Skip to main content
Log in

Satellite Data for a Rapid Assessment of Tsunami Inundation Areas after the 2011 Tohoku Tsunami

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The M w = 9.0 earthquake that occurred off the coast of Japan’s Tohoku region produced a great tsunami causing catastrophic damage and loss of life. Within hours of the tsunami event, satellite data were readily available and massive media coverage immediately circulated thousands of photographs and videos of the tsunami. Satellite data allow a rapid assessment of inundated areas where access can be difficult either as a result of damaged infrastructure (e.g., roads, bridges, ports, airports) or because of safety issues (e.g., the hazard at Nuclear Power Plant at Fukushima). In this study, we assessed in a day tsunami inundation distances and runup heights using satellite data (very high-resolution satellite images from the GeoEye1 satellite and from the DigitalGlobe worldview, SRTM and ASTER GDEM) of the Tohoku region, Northeast Japan. Field survey data by Japanese and other international scientists validated our results. This study focused on three different locations. Site selection was based on coastal morphologies and the distance to the tsunami source (epicenter). Study sites are Rikuzentakata, Oyagawahama, and Yagawahama in the Oshika Peninsula, and the Sendai coastal plain (Sendai City to Yamamoto City). Maximum inundation distance (6 km along the river) and maximum runup (39 m) at Rikuzentakata estimated from satellite data agree closely with the 39.7 m inundation reported in the field. Here the ria coastal morphology and horn shaped bay enhanced the tsunami runup and effects. The Sendai coastal plain shows large inundation distances (6 km) and lower runup heights. Natori City and Wakabayashi Ward, on the Sendai plain, have similar runup values (12 and 16 m, respectively) obtained from SRTM data; these are comparable to those obtained from field surveys (12 and 9.5 m). However, at Yagawahama and Oyagawahama, Miyagi Prefecture, both SRTM and ASTER data provided maximum runup heights (41 to 45 m and 33 to 34 m, respectively), which are higher than those measured in the field (about 27 m). This difference in DEM and field data is associated with ASTER and SRTM DEM’s pixel size and vertical accuracy, the latter being dependent on ground coverage, slope, aspect and elevation. Countries with less access to technology and infrastructure can benefit from the use of satellite imagery and freely available DEMs for an initial, pre-field surveys, rapid estimate of inundated areas, distances and runup, and for assisting in hazard management and mitigation after a natural disaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The original resolution of these images is 41 and 46 cm for the GeoEye1 and Digital Globe worldview respectively, but due to their operating license with the United States government, these companies can make available the images for civil-commercial use only with 50 cm pixel size and above (www.geoeye.com; www.digitalglobe.com).

References

  • Adams, B., Ghosh, S., Wabnitz, C., Alder, J., Mendes-Victor, Luiz A., Oliveira, C. S., Azevedo, J., Ribeiro, A. (2009). Post-tsunami urban damage assessment in Thailand, using optical satellite imagery and the VIEWS (super TM) field reconnaissance system. Geotechnical, Geological and Earthquake Engineering 7, 523–539.

  • Ayalew, L. (2009). Analyzing the effects of historical and recent floods on channel pattern and the environment in the lower Omo Basin of Ethiopia using satellite images and GIS. Environ. Geol. 58, 1713–1726.

  • Belward, A. S., Stibig, H. J., Eva, H., Rembold, F., Bucha, T., Hartley, A., Beuchle, R., Khudhairy, D., Michielon, M., Mollicone, D. Singh, Ramesh P. (2007). Mapping severe damage to land cover following the 2004 Indian Ocean tsunami using moderate spatial resolution satellite imagery. Int. J. Remote Sens. 28, 2977–2994.

  • Bhatt, C. M., Rao, G. S., Manjushree, P., Bhanumurthy, V. (2010). Space based disaster management of 2008 Kosi floods, North Bihar, India. J. Indian Soc. Remote Sens. 38, 99–108.

  • Bignami, C., Chini, M., Pierdicca, N. and Stramondo, S. (2004). Comparing and combining the capability of detecting earthquake damage in urban areas using SAR and optical data, in Proc. IGARSS, 2004, 55–58.

  • Borrero, J. C. (2005). Field data and satellite imagery of tsunami effects in Banda Aceh. Science 308, 1596.

  • Brivio, P.A., Colombo, R., Maggi, M. and Tomasoni, R. (2002). Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int. J. Remote Sens. 23, 429–41.

  • Cakir, Z., Chabalier, J.B., Armijo, R., Meyer, B., Barka, A., Peltzer, G. (2003). Coseismic and early post-seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations. Geophys. J. Int. 155, 93–110.

  • Chagué-Goff, C., Schneider, J., Goff, J. R., Dominey-Howes, D., Strotz, L. (2011). Expanding the proxy toolkit to help identify past events—lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami. Earth-Sci. Rev. 107, 107–122.

  • Chen, P., Liew, S. C. and Kwoh, L. K. (2005). Tsunami Damage Assessment Using High Resolution Satellite Imagery, A Case Study of Aceh, Indonesia 0-7803-9050-4/052005 IEEE.

  • Cheng, K. S., Wei, C., Chang, S. C. (2004). Locating landslides using multi-temporal satellite images. Adv. Space Res. 33, 296–301.

  • Chini, M., Cinti, F. R., Stramondo, S. (2011). Co-seismic surface effects from very high resolution panchromatic images, The case of the 2005 Kashmir (Pakistan) earthquake. Nat. Hazards Earth Syst. Sci. 11, 931–943.

  • Csizar, I.A., Morisette, J.T. and Giglio, L. (2006). Validation of active fire detection from moderate resolution satellite sensors, the MODIS example in northern Eurasia. IEEE Transactions on Geoscience and Remote Sensing 44, 1757–1764.

  • Das, D. P., Pramanik, K. (2011). Evaluation of impact of earthquake and tsunami on the coastal morphology of Andaman-Nicobar Island using multisensor temporal satellite data. Indian Journal of Geosciences 65, 9–22.

  • De Roo, A., Barredo, J., Lavalle, C., Bodis, K., Bonk, R. (2007). Potential Flood Hazard and Risk Mapping at Pan-European Scale. Digital Terrain Modelling. R. J. Peckham, Jordan, G. Berlin, Heidelberg, Springer. 182–202.

  • Dell’Acqua, F., Bignami, C., Chini, M., Lisini, G., Polli, D. A., Stramondo, S. (2011). Earthquake damages rapid mapping by satellite remote sensing data, L’Aquila April 6th, 2009 event. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4, 935–943.

  • Dell’Acqua, F., Polli, D. A. (2011). Post-event only VHR radar satellite data for automated damage assessment, A study on COSMO/SkyMed and the 2010 Haiti earthquake. Photogramm. Eng. Remote Sens. 77, 1037–1043.

  • Demirkesen, A. C., Evrendilik, F., Berberoglu, S. (2007). Coastal Flood Risk Analysis Using Landsat-7 ETM + Imagery and SRTM DEM, A Case Study of Izmir, Turkey. Environ. Monit. Assess. 131, 293–300.

  • DigitalGlobe (2012), QuickBird Imagery Products FAQ. http://www.satimagingcorp.com/satellite-sensors/quickbird_imagery_products.pdf.

  • Djumagaliev, V. A., Rabinovich, A. B., Fain, I. V. (1994). Theoretical and experimental estimation of transfer peculiarities of the Malokurilsk Bay coast, the island of Shikotan. Izvestiya. Atmospheric and Oceanic Physics 30, 680–686.

  • Eeri (2011a). The Japan Tohoku Tsunami of March 11, 2011. EERI Special Earthquake Report, November 2011, 1–15.

  • Eeri (2011b). The March 11, 2011, Great East Japan (Tohoku) Earthquake and Tsunami, Societal Dimensions. EERI Special Earthquake Report, August 2011, 1–23.

  • Eguchi, R.T., Huyck, C.K., Adams, B.J., Mansouri, B., Houshmand, B. and Shinozuka, M. (2003). Resilient disaster response, using remote sensing technologies for post-earthquake damage detection. MCEER Research Progress and Accomplishments, 2001–2003.

  • Falorni, G., Teles, V., Vivoni, E. R., Bras, R. L., & Amaratunga, K. (2005). Analysis and characterization of the vertical accuracy of digital elevation models from the shuttle radar topography mission. J. Geophys. Res. 110, F02005.

  • Farr, T.G., M. Kobrick (2000), Shuttle Radar Topography Mission produces a wealth of data, Amer. Geophys. Union Eos 81, 583–585.

  • Fu, B. and Lin, A. (2001). Spatial distribution of the surface rupture zone associated with the 2001 Ms 8.1 Central Kunlun earthquake, northern Tibet, revealed by satellite remote sensing data. Int. J. Remote Sens. 24, 2191–2198.

  • Fu, B., Ninomiya, Y., Lei, X., Toda, S. and Awata, Y. (2004). Mapping active fault Associated with the 2003 mw 6.6 Bam (SE Iran) earthquake with ASTER 3D images. Remote Sens. Environ. 92, 153–7.

  • Fuller, D. O. (2000). Satellite remote sensing of biomass burning with optical and thermal sensors. Prog. Phys. Geog. 24, 543–61.

  • GeoEye-1_Fact_Sheet (2011), GeoEye-1, The World’s highest resolution commercial earth-imaging satellite. http://www.geoeye.com/CorpSite/assets/docs/brochures/GeoEye-1_Fact_Sheet.pdf.

  • Giglio, L., Descloitres, J., Justice, C.O. and Kaufman, Y.J. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 87, 272–82.

  • Giraldo Osorio, J. D., Galiano, S. G. G. (2012). Development of a sub-pixel analysis method applied to dynamic monitoring of floods. Int. J. Remote Sens. 33, 2277–2295.

  • Godwin, D. R., Kobziar, L. N. (2011). Comparison of burn severities of consecutive large-scale fires in Florida sand pine scrubusing satellite imagery analysis. Fire Ecology 7, 99–113.

  • Ghosh, S., Adams, B. J., Huyck, C. K., Mio, M., Eguchi, R. T., Yamazaki, F. and Matsuoka, M. (2005). Preliminary field report, post-tsunami urban damage survey in Thailand using the VIEWS reconnaissance system. MCEER Quick Response Report Series.

  • Gorokhovich, Y. and Voustianiouk, A. (2006). Accuracy Assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens. Environ. 104, 409–415.

  • Goto K., Chagué-Goff C., Fujino S., Goff J., Jaffe B., Nishimura Y., Richmond B., Sugawara D., Szczucinski W., Tappin D.R., Witter R.C., Yulianto E. (2011). New Insights of tsunami hazard from the 2011 Tohoku-oki event. Mar. Geol. 290, 46–50.

  • Guglielmino, F., Bignami, C., Bonforte, A., Briole, P., Obrizzo, F., Puglisi, G., Stramondo, S., Wegmüller, U. (2011). Analysis of satellite and in situ ground deformation data integrated by the SISTEM approach, The April 3, 2010 earthquake along the Pernicana fault (Mt. Etna—Italy) case study. Earth Plan. Sci. Lett. 312, 327–336.

  • Huang, S. and Siegert, F. (2006). Backscatter change on fire scars in Siberian Boreal forests in ENVISAT ASAR wide-swath images. Geoscience and Remote Sensing Letters IEEE 3, 154–8.

  • IOC/UNESCO (2011). Casualties for the Earthquake and Tsunami of March 11, 2011. Bulletins 1–29. Intergovernmental Oceanographic Commission, ITIC Tsunami Bulletin Board, Honolulu, HAWAII, USA.

  • ITC (2003). Principles of Remote Sensing. ITC Educational Textbook Series. International Institute for Geo-Information Sciences and Earth Observation. Enschede, The Netherlands. 250 pp.

  • Jones, T. A., Christopher, S. A. (2010). Satellite and radar remote sensing of southern Plains grass fires, A case study. J. Appl. Meteorol. Climatol. 49, 2133–2146.

  • Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., Descloitres, J., Alleaume, D., Petitcolin, F. and Kaufman, Y. (2002) The MODIS fire products. Remote Sens. Environ. 83, 244–62.

  • Kanamori, H. (2011). The 2011 Tohoku-oki earthquake overview. Seismol. Res. Lett. 82, 452–453.

  • Kaya, G. T.., Musaoglu, N., Ersoy, O. K. (2011). Damage assessment of 2010 Haiti earthquake with post-earthquake satellite image by support vector selection and adaptation. Photogramm. Eng. Remote Sens. 77, 1025–1035.

  • Kiage, L.M., Walker, N.D., Balasubramanian, S., Babin, A. and Barras, J. (2005). Applications of radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana. Int. J. Remote Sens. 26, 5359–80.

  • Kouchi, K., Yamazaki, F., Chen, K. S., Crawford, M. M., Gamba, P., Smith, J. S. (2007). Characteristics of tsunami-affected areas in moderate-resolution satellite images. IEEE Transactions on Geoscience and Remote Sensing, 45, 1650–1657.

  • Kumar C.S., Murugan P.A., Krishnamurthy R.R., Batvari B.P.D., Ramanamurthy M.V., Usha T., Pari Y. (2008). Inundation mapping—a study based on December 2004 Tsunami hazard along Chennai coast, Southeast India. Nat. Hazards Earth Sys. 8, 617–626.

  • Kumar, A., Chingkhei, R. K., Dolendro, Th. (2007). Satellite Observations Related to Sumatra Tsunami and Earthquake of 26 December 2004. Int. J. Remote Sens. 28, 2937–2959.

  • Lay T., Kanamori H. (2011). Insights from the great 2011 Japan earthquake. Phys. Today 64, 33–39.

  • Li, P. and Tao, X. (2005). Quantitative earthquake damage detection from changes in remote sensing images, a case study. IEEE Transaction on Geoscience and Remote Sensing 2, 1026–9.

  • Li, Z., Cihlar, J., Moreau, L., Huang, F. and Lee, B. (1997). Monitoring fire activities in the boreal ecosystems. J. Geophys. Res. 102, 29611–24.

  • Liew, S. C., Gupta, A., Wong, P. P., Kwoh, L. K. (2010). Recovery from a large tsunami mapped over time, The Aceh coast, Sumatra. Geomorphology 114, 520–529.

  • Liu, J. G., Mason, P. J., Yu, E., Wu, M. C., Tang, C., Huang, R., and Liu, H. (2012), GIS modelling of earthquake damage zones using satellite remote sensing and DEM data, Geomorphology. 139140, 518–535.

  • Loan T. K., Masamoto U. (2011), Micro-landform classification and flood hazard assessment of the Thu Bon alluvial plain, central Vietnam via an integrated method utilizing remotely sensed data, Appl. Geogr. 31, 1082–1093.

  • Lohman, R.B., Simons, M., Savage, B. (2002), Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and seismic waveform modeling, J. Geophys. Res-Sol. Ea. 107 (B6) (Art. 2118),

  • Lundgren, P., Stramondo, S. (2002), Slip distribution of the 1997 Umbria-Marche earthquake sequence, joint inversion of GPS and synthetic aperture radar interferometry data, J. Geophys. Res-Sol. Ea. 107 (B11) (Art. No. 2316),

  • Mard Karlsson, J., Skelton, A., Sanden, M., Ioualalen, M., Kaewbanjak, N., Pophet, N., Asavanant, J., Von Matern, A. (2009), Reconstructions of the coastal impact of the 2004 Indian Ocean tsunami in the Khao Lak area, Thailand, J. Geophys. Res. 114, C10, 2009.

  • Masatomo, U., Charlchai T., Boonrak, P. (2007), Effects of landforms on tsunami flow in the plains of Banda Aceh, Indonesia, and Nam Khem, Thailand, Mar. Geol. 244, 141–153.

  • Matsuoka, M. and Yamazaki, F. (2004), Use of satellite SAR intensity imagery for detecting building areas damaged due to earthquakes, Earthq. Spectra 20, 975–94.

  • McAdoo, B.G., Richardson N., Borrero J. (2007), Inundation distances and run-up measurements from ASTER, QuickBird and SRTM data, Aceh coast, Indonesia, Int. J. Remote Sens. 28, 2961–2979.

  • Metternicht, G., Hurni, L. and Gogu, R. (2005), Remote sensing of landslides, an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments, Remote Sens. Environ. 98, 284–303.

  • Miura, H., Wijeyewickrema, A. C. and Inoue, S. (2006), Evaluation of tsunami damage in the eastern part of Sri Lanka due to the 2004 Sumatra earthquake using remote sensing techniques. Proceedings of the Eighth US National Conference on Earthquake Engineering, 18–22 April, San Francisco, CA. Paper No. 8NCEE-856.

  • Mondini, A. C., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., Ardizzone, F. (2011), Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images, Remote Sens. Environ. 115, 1743–1757.

  • Mori N., Takahashi, T., Yasuda T., Yanagisawa H. (2011), Survey of 2011 Tohoku earthquake tsunami inundation and run-up, Geophys. Res. Lett. 38, L00G14. doi:101029/2011GL049210, 2011.

  • Morton, D. C., DeFries, R. S., Nagol, J., Souza, C. M., Kasischke, E. S., Hurtt, G. C., Dubayah, R. (2011), Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data, Remote Sens. Environ. 115, 1706–1720.

  • NASA (2005), Shuttle Radar Topography Mission, SRTM Mission Statistics. http://www2.jpl.nasa.gov/srtm/statistics.html

  • Nichol, J., Wong, M. S. (2005), Detection and interpretation of landslides using satellite images, Land Degrad. Dev. 16, 243–255.

  • Oertel, D., Zhukov, B., Thamm, H. P., Roehrig, J. and Orthmann, B. (2004), Space-borne high-resolution fire remote sensing in Benin, West Africa, Int. J. Remote Sens. 25, 2209–2216.

  • Ouzounov, D. and Freund, F. (2004), Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data, Adv. Space Res. 33, 268–73.

  • Profeiti, G. and MacIntosh, H. (1997), Flood management through Landsat TM and ERS SAR data, a case study, Hydrol. Process. 11, 1397–1408.

  • Quayle, B., Sohlberg, R. and Descloitres, J. (2004), Operational remote sensing technologies for wildfire assessment. Geoscience and Remote Sensing Symposium, 2004, Proceedings IEEE International 3, 2245–7.

  • Ramirez-Herrera, M. T., Lagos, M., Arcas, D., García, C., Severino, R. (2010), Geomorphological effects from the 27 February 2010 tsunami: A post-tsunami Surrey, Central Chile, Giant earthquakes and their tsunamis, American Geophysical Union Chapman Conference, 16–24 May, Valparaíso, Viña del Mar, and Valdivia, Chile.

  • Rejaie, A. and Shinozuka, M. (2004), Reconnaissance of Golcuk 1999 earthquake damage using satellite images, J. Aerospace Eng. 17, 120–5.

  • Reuter, H.I., Nelson, A., Jarvis, A. (2007), An evaluation of void-filling interpolation methods for SRTM data, Int. J. Geogr. Inf. Sci., 21, 183–1008.

  • Sado, K. and Islam, M.M. (1997), Satellite remote sensing data analysis for flooded area and weather study, case study of Dhaka city, Bangladesh, J. Hydraul Eng. 41, 945–50.

  • Sanders B. F. (2007), Evaluation of on-line DEMs for flood inundation modelling, Adv. Water Resour. 30, 1831–1843.

  • Sanyal, J. and Lu, X.X. (2004), Application of remote sensing in flood management with special reference to monsoon Asia, a review, Nat. Hazards 33, 283–301.

  • Sanyal, J. and Lu, X.X. (2005), Remote sensing and GIS-based flood vulnerability assessment of human settlements, a case study of Gangetic West Bengal, India, Hydrol. Process. 19, 3699–3716.

  • Sato, H. P., Harp, E. L. (2009), Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth, Landslides 6, 153–159.

  • Schumann, G. J. P., Neal, J. C., Mason, D. C., Bates, P. D. (2011), The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods, Remote Sens. Environ. 115, 2536–2546.

  • Sharma, A., Tiwari, K.N. and Bhadoria, P.B.S. (2010), Vertical accuracy of digital elevation model from Shuttle Radar Topographic Mission—a case study, Geocarto Int. 25, 257–267.

  • Shevchenko, G., Shishkin, A., Bogdanov, G., Loskutov, A. (2011), Tsunami Measurements in Bays of Shikotan Island, Pure Appl. Geophys. 168, 2011–2021.

  • Shi, F., He, H. L., Wei, Z. Y. (2012), Coseismic horizontal shortening associated with the 2008 Wenchuan Earthquake along the Baishahe segment from high resolution satellite images, J. Asian Earth Sci. 50, 164–170.

  • Shimozono, T., Sato, S., Okayasu, A., Tajima, Y., Fritz, H. M., Liu, H., Takagawa, T. (2012), Propagation and inundation characteristics of the 2011 Tohoku tsunami on the central Sanriku coast, Coast. Eng. J. 54.

  • Shortridge, A. and Messina J. (2011), Spatial structure and landscape associations of SRTM error, Remote Sens. Environ. 115, 576–1587.

  • Simons M., Minson S. E., Sladen A., Ortega F., Jiang J., Owen S. E., Meng L., Ampuero J.P., Wei S., Chu R., Helmberger D.V., Kanamori H., Hetland E., Moore A.W., Webb F.H. (2011), The 2011 Magnitude 9.0 Tohoku-Oki Earthquake, Mosaicking the Megathrust from Seconds to Centuries, Science 332, 1421–1425.

  • Singh, R. P. (2007), Satellite observations related to Sumatra tsunami and earthquake of 26 December 2004, Int. J. Remote Sens. 28, 2883–3169.

  • Stolle, F., Dennis, R. A., Kurniwan, I. and Lambin, E. F. (2004), Evaluation of remote sensing-based active fire datasets in Indonesia, Int. J. Remote Sens. 25, 471–479.

  • Sun, W., Okubo, S. (2004), Coseismic deformations detectable by satellite gravity missions, a case study of Alaska (1964, 2002) and Hokkaido (2003) earthquakes in the spectral domain, J. Geophys. Res-Sol. Ea. 109 (B4) (Art. No. B04405),

  • Thiha, Satrawaha, R., Wongpakam, K. (2012), Monitoring trends in the extent of major floods in the lower reach of Songkhram River Basin, Northeastern Thailand, Limnology 13, 163–170.

  • Thompson J. A., Bell J. C., Butler C. A. (2001), Digital elevation model resolution, effects on terrain attribute calculation and quantitative soil-landscape modeling, Geoderma. 100, 67–89.

  • Tong, X., Hong, Z., Liu, S., Zhang, X., Xie, H., Li, Z., Yang, S., Wang, W., Bao, F. (2012), Building-damage detection using pre- and post-seismic high-resolution satellite stereo imagery, A case study of the May 2008 Wenchuan earthquake, ISPRS J. Photogramm. Remote Sens. 68, 13–27.

  • Townshend, P.A. and Walsh, S.J. (1998), Modelling flood plain inundation using integrated GIS with radar and optical remote sensing, Geomorphology 21, 295–312.

  • Tronin, A.A. (2006), Remote sensing and earthquakes, a review. Phys. Chem. Earth 31, 138–42.

  • Tsutsui, K., Rokugawa, S., Nakagawa, H., Miyazaki, S., Cheng, C., Shiraishi, T., Yang, Shiun-Der. (2007), Detection and volume estimation of large-scale landslides based on elevation-change analysis using DEMs extracted from high-resolution satellite stereo imagery, IEEE T. Geosci. Remote 45, 1681–1696.

  • Umitsu, M., Tanavud, C., Patanakanog, B. (2007), Effects of landforms on tsunami flow in the plains of Banda Aceh, Indonesia, and Nam Khem, Thailand, Mar. Geol. 242, 141–153.

  • USGS (2011) ASTER Global Digital Elevation Model Version 2—Summary of Validation Results. https://igskmncnwb001.cr.usgs.gov/aster/GDEM/Summary_GDEM2_validation_report_final.pdf.

  • Van de Sande, B. (2011), Sensitivity of coastal flood risk assessment to digital elevation models, case study lagos state, Nigeria, Coast GIS Conference proceedings. Oostende, Belgium.

  • Van Der Sande, C. J., de Jong, S. M. and de Roo, P. J. (2003), A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment, Int. J. Appl. Earth Obs. 4, 217–229.

  • Voigt, S., Kemper, T., Riedlinger, T., Kiefl, R., Scholte, K., Mehl, H. (2007), Satellite Image Analysis for Disaster and Crisis-Management Support, IEEE T. Geosci. Remote 45.

  • Wen, Y. M., He, P., Xu, C. J., Liu, Y. (2012), Source parameters of the 2009 L’Aquila earthquake, Italy from Envisat and ALOS satellite SAR images, Chin. J. Geophys. Acta Geophys. Sin. 55, 53–65.

  • Yamazaki, Y., Cheung, K. F. (2011), Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake, Geophys. Res. Lett. 38. L12605.

  • Yoshiki Y., Kwok F. Cheung. (2010), Shelf resonance and impact of near field tsunami generated by the 2010 Chile earthquake, Geophys. Res. Lett. 38, L12605.

  • Zhan, X., Sohlberg, R. A., Townshend, J. R. G., DiMiceli, C., Carroll, M. L., Eastman, J. C., Hansen, M. C. and DeFries, R. S. (2002), Detection of land cover changes using MODIS 250 m data, Remote Sens. Environ. 83, 336–50.

  • Zhang, X., Kondragunta, S., Quayle, B. (2011), Estimation of biomass burned areas using multiple-satellite-observed active fires, IEEE Trans. Geosci. Remote Sens. 49, 4469–4482.

Download references

Acknowledgments

The PAPIIT IN123609 and SEP-CONACYT-129456 gave financial support to Ramírez-Herrera. Thanks to Omar Ruiz for help with data management. Catherine Chagué-Goff provided excellent feedback on post-tsunami field-survey results in Japan. Special thanks to Dr. Margaret Skutsch for a meticulous read proving of this manuscript. We also thank two anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Ramírez-Herrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-Herrera, M.T., Navarrete-Pacheco, J.A. Satellite Data for a Rapid Assessment of Tsunami Inundation Areas after the 2011 Tohoku Tsunami. Pure Appl. Geophys. 170, 1067–1080 (2013). https://doi.org/10.1007/s00024-012-0537-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0537-x

Keywords

Navigation