Skip to main content
Log in

Allen–Cahn–Navier–Stokes–Voigt Systems with Moving Contact Lines

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider a diffuse interface model for an incompressible binary fluid flow. The model consists of the Navier–Stokes–Voigt equations coupled with the mass-conserving Allen–Cahn equation with Flory–Huggins potential. The resulting system is subject to generalized Navier boundary conditions for the (volume averaged) fluid velocity \({{\textbf {u}}}\) and to a dynamic contact line boundary condition for the order parameter \(\phi \). These boundary conditions account for the moving contact line phenomenon. We establish the existence of a global weak solution which satisfies an energy inequality. A similar result is proven for the Allen–Cahn–Navier–Stokes system. In order to obtain some higher-order regularity (w.r.t. time) we propose the Voigt approximation: in this way we are able to prove the validity of the energy identity and of the strict separation property. Thanks to this property, we can show the uniqueness of quasi-strong solutions, even in dimension three. Regularization in finite time of weak solutions is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Statement.

Data availability is not applicable to this article as no new data were created or analysed in this study.

References

  1. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463–506 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15, 453–480 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Abels, H., Feireisl, E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57, 659–698 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Alberti, S., Dormann, D.: Liquid-liquid phase separation in disease. Ann. Rev. Genet. 53, 171–194 (2019)

    Google Scholar 

  5. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Beirão Da Veiga, H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9, 1079–1114 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Berselli, L.C., Spirito, S.: Suitable weak solutions to the 3D Navier–Stokes equations are constructed with the Voigt approximation. J. Differ. Equ. 262, 3285–3316 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Springer-Verlag, New York (2013)

    MATH  Google Scholar 

  9. Brangwynne, C.P., Tompa, P., Pappu, R.V.: Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015)

    Google Scholar 

  10. Cavaterra, C., Gal, C.G., Grasselli, M., Miranville, A.: Phase-field systems with nonlinear coupling and dynamic boundary conditions. Nonlinear Anal. 72, 2375–2399 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Chen, R., Yang, X., Zhang, H.: Decoupled, energy stable scheme for hydrodynamic Allen–Cahn phase field moving contact line model. J. Comp. Math. 36, 661–681 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Cherfils, L., Feireisl, E., Michálek, M., Miranville, M., Petcu, M., Pražák, D.: The compressible Navier–Stokes–Cahn–Hilliard equations with dynamic boundary conditions. Math. Models Methods Appl. Sci. 29, 2557–2584 (2019)

    MathSciNet  Google Scholar 

  13. Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79, 561–596 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Deugoué, G., Tachim Medjo, T.: Large deviation for a 2D Allen–Cahn–Navier–Stokes model under random influences. Asymptot. Anal. 123, 41–78 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Di Primio, A., Grasselli, M., Scarpa, L.: A stochastic Allen–Cahn–Navier–Stokes system with singular potential, arXiv:2205.10521v2 [math.AP]

  16. Dolgin, E.: What lava lamps and vinaigrette can teach us about cell biology. Nat. 555, 300–302 (2018)

    ADS  Google Scholar 

  17. Dolgin, E.: The shape-shifting blobs that shook up cell biology. Nat. 611, 24–27 (2022)

    ADS  Google Scholar 

  18. Elliott, C.M., Luckhaus, S.: A generalized diffusion equation for phase separation of a multi component mixture with interfacial free energy, IMA Preprint Series # 887, 1991 (1991)

  19. Flandoli, F.: Dissipativity and invariant measures for stochastic Navier–Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 1, 403–423 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Frigeri, S., Gal, C.G., Grasselli, M., Sprekels, J.: Two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with variable viscosity, degenerate mobility and singular potential. Nonlinearity 32, 678–727 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Frigeri, S., Grasselli, M.: Global and trajectories attractors for a nonlocal Cahn–Hilliard–Navier–Stokes system. J. Dynam. Differ. Equ. 24, 827–856 (2012)

    MATH  Google Scholar 

  22. Gal, C.G.: The role of surface diffusion in dynamic boundary conditions: Where do we stand? Milan J. Math. 83, 237–278 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Gal, C.G., Warma, M.: Fractional in Time Semilinear Parabolic Equations and Applications, Mathematics & Applications, 84. Springer, Cham (2020)

    MATH  Google Scholar 

  24. Gal, C.G., Giorgini, A., Grasselli, M.: The nonlocal Cahn-Hilliard equation with singular potential: well-posedness, regularity and strict separation property. J. Differ. Equ. 263, 5253–5297 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 401–436 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Gal, C.G., Grasselli, M.: Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete Contin. Dyn. Syst. 28, 1–39 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Gal, C.G., Grasselli, M., Miranville, A.: Cahn–Hilliard–Navier–Stokes systems with moving contact lines. Calc. Var. Partial. Differ. Equ. 55, 1–47 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Gal, C.G., Grasselli, M., Wu, H.: Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities. Arch. Rational Mech. Anal. 234, 1–56 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Gal, C.G., Tachim Medjo, T.: On a regularized family of models for homogeneous incompressible two-phase flows. J. Nonlinear Sci. 24, 1033–1103 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Gal, C.G., Tachim-Medjo, T.: Regularized family of models for incompressible Cahn–Hilliard two-phase flows. Nonlinear Anal. Real World Appl. 23, 94–122 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Gilardi, G., Miranville, A., Schimperna, G.: On the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions. Commun. Pure Appl. Anal. 8, 881–912 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Giorgini, A.: Well-posedness of the two-dimensional Abels–Garcke–Grün model for two-phase flows with unmatched densities. Calc. Var. Partial. Differ. Equ. 60, 100 (2021)

    MATH  Google Scholar 

  33. Giorgini, A., Grasselli, M., Wu, H.: On the mass-conserving Allen-Cahn approximation for incompressible binary fluids. J. Funct. Anal. 283, 109631 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Giorgini, A., Knopf, P.: Two-phase flows with bulk-surface interaction: thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with dynamic boundary conditions. J. Math. Fluid Mech. 25, 44 (2023)

    MathSciNet  MATH  Google Scholar 

  35. Giorgini, A., Miranville, A., Temam, R.: Uniqueness and regularity for the Navier–Stokes–Cahn–Hilliard system. SIAM J. Math. Anal. 51, 2535–2574 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Grasselli, M., Petzeltová, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential. Z. Anal. Anwend. 25, 51–72 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Grasselli, M., Poiatti, A.: A phase separation model for binary fluids with hereditary viscosity. Math. Methods Appl. Sci. 45, 11031–11066 (2022)

    ADS  MathSciNet  Google Scholar 

  38. Grasselli, M., Poiatti, A.: Multi-component conserved Allen-Cahn equations, Interfaces Free Bound., to appear (2023)

  39. Gurtin, M.E. Polignone., D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6, 815–831 (1996)

  40. Kuberry, P., Larios, A., Rebholz, L.G., Wilson, N.E.: Numerical approximation of the Voigt regularization for incompressible Navier–Stokes and magnetohydrodynamic flows. Comput. Math. Appl. 64, 2647–2662 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Hyman, A.A., Weber, C.A., Jülicher, F.: Liquid–liquid phase separation in biology. Annu. Rev. Cell Develop. Biol. 30, 39–58 (2014)

    Google Scholar 

  42. Layton, W.J., Rebholz, L.G.: On relaxation times in the Navier–Stokes–Voigt model. Int. J. Comput. Fluid Dyn. 27, 184–187 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Levant, B., Ramos, F., Titi, E.S.: On the statistical properties of the 3D incompressible Navier–Stokes–Voigt model. Commun. Math. Sci. 8, 277–293 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Liang, H., Liu, H., Chai, Z., Shi, B.: Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio. Phys. Rev. E 99, 063306 (2019)

    ADS  Google Scholar 

  45. Li, L., Liu, J.G.: Some compactness criteria for weak solutions of time fractional PDEs. SIAM J. Math. Anal. 50, 3963–3995 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Ma, L., Chen, R., Yang, X., Zhang, H.: Numerical approximations for Allen–Cahn type phase field model of two-phase incompressible fluids with moving contact lines. Commun. Comput. Phys. 21, 867–889 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Miranville, A.: The Cahn-Hilliard Equation: Recent Advances and Applications. CBMS-NSF Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia (2019)

  48. Miranville, A., Zelik, S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27, 545–582 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Moerman, P.G., Hohenberg, P.C., Vanden-Eijndenc, E., Brujica, J.: Emulsion patterns in the wake of a liquid–liquid phase separation front. Proc. Natl. Acad. Sci. USA 115, 3599–3604 (2018)

    ADS  Google Scholar 

  50. Mohan, M.T.: On the three dimensional Kelvin–Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evol. Equ. Control Theory 9, 301–339 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Neustupa, J., Nečasová, Š, Kučera, P.: A pressure associated with a weak solution to the Navier–Stokes equations with Navier’s boundary conditions. J. Math. Fluid Mech. 22, 20 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Qian, T., Wang, X.-P., Sheng, P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Rubinstein, J., Sternberg, P.: Nonlocal reaction–diffusion equations and nucleation. IMA J. Appl. Math. 48, 249–264 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Shibata, Y., Shimada, R.: On a generalized resolvent estimate for the Stokes system with Robin boundary condition. J. Math. Soc. Jpn. 59, 469–519 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Tachim Medjo, T.: On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete Contin. Dyn. Syst. 39, 395–430 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Tachim Medjo, T.: On the existence and uniqueness of solution to a stochastic 2D Allen–Cahn–Navier–Stokes model. Stoch. Dyn. 19, 1950007 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Taylor, M.E.: Partial differential equations I, Basic theory, 2nd edition. Applied Mathematical Sciences 115. Springer, New York (2011)

  58. Taylor, M.E.: Partial differential equations III, Nonlinear equations, 2nd edn. Applied Mathematical Sciences 117. Springer, New York (2011)

  59. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for the careful reading of the manuscript and the valuable comments (we refer, in particular, to Corollary 3.10). The second author and the third author have been partially funded by MIUR-PRIN Grant 2020F3NCPX “Mathematics for Industry 4.0 (Math4I4)”, their research is part of the activities of “Dipartimento di Eccellenza 2023–2027”, and they are members of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA), Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian G. Gal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gal, C.G., Grasselli, M. & Poiatti, A. Allen–Cahn–Navier–Stokes–Voigt Systems with Moving Contact Lines. J. Math. Fluid Mech. 25, 89 (2023). https://doi.org/10.1007/s00021-023-00829-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00829-0

Keywords

Navigation