Skip to main content
Log in

Peeling on Kerr Spacetime: Linear and Semi-linear Scalar Fields

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study the peeling on Kerr spacetime for fields satisfying conformally invariant linear and semi-linear scalar wave equations. We follow the approach initiated by Mason and Nicolas (J Inst Math Jussieu 8(1):179–208, 2009; J Geom Phys 62(4):867–889, 2012. arXiv:1101.4333) for the Schwarzschild metric, based on a Penrose compactification and energy estimates. This approach provides a definition of the peeling at all orders in terms of Sobolev regularity near \({{\mathscr {I}}}\) instead of \({{\mathcal {C}}}^k\) regularity at \({{\mathscr {I}}}\), allowing to characterise completely and without loss the classes of initial data ensuring a certain order of peeling at \({{\mathscr {I}}}\). This paper extends the construction to the Kerr metric, confirms the validity and optimality of the flat spacetime model (in the sense that the same regularity and fall-off assumptions on the data guarantee the peeling behaviour in flat spacetime and on the Kerr metric) and does so for the first time for a nonlinear equation. Our results are local near spacelike infinity and are valid for all values of the angular momentum of the spacetime, including for fast Kerr metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Larger than the one obtained using the embedding in the Einstein cylinder.

References

  1. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Adv. Math. 182, 787–853 (2015). arXiv:0908.2265

    MATH  MathSciNet  Google Scholar 

  2. Aubin, T.: Nonlinear Analysis on Manifolds. Monge–Ampère Equations, Grundlehren der Mathematischen Wissenschaften, vol. 252. Springer, New York (1982)

    Book  Google Scholar 

  3. Cagnac, F., Choquet-Bruhat, Y.: Solution globale d’une équation non linéaire sur une variété hyperbolique. J. Math. Pures Appl. 63(9), 377–390 (1984)

    MATH  MathSciNet  Google Scholar 

  4. Christodoulou, D., Klainerman, S.: Asymptotic properties of linear field equations in Minkowski space. Commun. Pure Appl. Math. 43, 137–199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series 41. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  6. Chruściel, P., Delay, E.: Existence of non trivial, asymptotically vacuum, asymptotically simple space–times. Class. Quantum Gravity 19, L71–L79 (2002). erratum Class. Quantum Grav. 19 (2002), 3389

    Article  MATH  ADS  Google Scholar 

  7. Chruściel, P., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Tours University (preprint) (2003)

  8. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Corvino, J., Schoen, R.M.: On the asymptotics for the vacuum Einstein constraint equations (2003). arXiv:gr-qc/0301071

  10. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves, Evolution equations, 97–205. In: Clay Math. Proc., 17, Amer. Math. Soc., Providence, RI, 2013 (2008) arXiv:0811.0354

  11. Dafermos, M., Rodnianski, I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case \(\vert a\vert < M\). Ann. Math. 183(3), 787–913 (2016). arXiv:1402.7034

    Article  MATH  MathSciNet  Google Scholar 

  13. Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264, 465–503 (2006). arXiv:gr-qc/0504047

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Flechter, S.J., Lun, A.W.C.: The Kerr spacetime in generalized Bondi-Sachs coordinates. Class. Quantum Gravity 20, 4153–4167 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Friedrich, H.: Smoothness at null infinity and the structure of initial data. In: Chruściel, P., Friedrich, H. (eds.) The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp. 121–203. Birkhaüser, Basel (2004)

    Chapter  Google Scholar 

  16. Goldberg, J.N., Sachs, R.K.: A theorem on Petrov types. Acta Phys. Pol. 22, 13–23 (1962). Suppl

    MATH  MathSciNet  Google Scholar 

  17. Häfner, D.: Creation of fermions by rotating charged black holes. Mem. SMF 117, 158 (2009). arXiv:math/0612501

    MATH  MathSciNet  Google Scholar 

  18. Inglese, W., Nicolò, F.: Asymptotic properties of the electromagnetic field in the external Schwarzschild spacetime. Ann. Henri Poincaré 1(5), 895–944 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Joudioux, J.: Conformal scattering for a nonlinear wave equation. J. Hyperbolic Differ. Equ. 9(1), 1–65 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Klainerman, S., Nicolò, F.: On local and global aspects of the Cauchy problem in general relativity. Class. Quantum Gravity 16, R73–R157 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Klainerman, S., Nicolò, F.: The Evolution Problem in General Relativity, Progress in Mathematical Physics, vol. 25. Birkhaüser, Basel (2002)

    MATH  Google Scholar 

  22. Klainerman, S., Nicolò, F.: Peeling properties of asymptotically flat solutions to the Einstein vacuum equations. Class. Quantum Gravity 20, 3215–3257 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Leray, J.: Hyperbolic Differential Equations, Lecture Notes. Princeton Institute for Advanced Studies (1953)

  24. Mason, L.J.: On Ward’s integral formula for the wave equation in plane-wave spacetimes. Twistor Newsl. 28, 17–19 (1989)

    Google Scholar 

  25. Mason, L.J., Nicolas, J.-P.: Conformal scattering and the Goursat problem. J. Hyperbolic Differ. Equ. 1(2), 197–233 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mason, L.J., Nicolas, J.-P.: Regularity an space-like and null infinity. J. Inst. Math. Jussieu 8(1), 179–208 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mason, L.J., Nicolas, J.-P.: Peeling of Dirac and Maxwell fields on a Schwarzschild background. J. Geom. Phys. 62(4), 867–889 (2012). arXiv:1101.4333

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Metcalfe, J., Tataru, D., Tohaneanu, M.: Pointwise decay for the Maxwell field on black hole space-times. Adv. Math. 316, 53–93 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  29. Morawetz, C.S.: The decay of solutions of the exterior initial-boundary value problem for the wave equation. Commun. Pure Appl. Math. 14, 561–568 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  30. Newman, E.T., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–768 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Nicolas, J.-P.: A nonlinear Klein–Gordon equation on Kerr metrics. J. Math Pures et Appliquées 81(9), 885–914 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. O’Neill, B.: The Geometry of Kerr Black Holes. A.K. Peters, Wellesley (1995)

    MATH  Google Scholar 

  33. Penrose, R.: Asymptotic properties of fields and spacetime. Phys. Rev. Lett. 10, 66–68 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  34. Penrose, R.: Conformal approach to infinity. In: De Witt, B.S., De Witt, C.M. (eds.) Relativity, Groups And Topology, Les Houches 1963. Gordon and Breach, New York (1964)

    Google Scholar 

  35. Penrose, R.: Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. R. Soc. Lond. A 284, 159–203 (1965)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Penrose, R., Rindler, W.: Spinors and Space–Time, vol. I, Cambridge Monographs on Mathematical Physics. Cambridge University Press (1984)

  37. Penrose, R., Rindler, W.: Spinors and Space–Time, vol. II, Cambridge Monographs on Mathematical Physics. Cambridge University Press (1986)

  38. Petrov, A.Z.: The classification of spaces defining gravitational fields. In: Scientific Proceedings of Kazan State University (named after V.I. Ulyanov-Lenin), Jubilee (1804–1954) Collection 114(8), 55–69 (1954), translation by J. Jezierski and M.A.H. MacCallum, with introduction, by M.A.H. MacCallum. Gen. Rel. Grav. 32, 1661–1685 (2000)

  39. Sachs, R.: Gravitational waves in general relativity VI, the outgoing radiation condition. Proc. R. Soc. Lond. A 264, 309–338 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Sachs, R.: Gravitational waves in general relativity VIII, waves in asymptotically flat space-time. Proc. R. Soc. Lond. A 270, 103–126 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Inst. Math. Res. Not. 2, 248–292 (2011). arXiv:0810.5766

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research, based on a chapter of Pham Truong Xuan’s PhD thesis, was partly supported by the ANR funding ANR-12-BS01-012-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Nicolas.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolas, JP., Pham, T.X. Peeling on Kerr Spacetime: Linear and Semi-linear Scalar Fields. Ann. Henri Poincaré 20, 3419–3470 (2019). https://doi.org/10.1007/s00023-019-00832-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00832-0

Mathematics Subject Classification

Navigation