Skip to main content
Log in

The Wasserstein Distance of Order 1 for Quantum Spin Systems on Infinite Lattices

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We propose a generalization of the Wasserstein distance of order 1 to quantum spin systems on the lattice \(\mathbb {Z}^d\), which we call specific quantum \(W_1\) distance. The proposal is based on the \(W_1\) distance for qudits of De Palma et al. (IEEE Trans Inf Theory 67(10):6627–6643, 2021) and recovers Ornstein’s \(\bar{d}\)-distance for the quantum states whose marginal states on any finite number of spins are diagonal in the canonical basis. We also propose a generalization of the Lipschitz constant to quantum interactions on \(\mathbb {Z}^d\) and prove that such quantum Lipschitz constant and the specific quantum \(W_1\) distance are mutually dual. We prove a new continuity bound for the von Neumann entropy for a finite set of quantum spins in terms of the quantum \(W_1\) distance, and we apply it to prove a continuity bound for the specific von Neumann entropy in terms of the specific quantum \(W_1\) distance for quantum spin systems on \(\mathbb {Z}^d\). Finally, we prove that local quantum commuting interactions above a critical temperature satisfy a transportation-cost inequality, which implies the uniqueness of their Gibbs states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781)

  2. Kantorovich, L.V.: On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS) 37, 199–201 (1942)

    MathSciNet  MATH  Google Scholar 

  3. Vershik, A.M.: Long history of the Monge–Kantorovich transportation problem. Math. Intell. 35(4), 1–9 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Villani, C.: Optimal Transport: old and new, volume 338. Springer Science & Business Media (2008)

  5. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: in Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media (2008)

  6. Peyré, G., Cuturi, M.: Computational optimal transport: with applications to data science. Found. Trends® Mach. Learn. 11(5–6), 355–607 (2019)

    MATH  Google Scholar 

  7. Ornstein, D.S.: An application of ergodic theory to probability theory. Ann. Probab. 1(1), 43–58 (1973)

    MathSciNet  MATH  Google Scholar 

  8. Ornstein, D.S., Weiss, B.: How sampling reveals a process. Ann. Probab. 18(3), 905–930 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Ornstein, D.S., Shields, P.C.: The d-recognition of processes. Adv. Math. 104(2), 182–224 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Fernandez, R., Galves, A.: Markov approximations of chains of infinite order. Bull. Braz. Math. Soc. 33(3), 295–306 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Csiszár, I., Talata, Z.: On rate of convergence of statistical estimation of stationary ergodic processes. IEEE Trans. Inf. Theory 56(8), 3637–3641 (2010)

    MathSciNet  MATH  Google Scholar 

  12. O’Connor, K., McGoff, K., Nobel, A.B: Estimation of stationary optimal transport plans (2021). arXiv preprint arXiv:2107.11858

  13. Gray, R.M., Neuhoff, D.L., Shields, P.C.: A generalization of Ornstein’s d distance with applications to information theory. Ann. Probab. 315–328 (1975)

  14. Gray, R.M.: Entropy and Information Theory. Springer Science & Business Media (2011)

  15. Choi, Y., Won, J.-H.: Ornstein auto-encoders. In IJCAI, pp. 2172–2178 (2019)

  16. Choi, Y., Lee, S., Won, J.-H.: Learning from nested data with ornstein auto-encoders. In: International Conference on Machine Learning, pp. 1943–1952. PMLR (2021)

  17. De Palma, G., Marvian, M., Trevisan, D., Lloyd, S.: The quantum wasserstein distance of order 1. IEEE Trans. Inf. Theory 67(10), 6627–6643 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Hamazaki, R.: Speed limits for macroscopic transitions. PRX Quantum 3, 020319 (2022)

    ADS  Google Scholar 

  19. De Palma, G., Rouzé, C.: Quantum concentration inequalities. Ann. Henri Poincaré 23, 3391–3429 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  20. De Palma, G., Marvian, M., Rouzé, C., França, D.S.: Limitations of variational quantum algorithms: a quantum optimal transport approach. PRX Quantum 4, 010309 (2023)

    Google Scholar 

  21. Chou, C.-N., Love, P.J., Sandhu, J.S., Shi, J.: Limitations of local quantum algorithms on random MAX-k-XOR and Beyond. In: Bojańczyk, M., Merelli, E., Woodruff, D.P. (eds), 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), vol. 229 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 41:1–41:20, Dagstuhl, Germany (2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik

  22. Li, L., Bu, K., Koh, D.E., Jaffe, A., Lloyd, S.: Wasserstein Complexity of Quantum Circuits (2022). arXiv:2208.06306

  23. Rouzé, C., França, D.S.: Learning quantum many-body systems from a few copies (2021). arXiv:2107.03333

  24. Maciejewski, F.B., Puchała, Z., Oszmaniec, M.: Exploring quantum average-case distances: proofs, properties, and examples. IEEE Trans. Inf. Theory 1–1 (2023)

  25. Kiani, B.T., De Palma, G., Marvian, M., Liu, Z.-W., Lloyd, S.: Learning quantum data with the quantum earth mover’s distance. Quantum Sci. Technol. 7(4), 045002 (2022)

    ADS  Google Scholar 

  26. Herr, D., Obert, B., Rosenkranz, M.: Anomaly detection with variational quantum generative adversarial networks. Quantum Sci. Technol. 6(4), 045004 (2021)

    ADS  Google Scholar 

  27. Anschuetz, E.R., Kiani, B.T.: Quantum variational algorithms are swamped with traps. Nat. Commun. 13(1), 7760 (2022)

    ADS  Google Scholar 

  28. Coyle, B.: Machine learning applications for noisy intermediate-scale quantum computers. Ph.D. thesis, University of Edinburgh (2022)

  29. Hirche, C., Rouzé, C., França, D.S.: Quantum differential privacy: an information theory perspective (2022). arXiv:2202.10717

  30. Angrisani, A., Doosti, M., Kashefi, E.: Differential privacy amplification in quantum and quantum-inspired algorithms (2022). arXiv:2203.03604

  31. Duvenhage, R., Mapaya, M.: Quantum Wasserstein distance of order 1 between channels (2022). arXiv:2210.03483

  32. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I: C*- and W*-Algebras. Symmetry Groups. Decomposition of States. Theoretical and Mathematical Physics. Springer, Berlin (2013)

    Google Scholar 

  33. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II: Equilibrium States Models in Quantum Statistical Mechanics. Theoretical and Mathematical Physics. Springer, Berlin (2013)

    MATH  Google Scholar 

  34. Naaijkens, P.: Quantum Spin Systems on Infinite Lattices: A Concise Introduction. Lecture Notes in Physics. Springer International Publishing (2017)

  35. Alicki, R., Alicki, I.T.P.A.R., Fannes, M.: Quantum Dynamical Systems. Oxford University Press (2001)

  36. Barnum, H.: Quantum rate-distortion coding. Phys. Rev. A 62(4), 042309 (2000)

    ADS  MathSciNet  Google Scholar 

  37. Devetak, I., Berger, T.: Quantum rate-distortion theory for IID sources. In: Proceedings of 2001 IEEE International Symposium on Information Theory (IEEE Cat. No. 01CH37252), pp. 276. IEEE (2001)

  38. Devetak, I., Berger, T.: Quantum rate-distortion theory for memoryless sources. IEEE Trans. Inf. Theory 48(6), 1580–1589 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Chen, X.-Y., Wang, W.-M.: Entanglement information rate distortion of a quantum Gaussian source. IEEE Trans. Inf. Theory 54(2), 743–748 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Datta, N., Hsieh, M.-H., Wilde, M.M.: Quantum rate distortion, reverse Shannon theorems, and source-channel separation. IEEE Trans. Inf. Theory 59(1), 615–630 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Datta, N., Hsieh, M.-H., Wilde, M.M., Winter, A.: Quantum-to-classical rate distortion coding. J. Math. Phys. 54(4), 042201 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Wilde, M.M., Datta, N., Hsieh, M.-H., Winter, A.: Quantum rate-distortion coding with auxiliary resources. IEEE Trans. Inf. Theory 59(10), 6755–6773 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Salek, S., Cadamuro, D., Kammerlander, P., Wiesner, K.: Quantum rate-distortion coding of relevant information. IEEE Trans. Inf. Theory 65(4), 2603–2613 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Carlen, E.A., Maas, J.: An analog of the 2-Wasserstein metric in non-commutative probability under which the Fermionic Fokker-Planck equation is gradient flow for the entropy. Commun. Math. Phys. 331(3), 887–926 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Carlen, E.A., Maas, J.: Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance. J. Funct. Anal. 273(5), 1810–1869 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Carlen, E.A., Maas, J.: Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems. J. Stat. Phys. 178(2), 319–378 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Rouzé, C., Datta, N.: Concentration of quantum states from quantum functional and transportation cost inequalities. J. Math. Phys. 60(1), 012202 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Datta, N., Rouzé, C.: Relating relative entropy, optimal transport and Fisher information: a quantum HWI inequality. Ann. Henri Poincaré 21, 2115–2150 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Van Tan, V., Hasegawa, Y.: Geometrical bounds of the irreversibility in Markovian systems. Phys. Rev. Lett. 126, 010601 (2021)

    MathSciNet  Google Scholar 

  50. Wirth, M.: A dual formula for the noncommutative transport distance. J. Stat. Phys. 187(2), 1–18 (2022)

    MathSciNet  MATH  Google Scholar 

  51. Gao, L., Junge, M., LaRacuente, N.: Fisher information and logarithmic Sobolev inequality for matrix-valued functions. Ann. Henri Poincaré 21(11), 3409–3478 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Chen, Y., Georgiou, T.T., Ning, L., Tannenbaum, A.: Matricial Wasserstein-1 distance. IEEE Control Syst. Lett. 1(1), 14–19 (2017)

    MathSciNet  Google Scholar 

  53. Ryu, E.K., Chen, Y., Li, W., Osher, S.: Vector and matrix optimal mass transport: theory, algorithm, and applications. SIAM J. Sci. Comput. 40(5), A3675–A3698 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Chen, Y., Georgiou, T.T., Tannenbaum, A.: Matrix optimal mass transport: a quantum mechanical approach. IEEE Trans. Autom. Control 63(8), 2612–2619 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Chen, Y., Georgiou, T.T., Tannenbaum, A.: Wasserstein geometry of quantum states and optimal transport of matrix-valued measures. In: Emerging Applications of Control and Systems Theory, pp. 139–150. Springer (2018)

  56. Agredo, J.: A Wasserstein-type distance to measure deviation from equilibrium of quantum Markov semigroups. Open Syst. Inf. Dyn. 20(02), 1350009 (2013)

    MathSciNet  MATH  Google Scholar 

  57. Agredo, J.: On exponential convergence of generic quantum Markov semigroups in a Wasserstein-type distance. Int. J. Pure Appl. Math. 107(4), 909–925 (2016)

    Google Scholar 

  58. Ikeda, K.: Foundation of quantum optimal transport and applications. Quantum Inf. Process. 19(1), 25 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Golse, F., Mouhot, C., Paul, T.: On the mean field and classical limits of quantum mechanics. Commun. Math. Phys. 343(1), 165–205 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Caglioti, E., Golse, F., Paul, T.: Towards optimal transport for quantum densities. Annali Scuola Normale Superiore-Classe di Scienze, pp. 49–4, (2022)

  61. Golse, F.: The quantum N-body problem in the mean-field and semiclassical regime. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2118), 20170229 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Golse, F., Paul, T.: The Schrödinger equation in the mean-field and semiclassical regime. Arch. Ration. Mech. Anal. 223(1), 57–94 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Golse, F., Paul, T.: Wave packets and the quadratic Monge–Kantorovich distance in quantum mechanics. C.R. Math. 356(2), 177–197 (2018)

    MathSciNet  MATH  Google Scholar 

  64. Caglioti, E., Golse, F., Paul, T.: Quantum optimal transport is cheaper. J. Stat. Phys. 181(1), 149–162 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Friedland, S., Eckstein, M., Cole, S., Życzkowski, K.: Quantum Monge–Kantorovich problem and transport distance between density matrices. Phys. Rev. Lett. 129, 110402 (2022)

    ADS  MathSciNet  Google Scholar 

  66. Cole, S., Eckstein, M., Friedland, S., Życzkowski, K.: Quantum Optimal Transport (2021). arXiv:2105.06922

  67. Duvenhage, R.: Optimal quantum channels. Phys. Rev. A 104, 032604 (2021)

    ADS  MathSciNet  Google Scholar 

  68. Bistroń, R., Eckstein, M., Życzkowski, K.: Monotonicity of a quantum 2-Wasserstein distance. J. Phys. A Math. Theor. 56(9), 095301 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  69. Van Tan, V., Saito, K.: Thermodynamic unification of optimal transport: thermodynamic uncertainty relation, minimum dissipation, and thermodynamic speed limits. Phys. Rev. X 13, 011013 (2023)

    Google Scholar 

  70. Duvenhage, R.: Quadratic Wasserstein metrics for von Neumann algebras via transport plans. J. Oper. Theory 88(2), 289–308 (2022)

    MathSciNet  MATH  Google Scholar 

  71. Duvenhage, R.: Wasserstein distance between noncommutative dynamical systems (2021). arXiv:2112.12532

  72. Duvenhage, R., Skosana, S., Snyman, M.: Extending quantum detailed balance through optimal transport (2022). arXiv preprint arXiv:2206.15287

  73. De Palma, G., Trevisan, D.: Quantum optimal transport with quantum channels. Ann. Henri Poincaré 22(10), 3199–3234 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  74. Duvenhage, R., Snyman, M.: Balance between quantum Markov semigroups. Ann. Henri Poincaré 19(6), 1747–1786 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Agredo, J., Fagnola, F.: On quantum versions of the classical Wasserstein distance. Stochastics 89(6–7), 910–922 (2017)

    MathSciNet  MATH  Google Scholar 

  76. Życzkowski, K., Slomczynski, W.: The Monge distance between quantum states. J. Phys. A Math. Gen. 31(45), 9095 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Życzkowski, K., Slomczynski, W.: The Monge metric on the sphere and geometry of quantum states. J. Phys. A Math. Gen. 34(34), 6689 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  78. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press (2017)

  79. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press (2010)

  80. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, 2 edition (2017)

  81. Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction. Texts and Monographs in Theoretical Physics. De Gruyter (2019)

  82. Jakšić, V., Pillet, C.-A., Tauber, C.: Approach to equilibrium in translation-invariant quantum systems: some structural results. Annales Henri Poincaré (2023). https://doi.org/10.1007/s00023-023-01281-6

  83. Griffiths, R.B., Ruelle, D.: Strict convexity (“continuity’’) of the pressure in lattice systems. Commun. Math. Phys. 23(3), 169–175 (1971)

    ADS  MathSciNet  Google Scholar 

  84. Roos, H.: Strict convexity of the pressure: a note on a paper of R. B. Griffiths and D. Ruelle. Commun. Math. Phys. 36(4), 263–276 (1974)

    ADS  MathSciNet  Google Scholar 

  85. Israel, R.B.: Convexity in the Theory of Lattice Gases. Princeton Series in Physics. Princeton University Press (2015)

  86. Ruelle, D.: Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  87. Jakšić, V., Pillet, C.-A., Tauber, C.: A note on adiabatic time evolution and quasi-static processes in translation-invariant quantum systems. Ann. Henri Poincaré (2023). https://doi.org/10.1007/s00023-023-01282-5

  88. Van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72(5), 879–1167 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  89. Lieb, E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11(3), 267–288 (1973)

    MathSciNet  MATH  Google Scholar 

  90. Polyanskiy, Y., Yihong, W.: Wasserstein continuity of entropy and outer bounds for interference channels. IEEE Trans. Inf. Theory 62(7), 3992–4002 (2016)

    MathSciNet  MATH  Google Scholar 

  91. Osborne, T., Winter, A.: A quantum generalisation of Talagrand’s inequality. Tobias J. Osborne’s Research Notes. https://tjoresearchnotes.wordpress.com/2009/02/13/a-quantum-generalisation-of-talagrands-inequality (2009)

  92. Eldar, L., Harrow, A.W.: Local Hamiltonians whose ground states are hard to approximate. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 427–438 (2017)

  93. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    MathSciNet  MATH  Google Scholar 

  94. Gao, L., Rouzé, C.: Ricci curvature of quantum channels on non-commutative transportation metric spaces (2021). arXiv:2108.10609

  95. Bardet, I., Capel, Á., Gao, L., Lucia, A., Pérez-García, D., Rouzé, C.: Entropy decay for Davies semigroups of a one dimensional quantum lattice (2021). arXiv:2112.00601

  96. Bardet, I., Capel, Á., Gao, L., Lucia, A., Pérez-García, D., Rouzé, C.: Rapid thermalization of spin chain commuting Hamiltonians. Phys. Rev. Lett. 130, 060401 (2023)

    ADS  MathSciNet  Google Scholar 

  97. Capel, Á., Rouzé, C., França, D.S.: The modified logarithmic Sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions (2020). arXiv:2009.11817

  98. Fröhlich, J., Ueltschi, D.: Some properties of correlations of quantum lattice systems in thermal equilibrium. J. Math. Phys. 56(5), 053302 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  99. Alicki, R., Fannes, M.: Quantum Dynamical Systems. Oxford University Press, Oxford (2001)

  100. Capobianco, S.: Multidimensional cellular automata and generalization of Fekete’s lemma. Discrete Math. Theor. Comput. Sci. 10(3) (2008)

Download references

Acknowledgements

We thank Emily Beatty for useful suggestions to improve the presentation of the proof of Theorem 9.1. GDP has been supported by the HPC National Centre for HPC, Big Data and Quantum Computing—Proposal code CN00000013, CUP J33C22001170001, funded within PNRR—Mission 4—Component 2 Investment 1.4. GDP is a member of the “Gruppo Nazionale per la Fisica Matematica (GNFM)” of the “Istituto Nazionale di Alta Matematica “Francesco Severi” (INdAM)”. DT is a member of the INdAM group “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)” and was partially supported by the INdAM-GNAMPA project 2022 “Temi di Analisi Armonica Subellittica.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo De Palma.

Additional information

Communicated by David Pérez-García.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Properties of the Quantum \(W_1\) Distance

Proposition A.1

([17, Proposition 2]). For any finite set \(\Lambda \) and any \(\Delta \in \mathcal {O}_\Lambda ^T\), we have

$$\begin{aligned} \frac{1}{2}\left\| \Delta \right\| _1 \le \left\| \Delta \right\| _{W_1} \le \frac{\left| \Lambda \right| }{2}\left\| \Delta \right\| _1. \end{aligned}$$
(A.1)

Proposition A.2

([17, Proposition 5]). Let \(\Lambda '\subseteq \Lambda \) be finite sets. Then, for any \(\Delta \in \mathcal {O}_\Lambda ^T\) such that \(\textrm{Tr}_{\Lambda '}\Delta =0\) we have

$$\begin{aligned} \left\| \Delta \right\| _{W_1} \le \frac{q^2-1}{q^2}\left| \Lambda '\right| \left\| \Delta \right\| _1. \end{aligned}$$
(A.2)

Proposition A.3

(Superadditivity [17, Proposition 4]). The quantum \(W_1\) distance is superadditive in general and additive for product states, i.e., for any two disjoint finite sets \(\Lambda ,\,\Lambda '\) and any \(\rho ,\,\sigma \in \mathcal {S}_{\Lambda \Lambda '}\) we have

$$\begin{aligned} \left\| \rho - \sigma \right\| _{W_1} \ge \left\| \rho _\Lambda - \sigma _\Lambda \right\| _{W_1} + \left\| \rho _{\Lambda '} - \sigma _{\Lambda '}\right\| _{W_1}, \end{aligned}$$
(A.3)

and for any \(\rho _\Lambda ,\,\sigma _\Lambda \in \mathcal {S}_\Lambda \) and any \(\rho _{\Lambda '},\,\sigma _{\Lambda '}\in \mathcal {S}_{\Lambda '}\) we have

$$\begin{aligned} \left\| \rho _\Lambda \otimes \rho _{\Lambda '} - \sigma _\Lambda \otimes \sigma _{\Lambda '}\right\| _{W_1} = \left\| \rho _\Lambda - \sigma _\Lambda \right\| _{W_1} + \left\| \rho _{\Lambda '} - \sigma _{\Lambda '}\right\| _{W_1}. \end{aligned}$$
(A.4)

Auxiliary Proofs

1.1 Proof of Proposition 2.1

Proposition

(2.1) The trace distance on \(\mathcal {S}_{\mathbb {Z}^d}\) is the supremum of the trace distances between the marginal states: For any \(\rho ,\,\sigma \in \mathcal {S}_{\mathbb {Z}^d}\),

$$\begin{aligned} T(\rho ,\sigma ) = \frac{1}{2}\sup _{\Lambda \in \mathcal {F}_{\mathbb {Z}^d}}\left\| \rho _\Lambda - \sigma _\Lambda \right\| _1, \end{aligned}$$
(B.1)

where \(\Vert \cdot \Vert _1\) denotes the trace norm on \(\mathfrak {U}_\Lambda \) given by

$$\begin{aligned} \left\| A\right\| _1 = \textrm{Tr}_\Lambda \sqrt{A^\dag A},\qquad A\in \mathfrak {U}_\Lambda . \end{aligned}$$
(B.2)

Proof

Since \(\mathfrak {U}_{\mathbb {Z}^d}^{loc}\) is dense in \(\mathfrak {U}_{\mathbb {Z}^d}\), we have

$$\begin{aligned} 2\,T(\rho ,\sigma )&= \sup _{A\in \mathfrak {U}_{\mathbb {Z}^d}^{loc}:\Vert A\Vert _\infty \le 1}\left| \rho (A) - \sigma (A)\right| = \sup _{\Lambda \in \mathcal {F}_{\mathbb {Z}^d}}\sup _{A\in \mathfrak {U}_\Lambda :\Vert A\Vert _\infty \le 1}\left| \rho (A) - \sigma (A)\right| \nonumber \\&= \sup _{\Lambda \in \mathcal {F}_{\mathbb {Z}^d}}\sup _{A\in \mathfrak {U}_\Lambda :\Vert A\Vert _\infty \le 1}\left| \textrm{Tr}_\Lambda \left[ \left( \rho _\Lambda - \sigma _\Lambda \right) A\right] \right| = \sup _{\Lambda \in \mathcal {F}_{\mathbb {Z}^d}}\left\| \rho _\Lambda - \sigma _\Lambda \right\| _1\,. \end{aligned}$$
(B.3)

The claim follows. \(\square \)

1.2 Proof of Proposition 5.1

Proposition

(5.1) For any \(\Lambda \in \mathcal {F}_{\mathbb {Z}^d}\), any \(H\in \mathcal {O}_\Lambda \) and any \(x\in \Lambda \), (3.3) and (5.1) are equivalent.

Proof

Let

$$\begin{aligned} \partial _x H = 2\min _{A\in \mathcal {O}_{\Lambda \setminus x}}\left\| H - A\right\| _\infty ,\qquad \tilde{\partial }_x H = 2\inf _{A\in \mathcal {O}_{\mathbb {Z}^d\setminus x}}\left\| H - A\right\| _\infty . \end{aligned}$$
(B.4)

We clearly have \(\tilde{\partial }_x H \le \partial _x H\). Let \(\omega _{\mathbb {Z}^d{\setminus }\Lambda }\in \mathcal {S}_{\mathbb {Z}^d{\setminus }\Lambda }\) be the uniform distribution on \(\mathbb {Z}^d\setminus \Lambda \), and let \(\Psi _\Lambda :\mathfrak {U}_{\mathbb {Z}^d}\rightarrow \mathfrak {U}_\Lambda \) be the completely positive unital linear map such that for any \(A\in \mathfrak {U}_{\mathbb {Z}^d}\) and any \(\rho _\Lambda \in \mathcal {S}_\Lambda \)

$$\begin{aligned} \textrm{Tr}_\Lambda \left[ \rho _\Lambda \,\Psi _\Lambda (A)\right] = (\omega _{\mathbb {Z}^d\setminus \Lambda }\otimes \rho _\Lambda )(A). \end{aligned}$$
(B.5)

Let \(A\in \mathcal {O}_{\mathbb {Z}^d\setminus x}\). We have for any \(\rho _\Lambda \in \mathcal {S}_\Lambda \) and any unitary operator \(U_x\in \mathfrak {U}_x\)

$$\begin{aligned} \textrm{Tr}_\Lambda \left[ \rho _\Lambda \,U_x^\dag \,\Psi _\Lambda (A)\,U_x\right]&= \textrm{Tr}_\Lambda \left[ U_x\,\rho _\Lambda \,U_x^\dag \,\Psi _\Lambda (A)\right] = \left( \omega _{\mathbb {Z}^d\setminus \Lambda }\otimes U_x\,\rho _\Lambda \,U_x^\dag \right) (A)\nonumber \\&= (\omega _{\mathbb {Z}^d\setminus \Lambda }\otimes \rho _\Lambda )\left( U_x^\dag \,A\,U_x\right) = (\omega _{\mathbb {Z}^d\setminus \Lambda }\otimes \rho _\Lambda )(A)\nonumber \\ {}&= \textrm{Tr}_\Lambda \left[ \rho _\Lambda \,\Psi _\Lambda (A)\right] \,, \end{aligned}$$
(B.6)

therefore \(U_x^\dag \,\Psi _\Lambda (A)\,U_x = \Psi _\Lambda (A)\), hence \(\Psi _\Lambda (A)\in \mathcal {O}_{\Lambda \setminus x}\). We then have

$$\begin{aligned} \partial _x H \le 2\left\| H - \Psi _\Lambda (A)\right\| _\infty = 2\left\| \Psi _\Lambda (H-A)\right\| _\infty \le 2\left\| H-A\right\| _\infty , \end{aligned}$$
(B.7)

where the last inequality follows since \(\Psi _\Lambda \) is completely positive and unital. We then have \(\partial _x H \le \tilde{\partial }_x H\). The claim follows. \(\square \)

Auxiliary Lemmas

Lemma C.1

(Multidimensional Fekete’s lemma [100]). Let \(f:\mathbb {N}_+^d\rightarrow \mathbb {R}\) be superadditive with respect to each variable, i.e.,

$$\begin{aligned} f(x_1,\,\ldots ,\,x_i+t,\,\ldots ,\,x_d) \ge f(x_1,\,\ldots ,\,x_i,\,\ldots ,\,x_d) + f(x_1,\,\ldots ,\,t,\,\ldots ,\,x_d)\nonumber \\ \end{aligned}$$
(C.1)

for any \(x_1,\,\ldots ,\,x_d,\,t\in \mathbb {N}\) and any \(i=1,\,\ldots ,\,d\). Then,

$$\begin{aligned} \lim _{x\rightarrow \infty }\frac{f(x)}{x_1\ldots x_d} = \sup _{x\in \mathbb {N}_+^d}\frac{f(x)}{x_1\ldots x_d}. \end{aligned}$$
(C.2)

Lemma C.2

Let \(H\in \mathcal {O}_\Lambda \) be positive semi-definite. Then, for any \(x\in \Lambda \),

$$\begin{aligned} \partial _x H \le \left\| H\right\| _\infty . \end{aligned}$$
(C.3)

Proof

We have

$$\begin{aligned} -\frac{\left\| H\right\| _\infty }{2}\,\mathbb {I} \le H - \frac{\left\| H\right\| _\infty }{2}\,\mathbb {I} \le \frac{\left\| H\right\| _\infty }{2}\,\mathbb {I}, \end{aligned}$$
(C.4)

therefore

$$\begin{aligned} \partial _x H \le 2\left\| H - \frac{\left\| H\right\| _\infty }{2}\,\mathbb {I}\right\| _\infty \le \left\| H\right\| _\infty . \end{aligned}$$
(C.5)

The claim follows. \(\square \)

Proposition C.1

Let \(\Lambda _1,\,\ldots ,\,\Lambda _k\) be k copies of the finite set \(\Lambda \). Then, for any \(\rho \in \mathcal {S}_{\Lambda _1\ldots \Lambda _k}\) and any \(\sigma \in \mathcal {S}_\Lambda \) we have

$$\begin{aligned} \left\| \rho - \sigma ^{\otimes k}\right\| _{W_1}^2 \le 2k\left| \Lambda \right| ^2\,S\left( \rho \left\| \sigma ^{\otimes k}\right. \right) . \end{aligned}$$
(C.6)

Proof

The proof follows the same lines as the proof of [17, Theorem 2]. We have

$$\begin{aligned} \left\| \rho - \sigma ^{\otimes k}\right\| _{W_1}&\le \sum _{i=1}^k\left\| \sigma ^{\otimes \left( i-1\right) }\otimes \rho _{\Lambda _i\ldots \Lambda _k} - \sigma ^{\otimes i}\otimes \rho _{\Lambda _{i+1}\ldots \Lambda _k}\right\| _{W_1} \nonumber \\&\overset{\mathrm {(a)}}{\le } \left| \Lambda \right| \sum _{i=1}^k\left\| \rho _{\Lambda _i\ldots \Lambda _k} - \sigma \otimes \rho _{\Lambda _{i+1}\ldots \Lambda _k}\right\| _1 \nonumber \\&\overset{\mathrm {(b)}}{\le } \left| \Lambda \right| \sum _{i=1}^k\sqrt{2\,S\left( \rho _{\Lambda _i\ldots \Lambda _k}\left\| \sigma \otimes \rho _{\Lambda _{i+1}\ldots \Lambda _k}\right. \right) } \nonumber \\&= \left| \Lambda \right| \sum _{i=1}^k\sqrt{2\left( S(\rho _{\Lambda _i}) + S(\rho _{\Lambda _{i+1}\ldots \Lambda _k}) - S(\rho _{\Lambda _i\ldots \Lambda _k}) + S(\rho _{\Lambda _i}\Vert \sigma )\right) } \nonumber \\&\overset{\mathrm {(c)}}{\le } \left| \Lambda \right| \sqrt{2k\sum _{i=1}^k\left( S(\rho _{\Lambda _i}) + S(\rho _{\Lambda _{i+1}\ldots \Lambda _k}) - S(\rho _{\Lambda _i\ldots \Lambda _k}) + S(\rho _{\Lambda _i}\Vert \sigma )\right) } \nonumber \\&=\left| \Lambda \right| \sqrt{2k}\sqrt{\sum _{i=1}^k\left( S(\rho _{\Lambda _i}) + S(\rho _{\Lambda _i}\Vert \sigma )\right) - S(\rho )} =\left| \Lambda \right| \sqrt{2k\,S\left( \rho \left\| \sigma ^{\otimes k}\right. \right) }\,. \end{aligned}$$
(C.7)

(a) follows from Proposition A.2 observing that

$$\begin{aligned} \textrm{Tr}_{\Lambda _i}\left[ \sigma ^{\otimes \left( i-1\right) }\otimes \rho _{\Lambda _i\ldots \Lambda _k} - \sigma ^{\otimes i}\otimes \rho _{\Lambda _{i+1}\ldots \Lambda _k}\right] = 0; \end{aligned}$$
(C.8)

(b) follows from Pinsker’s inequality; (c) follows from the concavity of the square root. The claim follows. \(\square \)

Lemma C.3

We have

$$\begin{aligned} \dim \mathcal {W}_k \le D_k\dim \mathcal {V}. \end{aligned}$$
(C.9)

Proof

Let \(A_0,\,\ldots ,\,A_{q^2-1}\) be a basis of \(\mathbb {C}^{q\times q}\) with \(A_0 = \mathbb {I}\). For any \(x\in \left\{ 0,\,\ldots ,\,q^2-1\right\} ^{\Lambda }\), let

$$\begin{aligned} A_x = \bigotimes _{i\in \Lambda }A_{x_i}, \end{aligned}$$
(C.10)

where each \(A_{x_i}\) acts on the site i. We have

$$\begin{aligned} \mathcal {W}_k \subseteq \textrm{span}\left\{ A_x|\psi \rangle :|\psi \rangle \in \mathcal {V},\,H(x)\le k\right\} . \end{aligned}$$
(C.11)

We also have

$$\begin{aligned} \mathcal {W}_{k-1} \subseteq \textrm{span}\left\{ A_x|\psi \rangle :|\psi \rangle \in \mathcal {V},\,H(x)\le k-1\right\} , \end{aligned}$$
(C.12)

and since \(\mathcal {W}_k\perp \mathcal {W}_{k-1}\), we have

$$\begin{aligned} \mathcal {W}_k \subseteq \textrm{span}\left\{ A_x|\psi \rangle :|\psi \rangle \in \mathcal {V},\,H(x) = k\right\} . \end{aligned}$$
(C.13)

Therefore,

$$\begin{aligned} \dim \mathcal {W}_k \le \left| H^{-1}(k)\right| \dim \mathcal {V}. \end{aligned}$$
(C.14)

The claim follows. \(\square \)

Lemma C.4

Let \(\Phi \in \mathcal {B}_{\mathbb {Z}^d}^r\). Then, for any \(\Lambda \in \mathcal {F}_{\mathbb {Z}^d}\) and any \(x\in \Lambda \) we have

$$\begin{aligned} \partial _x H^\Phi _\Lambda \le 2\left\| \Phi \right\| _r, \end{aligned}$$
(C.15)

and

$$\begin{aligned} \left\| H^\Phi _\Lambda \right\| _L \le 2\left\| \Phi \right\| _r. \end{aligned}$$
(C.16)

Proof

We have

$$\begin{aligned} \partial _x H^\Phi _\Lambda\le & {} 2\sum _{x\in X \subseteq \Lambda }\left\| \Phi (X)\right\| _\infty \overset{\mathrm {(a)}}{=} 2\sum _{0\in X \subseteq \Lambda -x}\left\| \Phi (X)\right\| _\infty \nonumber \\\le & {} 2\sum _{0\in X \in \mathcal {F}_{\mathbb {Z}^d}}\left\| \Phi (X)\right\| _\infty \le 2\left\| \Phi \right\| _r, \end{aligned}$$
(C.17)

where (a) follows from the translation invariance of \(\Phi \). The claim follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Palma, G., Trevisan, D. The Wasserstein Distance of Order 1 for Quantum Spin Systems on Infinite Lattices. Ann. Henri Poincaré 24, 4237–4282 (2023). https://doi.org/10.1007/s00023-023-01340-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01340-y

Navigation