri, F., D’Amico, S., Barberieri, F. M., & Lagana, C. (2007a). Umbria_Marche sequence (Central Italy): a study on its aftershock sequence. Bollettino di Geofisica Teorica e Applicata, 48, 385–398.

    Google Scholar 

  • Caccamo, D., Barbieri, F. M., Lagana, C., D’Amico, S., & Parrillo, F. (2007b). A Study about the aftershock sequence of 27 December 2003 in Loyalty Islands. Bollettino di Geofisica Teorica e Applicata, 48, 53–61.

    Google Scholar 

  • Caire A (1957) Etude géologique de la région des Biban (Algérie). Service de la carte géologique de l’Algérie, No 16

  • D’Amico, S., Caccamo, D., Parillo, F., Lagana, C., & Barbieri, M. F. (2010). The 20th September 1999 Chi-Chi earthquake (Taiwan): a case study for its aftershock seismic sequence. Izvestiya Physics of the Solid Earth, 46, 317–326.

    Article  Google Scholar 

  • De Rubeis, V., Dimitriu, D., Papadimitriou, E., & Tosi, P. (1993). Recurrent patterns in the spatial behaviour of Italian, seismicity revealed by the fractal approach. Geophysical Research Letters, 20, 1911–1914.

    Article  Google Scholar 

  • De Rubeis, V., Tosi, P., & Vinciguerra, S. (1997). Time clustering of seismicity in the Etna Region between 1874 and 1913. Geophysical Research Letters, 21, 2331–2334.

    Article  Google Scholar 

  • Delvaux, D., & Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482, 105–128.

    Article  Google Scholar 

  • Delvaux, D., & Sperner, B. (2003). New aspects of tectonic stress inversion with reference to the TENSOR program. Geological Society of London, 212, 75–100.

    Article  Google Scholar 

  • Enescu, B., Ito, K., Radulian, M., Popescu, E., & Bazacliu, O. (2005). Multifractal and chaotic analysis of Vrancea (Romania) intermediate-depth earthquakes -Investigation of the temporal distribution of events-. Pure and Applied Geophysics, 162, 249–271.

    Article  Google Scholar 

  • Enescu, B., Mori, J., Masatoshi, M., & Kano, Y. (2009). Omori-Utsu law c-values associated with recent moderate earthquakes in Japan. Bulletin of the Seismological Society of America, 99, 884–891.

    Article  Google Scholar 

  • Felzer, K., Abercrombie, R., & Ekstrom, G. (2003). Secondary aftershocks and their importance for aftershock forecasting. Bulletin of the Seismological Society of America, 93, 1433–1448.

    Article  Google Scholar 

  • Goltz, C. (1998). Fractal and chaotic properties of earthquakes. Lecture notes in earth sciences (77th ed.). Heidelberg: Springer.

    Google Scholar 

  • Gospodinov, D. (2015). RETAS model software to identify the best fit model version of aftershock temporal decay. Bulgarian Chemical Communications, 47, 315–323.

    Google Scholar 

  • Gospodinov, D., Karakostas, V., & Papadimitriou, E. (2015). Seismicity rate modeling for prospective stochastic forecasting. The case of 2014 Kefalonia, Greece, seismic excitation. Natural Hazards, 79, 1039–1058.

    Article  Google Scholar 

  • Gospodinov, D., Karakostas, V., Papadimitriou, E., & Ranguelov, B. (2007). Analysis of relaxation temporal patterns in Greece through the RETAS model approach. Physics of the Earth and Planetary Interiors, 165, 158–175.

    Article  Google Scholar 

  • Gospodinov, D., & Rotondi, R. (2006a). Statistical analysis of triggered seismicity in the Kresna region of SW Bulgaria (1904) and the Umbria-Marche region of central Italy (1997). Pure and Applied Geophysics, 163, 1597–1615.

    Article  Google Scholar 

  • Gospodinov, D., & Rotondi, R. (2006b). Statistical analysis of triggered seismicity in the Kresna region of SW Bulgaria (1904) and the Umbria-Marche region of rentral Italy (1997). Pure and Applied Geophysics, 163, 1597–1615.

    Article  Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D, 9, 189–208.

    Article  Google Scholar 

  • Guo, Z., & Ogata, Y. (1997). Statistical relation between the parameters of aftershocks in time, space and magnitude. Journal of Geophysical Research, 102, 2857–2873.

    Article  Google Scholar 

  • Gutenberg, R., & Richter, C. F. (1944). Frequency of earthquake in California. Bulletin of the Seismological Society of America, 34, 158–188.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1954). Seismicity of the earth. Princeton: Princeton University.

    Google Scholar 

  • Hainzl, S. (2013). Comment on “Self-similar earthquake triggering, Båth’s law, and foreshock/aftershock magnitudes: simulations, theory, and results for southern California” by PM Shearer. Journal of Geophysical Research, 118, 1188–1191.

    Google Scholar 

  • Halsey, T. C., Jenson, M. H., Kadanoff, L. P., Procaccia, I., & Shraiman, B. I. (1986). Fractal measure and their singularities: the characterization of strange sets. Physical Review A, 3, 1141–1151.

    Article  Google Scholar 

  • Hamdache, M., Peláez, J. A., Talbi, A., & Casado, C. L. (2010). A unified catalog of main earthquakes for Northern Algeria from A.D. 856 to 2008. Seismological Research Letters, 81, 732–739.

    Article  Google Scholar 

  • Hamdache, M., Pelaéz, J. A., & Yelles Chaouche, K. (2004). The Algiers, Algeria earthquake (Mw 6.8) of the 21 May 2003: preliminary report. Seismological Research Letters, 75, 360–367.

    Article  Google Scholar 

  • Helmstetter, A., & Sornette, D. (2003). Bath’s law derived from the Gutenberg–Richter law and aftershock properties. Geophysical Research Letters, 30, 2069.

    Article  Google Scholar 

  • Helmstetter, A., Sornette, D., & Grasso, J. R. (2003). Mainshocks are aftershocks conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws. Journal of Geophysical Research, 108, 2156–2202.

    Google Scholar 

  • Henares, J., López Casado, C., Badal, J., & Peláez, J. A. (2010). Seismicity pattern of the Betic Cordillera (southern Spain) derived from the fractal properties of earthquakes and faults. Earthquake Science, 23, 309–323.

    Article  Google Scholar 

  • Henares, J., López Casado, C., Sanz de Galdeano, C., Delgado, J., & Peláez, J. A. (2003). Stress fields in the Ibero-Maghrebian region. Journal of Seismology, 7, 65–78.

    Article  Google Scholar 

  • Holliday, J., Turcotte, D., & Rundle, J. (2008). A review of earthquake statistics; fault and seismicity based models, ETAS and BASS. Pure and Applied Geophysics, 165, 1003–1024.

    Article  Google Scholar 

  • Hu, C., Cai, Y., Liu, M., & Wang, Z. (2013). Aftershocks due to property variations in the fault zone: a mechanical model. Tectonophysics, 588, 179–188.

    Article  Google Scholar 

  • Jones, L. M. (1994). Foreshocks, aftershocks, and earthquake probabilities accounting for the landers earthquake. Bulletin of the Seismological Society of America, 84, 892–899.

    Google Scholar 

  • Kagan, Y. Y. (1992). Seismicity: turbulence of solids. Nonlinear Science Today, 2, 1–13.

    Article  Google Scholar 

  • Kagan, Y. Y. (1993). Statistics of characteristic earthquakes. Bulletin of the Seismological Society of America, 83, 7–24.

    Google Scholar 

  • Kagan, Y. Y. (2004). Short-term proprieties of earthquake catalogs and models of earthquake source. Bulletin of the Seismological Society of America, 94, 1207–1228.

    Article  Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (1991). Long_term earthquake clustering. Geophysical Journal International, 104, 117–133.

    Article  Google Scholar 

  • Keilis-Borok, V., Knopoff, L., & Rowain, I. (1980). Bursts of aftershocks long term precursors of strong earthquakes. Nature, 283, 259–263.

    Article  Google Scholar 

  • Kijko, A., & Smit, A. (2017). Estimation of the frequency-magnitude Gutenberg–Richter b value without making assumptions on levels of completeness. Seismological Research Letters, 88, 311–318.

    Article  Google Scholar 

  • Kisslinger, C. (1996). Aftershocks and fault-zone properties. Advances in Geophysics, 38, 1–36.

    Article  Google Scholar 

  • Kisslinger, C., & Hasegawa, A. (1996). Seismotectonic of intermediate-depth earthquakes from properties of aftershock sequences. Tectonophysics, 197, 27–40.

    Article  Google Scholar 

  • Kisslinger, C., & Jones, L. M. (1991). Proprieties of aftershocks in Southern California. Journal of Geophysical Research, 103, 24453–24465.

    Google Scholar 

  • Klein F (2002) User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes. USGS Open-File Report 02-171

  • Knopoff, L., Kagan, Y., & Knopoff, R. (1982). b-values for foreshocks and aftershocks in real and simulated earthquake sequences. Bulletin of the Seismological Society of America, 72, 1663–1675.

    Google Scholar 

  • Lay, T., & Wallace, T. (1995). Modern global seismology. Cambridge: Academic Press.

    Google Scholar 

  • Lee, K., & Yang, W. S. (2006). Historical seismicity of Korea. Bulletin of the seismological society of america, 73, 846–855.

    Article  Google Scholar 

  • Li, D., Zheng, Z., & Wang, B. (1994). Research into the multifractal earthquake spatial distribution. Tectonophysics, 233, 91–97.

    Article  Google Scholar 

  • López Casado, C., Henares, J., Badal, J., & Peláez, J. A. (2014). Multifractal images of the seismicity in the Ibero-Maghrebian region (westernmost boundary between the Eurasian and African plates). Tectonophysics, 627, 82–97.

    Article  Google Scholar 

  • Mandal, P., Mabawonku, A. O., & Dimri, V. P. (2005). Self-organized fractal seismicity of reservoir triggered earthquakes in the Koyna–Warna seismic zone, western India. Pure and Applied Geophysics, 162, 73–90.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1989). Multifractal measures, especially for the geophysicist. Pure and Applied Geophysics, 131, 5–42.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1992). The fractal geometry of nature. San Francisco: Freeman.

    Google Scholar 

  • Marquez-Ramirez, V. H., Nava, F. A., & Zuñiga, F. R. (2015). Correcting the Gutenberg– Richter b value for effects of rounding and noise. Earthquake Science, 28, 129–134.

    Article  Google Scholar 

  • Martínez López, F., Cabrerizo Vilchez, M. A., & Hidalgo Álvarez, R. (2001). Multifractal behavior of the estimated natural measure for colloidal cluster-cluster aggregation in 2-D. Physica A, 291, 1–12.

    Article  Google Scholar 

  • Marzocchi, W., & Sandri, L. (2003). A review and new insights on the estimation of the b value and its uncertainty. Annales Geophysicae, 46, 1271–1282.

    Google Scholar 

  • Meghraoui, M., Cisternas, A., & Philip, H. (1986). Seismotectonics of the lower Chéliff basin: structural background of the El Asnam (Algeria) earthquake. Tectonics, 5, 809–836.

    Article  Google Scholar 

  • Meghraoui, M., & Pondrelli, S. (2012). Active faulting and transpression tectonics along the plate boundary in North Africa. Annales Geophysicae, 55, 955–967.

    Google Scholar 

  • Molchan, G., & Kronod, T. (2009). The fractal description of seismicity. Geophysical Journal International, 179, 1787–1799.

    Article  Google Scholar 

  • Nava, F. A., Marquez-Ramirez, V. H., Zuniga, F. R., Ávila-Barrientos, L., & Quinteros, C. B. (2017). Gutenberg–Richter b value maximum likelihood estimation and sample size. Journal of Seismology, 21, 127–135.

    Article  Google Scholar 

  • Nyffengger, P., & Frolich, C. (1998). Recommendations for determining p values for aftershock sequence and catalogs. Bulletin of the Seismological Society of America, 88, 1144–1154.

    Google Scholar 

  • Nyffengger, P., & Frolich, C. (2000). Aftershock occurrence rate decay properties for intermediate and deep earthquake sequences. Geophysical Research Letters, 27, 1215–1218.

    Article  Google Scholar 

  • Ogata, Y. (1988). Statistical models for earthquake occurrence and residual analysis for point processes. Journal of American Statistical Association, 83, 9–27.

    Article  Google Scholar 

  • Ogata, Y. (1999). Seismicity analysis through point-process modelling: a review. Pure and Applied Geophysics, 155, 471–507.

    Article  Google Scholar 

  • Ogata, Y. (2001a). Exploratory analysis of earthquake clusters by likelihood-based trigger models. Journal of Applied Probability, 38A, 202–212.

    Article  Google Scholar 

  • Ogata, Y. (2001b). Increased probability of large earthquakes near aftershock regions with relative quiescence. Journal of Geophysical Research, 106, 8729–8744.

    Article  Google Scholar 

  • Olssen, R. (1999). An estimation of the maximum b values in the Gutenberg–Richter relation. Geodynamics, 27, 547–552.

    Article  Google Scholar 

  • Panzera, F., Zechar, J. D., Vogfjord, K., & Eberhard, D. A. J. (2015). A revised earthquake catalogue for South Iceland. Pure and Applied Geophysics, 173, 97–116.

    Article  Google Scholar 

  • Pawelzik, K., & Schuster, H. G. (1987). Generalized dimensions and entropies from a measured time series. Physical Review A General Physics, 35, 481–484.

    Article  Google Scholar 

  • Peitgen, H. O., Jurgens, H., & Saupe, D. (1992). Chaos and fractals: new frontiers of science. Heidelberg: Springer.

    Book  Google Scholar 

  • Philip, H., & Meghraoui, M. (1983). Structural analysis and interpretation of the surface deformation of the El Asnam earthquake of October 10, 1980. Tectonics, 2, 17–49.

    Article  Google Scholar 

  • Reasenberg, P. A., & Jones, L. (1989). Earthquake hazard after a mainshock in California. Science, 243, 1173–1176.

    Article  Google Scholar 

  • Richter, C. (1958). Elementary seismology (p. 768). San Francisco: WH Freeman.

    Google Scholar 

  • Roy, P. N. S., & Mondal, S. K. (2009). Fractal nature of earthquake occurrence in northwest Himalayan region. Journal of Indian Geophysical Union, 13, 63–68.

    Google Scholar 

  • Roy, P. N. S., & Nath, S. K. (2007). Precursory correlation dimensions for three great earthquakes. Current Science, 93, 1522–1529.

    Google Scholar 

  • Sandri, L., & Marzocchi, W. (2005). A technical note on the bias in the estimation of the b value and its uncertainty through the least squares technique. Annales Geophysicae, 50, 329–339.

    Google Scholar 

  • Sawires, R., Peláez, J. A., Ibrahim, H. A., Fat-Helbary, R. E., Henares, J., & Hamdache, M. (2016). Delineation and characterization of a new seismic source model for seismic hazard studies in Egypt. Natural Hazards, 80, 1823–1864.

    Article  Google Scholar 

  • Shcherbakov, R., Turcotte, D., & Rundle, J. (2005). Aftershock statistics. Pure and Applied Geophysics, 162, 1051–1076.

    Article  Google Scholar 

  • Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72, 1677–1687.

    Google Scholar 

  • Smalley, R. F., Chatelain, J. L., Turcotte, D. L., & Prevot, R. (1987). A fractal approach to the clustering of earthquakes: application to the seismicity of the New Hebrides. Bulletin of the Seismological Society of America, 77, 1368–1381.

    Google Scholar 

  • Smirnova, N. A., Kiyashchenko, D. A., Troyan, V. N., & Hayakawa, M. (2013). Multifractal approach to study the earthquake precursory signatures using the ground-based observations. Review of Applied Physics, 2, 58–67.

    Google Scholar 

  • Soumaya, A., Ben Ayed, N., Delvaux, D., & Ghanmi, M. (2015). Spatial variation of present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: geodynamic implications for central Mediterranean. Tectonics, 34, 1154–1180.

    Article  Google Scholar 

  • Spada, M., Wiemer, S., & Kissling, E. (2011). Quantifying a potential bias in probabilistic seismic hazard assessment: seismotectonic zonation with fractal properties. Bulletin of the Seismological Society of America, 101, 2694–2711.

    Article  Google Scholar 

  • Takayasu, H. (1990). Fractals in the physical sciences. Manchester: Manchester University.

    Google Scholar 

  • Teotia, S. S., & Kumar, D. (2011). Role of multifractal analysis in understanding the preparation zone for large size earthquake in the North-Western Himalaya region. Nonlinear Processes in Geophysics, 18, 111–118.

    Article  Google Scholar 

  • Turcotte, D. (1989). Fractal in geology and geophysics. Pure and Applied Geophysics, 131, 171–196.

    Article  Google Scholar 

  • Turcotte, D. (1997). Fractals and chaos in geology and geophysics. Cambridge: Press Syndicate of the University of Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • Utsu, T. (1961). A statistical study on the occurrence of aftershocks. Geophysics, 30, 521–605.

    Google Scholar 

  • Utsu, T. (1965). A method for determining the value of b in the formula Log n = a − bm showing the magnitude-frequency relation for earthquakes. Geophysical Bulletin Hokkaido University, 13, 99–103.

    Google Scholar 

  • Utsu, T., Ogata, Y., & Matsura, R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43, 1–33.

    Article  Google Scholar 

  • Vere-Jones, D. (1970). Stochastic models for earthquake occurrence (with discussion). Journal of the Royal Statistical Society Series B, 32, 1–62.

    Google Scholar 

  • Vere-Jones, D., & Davies, R. B. (1966). A statistical survey of earthquakes in the main seismic region of New Zeland. Part 2. Times series analysis. New Zealand Journal of Geology and Geophysics, 9, 251–284.

    Article  Google Scholar 

  • Wiemer, S. (2001). A software package to analyze seismicity: zmap. Seismological Research Letters, 72, 373–382.

    Article  Google Scholar 

  • Wiemer, S., & Katsumata, K. (1999). Spatial variability of seismicity parameters in aftershock zones. Journal of Geophysical Research, 104, 135–151.

    Article  Google Scholar 

  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90, 859–869.

    Article  Google Scholar 

  • Wyss, M. (1986). Seismic quiescence precursor to the 1983 Kaoiki (Ms = 6.6), Hawaii earthquake. Bulletin of the Seismological Society of America, 76, 785–800.

    Google Scholar 

  • Yelles-Chaouche, A. K., Abacha, I., Semmane, F., Beldjoudi, H., & Djellit, H. (2014). The Beni-Ilmane (North-Central Algeria) earthquake sequence of May 2010. Pure and Applied Geophysics, 171, 1283–1298.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor Pr. A. Kijko for his helpful advice. We would like to thank Dr. S. D’Amico and an anonymous reviewer for their valuable comments and suggestions that greatly contributed to the improvement of the quality of the manuscript. The authors are also grateful to Dr. Beldjoudi from CRAAG, for providing the aftershock sequence file.

This research work was supported by the Algerian CRAAG, the Spanish Seismic Hazard and Active Tectonics research group, and the Spanish MINECO CGL2015-65602-R and CGL2016-80687-R projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hamdache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdache, M., Peláez, J.A., Gospodinov, D. et al. Statistical Features of the 2010 Beni-Ilmane, Algeria, Aftershock Sequence. Pure Appl. Geophys. 175, 773–792 (2018). https://doi.org/10.1007/s00024-017-1708-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1708-6

Keywords

Navigation