Skip to main content
Log in

Loop Representation of Quantum Gravity

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

A hyperlink is a finite set of non-intersecting simple closed curves in \(\mathbb {R}^4 \equiv \mathbb {R} \times \mathbb {R}^3\), and each curve is either a matter or geometric loop. We consider an equivalence class of such hyperlinks, up to time-like isotopy, preserving time-ordering. Using an equivalence class and after coloring each matter component loop with an irreducible representation of \({\mathfrak {s}}{\mathfrak {u}}(2) \times \mathfrak {su}(2)\), we can define its Wilson loop observable using an Einstein–Hilbert action, which is now thought of as a functional acting on the set containing equivalence classes of hyperlink. Construct a vector space using these functionals, which we now term as quantum states. To make it into a Hilbert space, we need to define a counting probability measure on the space containing equivalence classes of hyperlinks. In our previous work, we defined area, volume and curvature operators, corresponding to given geometric objects like surface and a compact solid spatial region. These operators act on the quantum states and, by deliberate construction of the Hilbert space, are self-adjoint and possibly unbounded operators. Using these operators and Einstein’s field equations, we can proceed to construct a quantized stress operator and also a Hamiltonian constraint operator for the quantum system. We will also use the area operator to derive the Bekenstein entropy of a black hole. In the concluding section, we will explain how loop quantum gravity predicts the existence of gravitons, implies causality and locality in quantum gravity and formulates the principle of equivalence mathematically in its framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Summers, S.J.: A Perspective on Constructive Quantum Field Theory, ArXiv e-prints (2012)

  2. Jaffe, A.: Constructive quantum field theory. Math. Phys. 2000, 111–127 (2000)

    MathSciNet  Google Scholar 

  3. Thiemann, T.: Lectures on loop quantum gravity. Lect. Notes Phys. 631, 41–135 (2003). [41(2002)]

  4. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  5. Rovelli, C.: Quantum Gravity. Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  6. Rovelli, C.: Loop quantum gravity. Living Rev. Relativ. 1(1), 75 (1998)

    Article  MathSciNet  Google Scholar 

  7. Smolin, L.: The case for background independence. In: Rickles, D., French, S., Saatsi, J. (eds.) The Structural Foundations of Quantum Gravity, pp. 196–239. Oxford University Press, Oxford (2006)

    Chapter  Google Scholar 

  8. Ashtekar, A., Baez, J.C., Krasnov, K.: Quantum geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 4, 1–94 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hooft, G.: Obstacles on the way towards the quantisation of space, time and matter-and possible resolutions. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 32(2), 157–180 (2001). (Spacetime, fields and understanding: persepectives on quantum field)

  10. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lim, A.P.C.: Non-abelian gauge theory for Chern–Simons path integral on \({R}^3\). J. Knot Theory Ramif. 21(4), 1250039 (2012)

  12. Witten, E.: (2+1)-Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. Atiyah, M.F.: Topological quantum field theory. Publ. Math. l’IHÉS 68, 175–186 (1988)

    Article  Google Scholar 

  14. Atiyah, M.: The Geometry and Physics of Knots. Lezioni Lincee, Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  15. Rovelli, C., Smolin, L.: Knot theory and quantum gravity. Phys. Rev. Lett. 61, 1155–1158 (1988)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  16. Mercuri, S.: Introduction to Loop Quantum Gravity. PoS (ISFTG) 016 (2009)

  17. Ashtekar, A.: Gravity and the quantum. New J. Phys. 7, 198 (2005)

    Article  ADS  Google Scholar 

  18. Rovelli, C., Smolin, L.: Loop space representation of quantum general relativity. Nucl. Phys. B 331, 80–152 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  19. Carlip, S.: Lectures on (2+1) dimensional gravity. J. Korean Phys. Soc. 28, S447–S467 (1995)

    Google Scholar 

  20. Baez, J.C.: An Introduction to spin foam models of quantum gravity and BF theory. Lect. Notes Phys. 543, 25–94 (2000)

    Article  ADS  Google Scholar 

  21. Baez, J.: Spin Networks, Spin Foams and Quantum Gravity (1999)

  22. Baez, J.C.: Spin networks in gauge theory. Adv. Math. 117(2), 253–272 (1996)

    Article  MathSciNet  Google Scholar 

  23. Rovelli, C., Smolin, L.: Spin networks and quantum gravity. Phys. Rev. D 52, 5743–5759 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Pullin, J.: Canonical quantization of general relativity: the last 18 years in a nutshell. AIP Conf. Proc. 668(1), 141–153 (2003)

    Article  ADS  Google Scholar 

  25. Thiemann, T.: Loop quantum gravity: an inside view. Lect. Notes Phys. 721, 185–263 (2007)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244–2247 (1986)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  27. Ashtekar, A.: New Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587–1602 (1987)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Thiemann, T.: Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity. Phys. Lett. B 380(3), 257–264 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442(3), 593–619 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21(15), R53 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lim, A.P.C.: Area operator in loop quantum gravity. Ann. Henri Poincaré 18(11), 3719–3735 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Lim, A.P.C.: Invariants in quantum geometry. Rep. Math. Phys. 87(1), 87–105 (2021)

    Article  MathSciNet  Google Scholar 

  33. Jacobson, T., Smolin, L.: Nonperturbative quantum geometries. Nucl. Phys. B 299(2), 295–345 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lim, A.P.C.: Path integral quantization of volume. Ann. Henri Poincaré 21, 1311–1327 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lim, A.P.C.: Quantized curvature in loop quantum gravity. Rep. Math. Phys. 82(3), 355–372 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Lim, A.P.C.: Einstein–Hilbert Path Integrals in \({\mathbb{R}}^4\). ArXiv e-prints (2017)

  37. Geroch, R.P.: The domain of dependence. J. Math. Phys. 11, 437–439 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: an analytical and numerical investigation. Phys. Rev. D 73, 124038 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  39. Corichi, A., Ryan, M.P., Sudarsky, D.: Quantum geometry as a relational construct. Mod. Phys. Lett. A 17(09), 555–567 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  40. Streater, R.F., Wightman, A.S.: PCT, Spin Statistics, and All That. W A Benjamin Inc, New York (1964)

    Google Scholar 

  41. Ashtekar, A., Corichi, A., Singh, P.: Robustness of key features of loop quantum cosmology. Phys. Rev. D 77, 024046 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  43. Feynman, R., Morinigo, F., Wagner, W., Hatfield, B.: Feynman Lectures on Gravitation. Frontiers in Physics Series, Avalon Publishing, New York (2002)

    Google Scholar 

  44. Peskin, M., Schroeder, D.: An Introduction to Quantum Field Theory. Advanced Book Classics, Avalon Publishing, New York (1995)

    Google Scholar 

  45. Modanese, G.: Potential energy in quantum gravity. Nucl. Phys. B 434(3), 697–708 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  46. Nair, V.P.: Quantum Field Theory. A Modern Perspective. Springer, New York (2005)

    Google Scholar 

  47. Smolin, L.: The Classical limit and the form of the Hamiltonian constraint in nonperturbative quantum general relativity (1996)

  48. Bekenstein, J.D.: Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 9, 3292–3300 (1974)

    Article  ADS  Google Scholar 

  49. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  50. Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  Google Scholar 

  51. Krasnov, V.: On statistical mechanics of gravitational systems. Gen. Relativ. Gravit. 30, 53–68 (1996). arXiv:gr-qc/9605047

  52. Rovelli, C.: Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77, 3288–3291 (1996)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  53. Krasnov, K.V.: On quantum statistical mechanics of Schwarzschild black hole. Gen. Relativ. Gravit. 30, 53–68 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  54. Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Quantum geometry and black hole entropy. Phys. Rev. Lett. 80, 904–907 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  55. Schutz, B.: A First Course in General Relativity. Series in Physics, Cambridge University Press, Cambridge (1985)

    Google Scholar 

  56. Lim, A.P.C.: Chern–Simons path integral on \(\mathbb{R} ^3\) using abstract Wiener measure. Commun. Math. Anal. 11(2), 1–22 (2011)

    MathSciNet  Google Scholar 

  57. Ekon, E.: On the Status of the Equivalence Principle in Quantum Gravity. Preprint (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian P. C. Lim.

Additional information

Communicated by Carlo Rovelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, A.P.C. Loop Representation of Quantum Gravity. Ann. Henri Poincaré 25, 1911–1956 (2024). https://doi.org/10.1007/s00023-023-01337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01337-7

Keywords

Mathematics Subject Classification

Navigation