Skip to main content
Log in

Approximation of a Solution to the Stationary Navier–Stokes Equations in a Curved Thin Domain by a Solution to Thin-Film Limit Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the stationary Navier–Stokes equations in a three-dimensional curved thin domain around a given closed surface under the slip boundary conditions. Our aim is to show that a solution to the bulk equations is approximated by a solution to limit equations on the surface appearing in the thin-film limit of the bulk equations. To this end, we take the average of the bulk solution in the thin direction and estimate the difference of the averaged bulk solution and the surface solution. Then we combine an obtained difference estimate on the surface with an estimate for the difference of the bulk solution and its average to get a difference estimate for the bulk and surface solutions in the thin domain, which shows that the bulk solution is approximated by the surface one when the thickness of the thin domain is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Amrouche, C., Rejaiba, A.: \(L^p\)-theory for Stokes and Navier–Stokes equations with Navier boundary condition. J. Differ. Equ. 256(4), 1515–1547 (2014)

    Article  Google Scholar 

  2. Aris, R.: Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover Publications, Mineola (1989). (Reprint of the 1962 original edition)

    Google Scholar 

  3. Arroyo, M., DeSimone, A.: Relaxation dynamics of fluid membranes. Phys. Rev. E (3) 79(3), 031915 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Beirão Da Veiga, H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9(9–10), 1079–1114 (2004)

    MathSciNet  Google Scholar 

  5. Boussinesq, J.: Contribution à la théorie de l’action capillaire, avec extension des forces de viscosité aux couches superficielles des liquides et application notamment au lent mouvement vertical, devenu uniforme, d’une goutte fluide sphérique, dans un autre fluide indéfini et d’un poids spécifique différent. Ann. Sci. École Norm. Sup. 3(31), 15–85 (1914)

    Article  MathSciNet  Google Scholar 

  6. Boyer, F., Fabrie, P.: Mathematical tools for the study of the incompressible Navier–Stokes equations and related models. In: Applied Mathematical Sciences, vol. 183. Springer, New York (2013)

  7. Casado-Díaz, J., Luna-Laynez, M., Suárez-Grau, F.J.: Asymptotic behavior of the Navier–Stokes system in a thin domain with Navier condition on a slightly rough boundary. SIAM J. Math. Anal. 45(3), 1641–1674 (2013)

    Article  MathSciNet  Google Scholar 

  8. Casado-Díaz, J., Luna-Laynez, M., Suárez-Grau, F.J.: A decomposition result for the pressure of a fluid in a thin domain and extensions to elasticity problems. SIAM J. Math. Anal. 52(3), 2201–2236 (2020)

    Article  MathSciNet  Google Scholar 

  9. Chan, C.H., Czubak, M.: Non-uniqueness of the Leray–Hopf solutions in the hyperbolic setting. Dyn. Partial Differ. Equ. 10(1), 43–77 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chan, C.H., Czubak, M.: Remarks on the weak formulation of the Navier–Stokes equations on the 2D hyperbolic space. Ann. Inst. H. Poincaré C Anal. Non Linéaire 33(3), 655–698 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chan, C.H., Czubak, M., Disconzi, M.M.: The formulation of the Navier–Stokes equations on Riemannian manifolds. J. Geom. Phys. 121, 335–346 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chan, C.H., Yoneda, T.: On the stationary Navier–Stokes flow with isotropic streamlines in all latitudes on a sphere or a 2D hyperbolic space. Dyn. Partial Differ. Equ. 10(3), 209–254 (2013)

    Article  MathSciNet  Google Scholar 

  13. Dindoš, M., Mitrea, M.: The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and \(C^1\) domains. Arch. Ration. Mech. Anal. 174(1), 1–47 (2004)

    Article  MathSciNet  Google Scholar 

  14. Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic solution for a micropolar flow in a curvilinear channel. ZAMM Z. Angew. Math. Mech. 88(10), 793–807 (2008)

    Article  MathSciNet  Google Scholar 

  15. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 2(92), 102–163 (1970)

    Article  MathSciNet  Google Scholar 

  17. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011). (Steady-state problems)

    Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer-Verlag, Berlin (2001). (Reprint of the 1998 edition)

    Book  Google Scholar 

  19. Hoang, L.T.: Incompressible fluids in thin domains with Navier friction boundary conditions (I). J. Math. Fluid Mech. 12(3), 435–472 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hoang, L.T.: Incompressible fluids in thin domains with Navier friction boundary conditions (II). J. Math. Fluid Mech. 15(2), 361–395 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hoang, L.T., Sell, G.R.: Navier–Stokes equations with Navier boundary conditions for an oceanic model. J. Dyn. Differ. Equ. 22(3), 563–616 (2010)

    Article  MathSciNet  Google Scholar 

  22. Hu, C.: Navier–Stokes equations in 3D thin domains with Navier friction boundary condition. J. Differ. Equ. 236(1), 133–163 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Iftimie, D.: The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–Stokes equations. Bull. Soc. Math. France 127(4), 473–517 (1999)

    Article  MathSciNet  Google Scholar 

  24. Iftimie, D., Raugel, G.: Some results on the Navier–Stokes equations in thin 3D domains. J. Differ. Equ. 169(2), 281–331 (2001). (Special issue in celebration of Jack K. Hale’s 70th birthday, Part 4 (Atlanta, GA/Lisbon, 1998))

  25. Iftimie, D., Raugel, G., Sell, G.R.: Navier–Stokes equations in thin 3D domains with Navier boundary conditions. Indiana Univ. Math. J. 56(3), 1083–1156 (2007)

    Article  MathSciNet  Google Scholar 

  26. Jankuhn, T., Olshanskii, M.A., Reusken, A.: Incompressible fluid problems on embedded surfaces: modeling and variational formulations. Interfaces Free Bound. 20(3), 353–377 (2018)

    Article  MathSciNet  Google Scholar 

  27. Khesin, B., Misiołek, G.: Euler and Navier–Stokes equations on the hyperbolic plane. Proc. Natl. Acad. Sci. USA 109(45), 18324–18326 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  28. Koba, H., Liu, C., Giga, Y.: Energetic variational approaches for incompressible fluid systems on an evolving surface. Q. Appl. Math. 75(2), 359–389 (2017)

    Article  MathSciNet  Google Scholar 

  29. Kohr, M., Wendland, W.L.: Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calc. Var. Partial Differ. Equ. 57(6), 165 (2018)

    Article  MathSciNet  Google Scholar 

  30. Kukavica, I., Ziane, M.: Regularity of the Navier–Stokes equation in a thin periodic domain with large data. Discrete Contin. Dyn. Syst. 16(1), 67–86 (2006)

    Article  MathSciNet  Google Scholar 

  31. Kukavica, I., Ziane, M.: On the regularity of the Navier–Stokes equation in a thin periodic domain. J. Differ. Equ. 234(2), 485–506 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Lewicka, M., Müller, S.: The uniform Korn–Poincaré inequality in thin domains. Ann. Inst. H. Poincaré C Anal. Non Linéaire 28(3), 443–469 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  33. Marušić-Paloka, E.: The effects of flexion and torsion on a fluid flow through a curved pipe. Appl. Math. Optim. 44(3), 245–272 (2001)

    Article  MathSciNet  Google Scholar 

  34. Mitrea, M., Taylor, M.: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321(4), 955–987 (2001)

    Article  MathSciNet  Google Scholar 

  35. Miura, T.-H.: On singular limit equations for incompressible fluids in moving thin domains. Q. Appl. Math. 76(2), 215–251 (2018)

    Article  MathSciNet  Google Scholar 

  36. Miura, T.-H.: Navier–Stokes equations in a curved thin domain, part III: thin-film limit. Adv. Differ. Equ. 25(9–10), 457–626 (2020)

    MathSciNet  Google Scholar 

  37. Miura, T.-H.: Navier–Stokes equations in a curved thin domain, part II: global existence of a strong solution. J. Math. Fluid Mech. 23(1), 7 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  38. Miura, T.-H.: Navier–Stokes equations in a curved thin domain, part I: uniform estimates for the stokes operator. J. Math. Sci. Univ. Tokyo 29(2), 149–256 (2022)

    MathSciNet  Google Scholar 

  39. Moise, I., Temam, R., Ziane, M.: Asymptotic analysis of the Navier–Stokes equations in thin domains. Topol. Methods Nonlinear Anal. 10(2), 249–282 (1997). (Dedicated to Olga Ladyzhenskaya)

    Article  MathSciNet  Google Scholar 

  40. Montgomery-Smith, S.: Global regularity of the Navier–Stokes equation on thin three-dimensional domains with periodic boundary conditions. Electron. J. Differ. Equ. pages No. 11, 19 (1999)

  41. Nagasawa, T.: Construction of weak solutions of the Navier–Stokes equations on Riemannian manifold by minimizing variational functionals. Adv. Math. Sci. Appl. 9(1), 51–71 (1999)

    MathSciNet  Google Scholar 

  42. Nazarov, S.A.: Asymptotic solution of the Navier–Stokes problem on the flow of a thin layer of fluid. Sibirsk. Mat. Zh. 31(2), 131–144 (1990)

    MathSciNet  Google Scholar 

  43. Nazarov, S.A.: The Navier–Stokes problem in thin or long tubes with periodically varying cross-sections. ZAMM Z. Angew. Math. Mech. 80(9), 591–612 (2000)

    Article  MathSciNet  Google Scholar 

  44. Nazarov, S.A., Piletskas, K.I.: The Reynolds flow of a fluid in a thin three-dimensional channel. Litovsk. Mat. Sb. 30(4), 772–783 (1990)

    MathSciNet  Google Scholar 

  45. Ockendon, H., Ockendon, J.R.: Viscous Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  46. Olshanskii, M.A., Reusken, A., Zhiliakov, A.: Tangential Navier–Stokes equations on evolving surfaces: analysis and simulations. Math. Models Methods Appl. Sci. 32(14), 2817–2852 (2022)

    Article  MathSciNet  Google Scholar 

  47. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (1987)

    Book  Google Scholar 

  48. Petersen, P.: Riemannian Geometry, Graduate Texts in Mathematics, vol. 171, 3rd edn. Springer, Cham (2016)

    Book  Google Scholar 

  49. Pierfelice, V.: The incompressible Navier–Stokes equations on non-compact manifolds. J. Geom. Anal. 27(1), 577–617 (2017)

    Article  MathSciNet  Google Scholar 

  50. Priebe, V.: Solvability of the Navier–Stokes equations on manifolds with boundary. Manuscripta Math. 83(2), 145–159 (1994)

    Article  MathSciNet  Google Scholar 

  51. Prüss, J., Simonett, G., Wilke, M.: On the Navier–Stokes equations on surfaces. J. Evol. Equ. 21(3), 3153–3179 (2021)

    Article  MathSciNet  Google Scholar 

  52. Raugel, G., Sell, G.R.: Navier–Stokes equations in thin \(3\)D domains. III. Existence of a global attractor. In: Turbulence in Fluid Flows, IMA Volume of Mathematics Applications, vol. 55, pp. 137–163. Springer, New York (1993)

  53. Raugel, G., Sell, G.R.: Navier–Stokes equations on thin \(3\)D domains. I. Global attractors and global regularity of solutions. J. Am. Math. Soc. 6(3), 503–568 (1993)

    Google Scholar 

  54. Raugel, G., Sell, G.R.: Navier–Stokes equations on thin \(3\)D domains. II. Global regularity of spatially periodic solutions. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. XI (Paris, 1989–1991), volume 299 of Pitman Research Notes in Mathematics Series, pp. 205–247. Longman Science Technical, Harlow (1994)

  55. Samavaki, M., Tuomela, J.: Navier–Stokes equations on Riemannian manifolds. J. Geom. Phys. 148, 103543 (2020)

    Article  MathSciNet  Google Scholar 

  56. Scriven, L.: Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem. Eng. Sci. 12(2), 98–108 (1960)

    Article  Google Scholar 

  57. Shimizu, Y.: Green’s function for the Laplace–Beltrami operator on surfaces with a non-trivial killing vector field and its application to potential flows. arXiv:1810.09523 (2018)

  58. Slattery, J.C., Sagis, L., Oh, E.-S.: Interfacial Transport Phenomena, 2nd edn. Springer, New York (2007)

    Google Scholar 

  59. Solonnikov, V.A., Ščadilov, V.E.: A certain boundary value problem for the stationary system of Navier–Stokes equations. Trudy Mat. Inst. Steklov. 125, 196–210 (1973). (Boundary value problems of mathematical physics, 8)

    MathSciNet  Google Scholar 

  60. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. V, 2nd edn. Publish or Perish Inc, Wilmington (1979)

    Google Scholar 

  61. Taylor, M.E.: Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17(9–10), 1407–1456 (1992)

    Article  MathSciNet  Google Scholar 

  62. Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence (2001). (Theory and numerical analysis, Reprint of the 1984 edition)

    Google Scholar 

  63. Temam, R., Ziane, M.: Navier–Stokes equations in three-dimensional thin domains with various boundary conditions. Adv. Differ. Equ. 1(4), 499–546 (1996)

    MathSciNet  Google Scholar 

  64. Temam, R., Ziane, M.: Navier–Stokes equations in thin spherical domains. In: Optimization methods in partial differential equations (South Hadley, MA, 1996), Contemporary Mathematics, vol. 209, pp. 281–314. American Mathematical Soceity, Providence (1997)

  65. Torres-Sánchez, A., Millán, D., Arroyo, M.: Modelling fluid deformable surfaces with an emphasis on biological interfaces. J. Fluid Mech. 872, 218–271 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for valuable comments on this work. The work of the author was supported by JSPS KAKENHI Grant Number 23K12993.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsu-Hiko Miura.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by K. Pileckas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, TH. Approximation of a Solution to the Stationary Navier–Stokes Equations in a Curved Thin Domain by a Solution to Thin-Film Limit Equations. J. Math. Fluid Mech. 26, 33 (2024). https://doi.org/10.1007/s00021-024-00870-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-024-00870-7

Keywords

Mathematics Subject Classification

Navigation