Skip to main content
Log in

Dyadic Models for Fluid Equations: A Survey

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

Over the centuries mathematicians have been challenged by the partial differential equations (PDEs) that describe the motion of fluids in many physical contexts. Important and beautiful results were obtained in the past one hundred years, including the groundbreaking work of Ladyzhenskaya on the Navier–Stokes equations. However crucial questions such as the existence, uniqueness and regularity of the three dimensional Navier–Stokes equations remain open. Partly because of this mathematical challenge and partly motivated by the phenomena of turbulence, insights into the full PDEs have been sought via the study of simpler approximating systems that retain some of the original nonlinear features. One such simpler system is an infinite dimensional coupled set of nonlinear ordinary differential equations referred to a dyadic model. In this survey we provide a brief overview of dyadic models and describe recent results. In particular, we discuss results for certain dyadic models in the context of existence, uniqueness and regularity of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albritton, D., Brué, E., Colombo, M.: Non-uniqueness of Leray solutions of the forced Navier-Stokes equations. Ann. Math. 196, 415–455 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Barbato, D., Flandoli, F., Morandin, F.: Energy dissipation and self-similar solutions for an unforced inviscid dyadic model. Trans. Amer. Math. Soc. 363(4), 1925–1946 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Barbato, D., Flandoli, F., Morandin, F.: Anomalous dissipation in a stochastic inviscid dyadic model. Annals of Applied Probability 21(6), 2424–2446 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Barbato, D., Flandoli, F., Morandin, F.: Uniqueness for a stochastic inviscid dyadic model. Proceedings of the American Mathematical Society 138(7), 2607–2617 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Barbato, D., Morandin, F.: Positive and non-positive solutions for an inviscid dyadic model: well-posedness and regularity. Nonlinear Differential Equations Appl. 20(3), 1105–1123 (2013)

    MathSciNet  MATH  Google Scholar 

  6. D. Barbato and F. Morandin. Stochastic inviscid shell models: well-posedness and anomalous dissipation. Nonlinearity, 26 (7): 1919–1943, 2013

    MathSciNet  MATH  ADS  Google Scholar 

  7. Barbato, D., Morandin, F., Romito, M.: Global regularity for a logarithmically supercritical hyperdissipative dyadic equation. Dynamics of PDE 11(1), 39–52 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Barbato, D., Morandin, F., Romito, M.: Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system. Anal. PDE 7(8), 2009–2027 (2014)

    MathSciNet  MATH  Google Scholar 

  9. D. Barbato, F. Morandin, and M. Romito. Smooth solutions for the dyadic model. Nonlinearity, 24 (11): 3083–3097, 2011

    MathSciNet  MATH  ADS  Google Scholar 

  10. Beekie, R., Buckmaster, T., Vicol, V.: Weak solutions of ideal MHD which do not conserve magnetic helicity. Ann. PDE, (2020) Doi: 10.1007/s40818-020-0076-1

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Bessaih and B. Ferrario. Invariant Gibbs measures of the energy for shell models of turbulence: the inviscid and viscous cases. Nonlinearity, 25(4), 1075–1097, 2012

    MathSciNet  MATH  ADS  Google Scholar 

  12. L.A. Bianchi. Uniqueness for an inviscid stochastic dyadic model on a tree. Electronic Communications in Probability, 18: 1–12, 2013

    MathSciNet  MATH  Google Scholar 

  13. L. Biferale. Shell models of energy cascade in turbulence. Annu. Rev. Fluid Mech., 35: 441468, 2003

    MathSciNet  MATH  Google Scholar 

  14. Bohr, T., Jensen, M.H., Paladin, G., Vulpiani, A.: Dynamical Systems Approach to Turbulence. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  15. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. of Math. 189(1), 101–144 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Cheskidov, A.: Blow-up in finite time for the dyadic model of the Navier-Stokes equations. Trans. Amer. Math. Soc. 360(10), 5101–5120 (2008)

    MathSciNet  MATH  Google Scholar 

  17. A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy. Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity, 21(6), 1233–1252, 2008

    MathSciNet  MATH  Google Scholar 

  18. A. Cheskidov and M. Dai. Discontinuity of weak solutions to the 3D NSE and MHD equations in critical and supercritical spaces. Journal of Mathematical Analysis and Applications, Vol. 481 (2), 123493, 2020

    MathSciNet  MATH  Google Scholar 

  19. Cheskidov, A., Dai, M.: Kolmogorov’s dissipation number and the number of degrees of freedom for the 3D Navier-Stokes equations. Proc. R. Soc. Edinb. Sect. A 149(2), 429–446 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Cheskidov, A., Dai, M.: Norm inflation for generalized Navier-Stokes equations. Indiana Univ. Math. J. 63(3), 869–884 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Cheskidov, A., Friedlander, S.: The vanishing viscosity limit for a dyadic model. Physica D 238, 783–787 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Cheskidov, A., Friedlander, S., Pavlović, N.: Inviscid dyadic model of turbulence: the fixed point and Onsager’s conjecture. J. Math. Phys., 48 (6): 065503, (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  23. A. Cheskidov, S. Friedlander, and N. Pavlović. An inviscid dyadic model of turbulence: the global attractor. Discrete Contin. Dyn. Syst., 26 (3): 781–794, 2010

    MathSciNet  MATH  Google Scholar 

  24. A. Cheskidov and X. Luo. Sharp nonuniqueness for the Navier-Stokes equations. Inventiones Mathematicae, Vol. 229: 987–1054, 2022

    MathSciNet  MATH  ADS  Google Scholar 

  25. A. Cheskidov and R. Shvydkoy. A unified approach to regularity problems for the 3D Navier-Stokes and Euler equations: the use of Kolmogorov’s dissipation range. J. Math. Fluid Mech., Vol. 16, Issue 2: 263–273, 2014

    MathSciNet  MATH  ADS  Google Scholar 

  26. A. Cheskidov and R. Shvydkoy. Euler equations and turbulence: analytical approach to intermittency. SIAM J. Math. Anal., 46 (1): 353–374, 2014

    MathSciNet  MATH  Google Scholar 

  27. Cheskidov, A., Zaya, K.: Regularizing effect of the forward energy cascade in the inviscid dyadic model. Proc. Amer. Math. Soc. 144, 73–85 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Constantin, P., Weinan, E., Titi, E.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm. Math. Phys., 165:207–209, (1994)

    MathSciNet  MATH  ADS  Google Scholar 

  29. Constantin, P., Levant, B., Titi, E.: Analytic study of the shell model of turbulence. Physica D 219(2), 120–141 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Dai, M.: Blow-up of a dyadic model with intermittency dependence for the Hall MHD. Physica D 428, 133066 (2021)

    MathSciNet  MATH  Google Scholar 

  31. M. Dai and S. Friedlander. Dyadic models for ideal MHD. Journal of Mathematical Fluid Mechanics, 2021. doi: 10.1007/s00021-021-00640-9

    Article  MATH  Google Scholar 

  32. Dai, M., Friedlander, S.: Uniqueness and non-uniqueness results for dyadic MHD models. Journal of Nonlinear Science (2023). https://doi.org/10.1007/s00332-022-09868-9

    Article  MathSciNet  MATH  Google Scholar 

  33. C. De Lellis, and L. Székelyhidi, Jr. Dissipative continuous Euler flows. Invent. Math., Vol. 193 No. 2: 377–407, 2013

    MathSciNet  MATH  ADS  Google Scholar 

  34. C. De Lellis, and L. Székelyhidi, Jr. Dissipative Euler flows and Onsager’s conjecture. Journal of the European Mathematical Society, 16(7), 1467–1505, 2014

    MathSciNet  MATH  Google Scholar 

  35. De Lellis, C., Székelyhidi, L., Jr.: The Euler equations as a differential inclusion. Ann. of Math. 170(3), 1417–1436 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Desnyansky, V.N., Novikov, E.A.: Evolution of turbulence spectra toward a similarity regime. Izv. Akad. Nauk. SSSR. Fiz. Atmos. Okeana., 10: 127–136, (1974)

    Google Scholar 

  37. E. I. Dinaburg and Y. G. Sinai. A quasi-linear approximation of three-dimensional Navier-Stokes system. Moscow Math. J., 1: 381–388, 2001

    MathSciNet  MATH  Google Scholar 

  38. Escauriaza, L., Seregin, G., Šverák : \(L^{3,\infty }\)-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58(2), 211–250 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics I Fourier analysis and local energy transfer. Phys. D, 78:222–240, (1994)

    MathSciNet  MATH  Google Scholar 

  40. Eyink, G.L., Sreenivasan, K.R.: Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys., 78(1):87, (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  41. N. Filonov. Uniqueness of the Leray-Hopf solution for a dyadic model. Transactions of the American Mathematical Society, Vol. 369 (12): 8663–8684, 2017

    MathSciNet  MATH  Google Scholar 

  42. N. Filonov and P. Khodunov. Non-uniqueness of Leray-Hopf solutions for a dyadic model. St. Petersburg Math. J., Vol. 32: 371–387, 2021

    MathSciNet  MATH  Google Scholar 

  43. S. Friedlander, N. Glatt-Holtz, and V. Vicol. Inviscid limits for a stochastically forced shell model of turbulent flow. Annales de l’Institut henri Poincaré - Probalilités et Statistiques, 52(3), 1217–1247, 2016

    MathSciNet  MATH  ADS  Google Scholar 

  44. S. Friedlander and N. Pavlović. blow-up in a three-dimensional vector model for the Euler equations. Comm. Pure Appl. Math., 57 (6): 705–725, 2004

    MathSciNet  MATH  Google Scholar 

  45. Friedlander, S., Pavlović, N.: Remarks concerning modified Navier-Stokes equations. Discrete Contin. Dyn. Syst. 10(1–2), 269–288 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Frisch, U.: Turbulence: The Legacy of A. N. Kolmogrov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  47. Gledzer, E.B.: System of hydrodynamic type admitting two quadratic integrals of motion. Soviet Phys. Dokl. 18, 216–217 (1973)

    MATH  ADS  Google Scholar 

  48. Gloaguen, C., Léorat, J., Pouquet, A., Grappin, R.: A scalar model for MHD turbulence. Phys. D. Nonlinear Phenom. 17(2), 154–182, (1985)

    MathSciNet  MATH  ADS  Google Scholar 

  49. E. Hopf. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr., 4:213–231, 1951

    MathSciNet  MATH  Google Scholar 

  50. Isett, P.: A Proof of Onsager’s Conjecture. Ann. of Math. 188(3), 1–93 (2018)

    MathSciNet  MATH  Google Scholar 

  51. I. Jeong and D. Li. A blow-up result for dyadic models of the Euler equations. Communications in Mathematical Physics, 337:1027–1034, 2015

    MathSciNet  MATH  ADS  Google Scholar 

  52. H. Jia and V. Šverák. Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal., Vol. 268(12), 3734–3766, 2015

    MathSciNet  MATH  Google Scholar 

  53. Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Physics of Fluids, 15 (2): 21–24, 2003

    MATH  ADS  Google Scholar 

  54. Katz, N., Pavlović, N.: A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation. Geom. Funct. Anal. 12(2), 355–379 (2002)

    MathSciNet  MATH  Google Scholar 

  55. Katz, N., Pavlović, N.: Finite time blow-up for a dyadic model of the Euler equations. Trans. Amer. Math. Soc. 357(2), 695–708 (2005)

    MathSciNet  MATH  Google Scholar 

  56. A. Kiselev and A. Zlatoš. On discrete models of the Euler equation. Int. Math. Res. Not., 38: 2315–2339, 2005

    MathSciNet  MATH  Google Scholar 

  57. Kolmogorov, A.: The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers. C. R. Doklady. Acad. Sci. URSS. N. S., 30:301–305, (1941)

    MathSciNet  Google Scholar 

  58. Ladyzhenskaya, O.A.: A dynamical system generated by the Navier-Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 27: 91–115, 1972. Engl. Transl. J. Sov. Math., 3:458–479, (1975)

  59. Ladyzhenskaya, O.A.: Attractors for semigroups and evolution equatoins. Lezioni Lincei 1988; Cambridge University Press, Cambridge (1991)

  60. Ladyzhenskaya, O.A.: Solution “in the large” of boundary value problems for the Navier-Stokes equations in two space variables. Dokl. Akad. Nauk SSSR, 123:427–429, 1958. English transl., Soviet Phys. Dokl., 3:1128–1131, 1959; and Comm. Pure App. Math., 12:427–433, (1959)

  61. Ladyzhenskaya, O.A.: Uniqueness and smoothness of generalized solutions of Navier-Stokes equations (Russian). Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5: 169–185, (1967)

  62. O.A. Ladyzhenskaya. New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems (Russian). Trudy Mat. Inst. Steklov, 102: 85–104, 1967

    MathSciNet  MATH  Google Scholar 

  63. Ladyzhenskaya, O.A.: Certain nonlinear problems of the theory of continuous media (Russian). In: International Congress of Mathematicians (Moscow, 1966). Moscow: Izdat. “Mir,” pp. 560–573 (1968)

  64. Ladyzhenskaya, O.A.: On nonlinear problems of continuum mechanics. In: International Congress of Mathematicians (Moscow, 1966), Nauka, Moscow, pp. 560–573 (1968)

  65. Ladyzhenskaya, O.A.: On some new equations describing dynamics of incompressible fluids and on global solvability of boundary value problems to these equations. Trudy Steklov’s Math. Institute 102, 85–104 (1967)

    Google Scholar 

  66. Ladyzhenskaya, O.A.: On some modifications of the Navier-Stokes equations for large gradients of the velocities (Russian). Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. LOMI., 7: 126–154, (1968)

    MathSciNet  Google Scholar 

  67. Ladyzhenskaya, O.A.: Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7: 155–177, 1968. English transl., Sem. Math. V.A. Steklov Math. Inst. Leningrad, 7:70–79, (1970)

  68. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Second English ed., revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol.2. New York-London-Paris: Gordon and Breach, Science Publishers, (1969)

  69. Ladyzhenskaya, O.A., Kiselev, A.A.: On the existence and uniqueness of the solution of the non-stationary problem for a viscous incompressible fluid. Izv. Akad. Nauk SSSR Ser. Mat. 21:665–680, 1957; English transl., Amer. Math. Soc. Transl. (2) 24:79–106, (1963)

  70. J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63(1):193–248, 1934

    MathSciNet  MATH  Google Scholar 

  71. J.-L. Lions and G. Prodi. Un théoreme d’existence et unicité dans les équations de Navier-Stokes en dimension 2. C. R. Acad. Sci. Paris, 248:3519–3521, 1959

    MathSciNet  MATH  Google Scholar 

  72. E.N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130–141, 1972

    MathSciNet  MATH  ADS  Google Scholar 

  73. Lvov, V.S., Podivilov, E., Pomyalov, A., Procaccia, I., Vandembroucq, D. (1998) Improved shell model of turbulence, Phys. Rev. E 58, 1811–1822

    MathSciNet  ADS  Google Scholar 

  74. Mailybaev, A.A.: Hidden scale invariance of intermittent turbulence in a shell model. Physical Review Fluids 6, L012601 (2021)

    ADS  Google Scholar 

  75. Mailybaev, A.A.: Shell model intermittency is the hidden self-similarity. Physical Review Fluids 7, 034604 (2022)

    ADS  Google Scholar 

  76. A.A. Mailybaev. Solvable intermittent shell model of turbulence. Communications in Mathematical Physics, 388: 469–478, 2021

    MathSciNet  MATH  ADS  Google Scholar 

  77. J.C. Mattingly, T. Suidan, and E. Vanden-Eijnden. Simple systems with anomalous dissipation and energy cascade. Communications in Mathematical Physics, 276(1), 189–220, 2007

    MathSciNet  MATH  ADS  Google Scholar 

  78. Nečas, J.: Theory of Multipolar Viscous Fluids. Academic Press (1991)

  79. Obukhov, A.M.: Some general properties of equations describing the dynamics of the atmosphere. Izv. Akad. Nauk SSSR Ser. Fiz. Atmosfer. i Okeana, 7:695–704, (1971)

  80. Ohkitani, K., Yamada, M.: Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully-developed model of turbulence. Progr. Theoret. Phys. 81, 329–341 (1989)

    MathSciNet  ADS  Google Scholar 

  81. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento 6:279–287, (1949)

    MathSciNet  ADS  Google Scholar 

  82. Plunian, F., Stepanov, R., Frick, P.: Shell models of magnetohydrodynamic turbulence. Phys. Rep. 523 (2013)

  83. G. Prodi. Un teorema di unicita per el equazioni di Navier-Stokes. Ann. Mat. Pura Appl., 48: 173–182, 1959

    MathSciNet  MATH  Google Scholar 

  84. M. Romito. Uniqueness and blow-up for a stochastic viscous dyadic model. Probability Theory and Related Fields, 158(3–4), 895–924, 2014

    MathSciNet  MATH  Google Scholar 

  85. Serrin, J.: The initial value problem for the Navier-Stokes equations. In: Langer, R. (ed.) Nonlinear Problems, pp. 69–98. The university of Wisconsin Press, Madison (1963)

  86. E.D. Siggia. Model of intermittency in three-dimensional turbulence. Phys. Rev. A, 17: 1166–1176, 1978

    ADS  Google Scholar 

  87. J. Smagorinsky. On the numerical integration of the primitive equations of motion for baroclinic flow in a closed region. Mon. Wea. Rev. 86, 3:457–466, 1958

    ADS  Google Scholar 

  88. J. Smagorinsky. General circulation experiments with the primitive equations, Part I: The basic experiment. Mon. Wea. Rev. 91, 3:99–152, 1963

    ADS  Google Scholar 

  89. Smagorinsky, J.: Some historical remarks on the use of nonlinear viscosities. In: Large eddy simulation of complex engineering and geophysical flows. Cambridge University Press, Cambridge (1993)

  90. E. Tadmor and T. Tao. Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs. Comm. Pure Appl. Math., Vol. 60(10), 1488–1521, 2007

    MathSciNet  MATH  Google Scholar 

  91. Tao, T.: Finite time blow-up for an averaged three-dimensional Navier-Stokes equation. J. Amer. Math. Soc. 29, 601–674 (2016)

    MATH  Google Scholar 

  92. Tao, T.: Finite time blow-up for an averaged three-dimensional Navier-Stokes equation. T. Tao’s blog, http://terrytao.wordpress.com, February 4, (2014)

  93. Tao, T.: Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation. Anal. PDE 2(3) (2009)

  94. Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I. (2018) arXiv:1805.09426

  95. Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II. (2018) arXiv:1805.09440

Download references

Acknowledgements

A. Cheskidov is partially supported by the NSF grant DMS-1909849. M. Dai is partially supported by the NSF grants DMS-1815069 and DMS-2009422, and the AMS Centennial Fellowship. S. Friedlander is partially supported by the NSF grant DMS-1613135. A. Cheskidov and M. Dai are grateful to IAS for its hospitality in 2021–2022. They are also grateful for the hospitality of Princeton University in 2022–2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimi Dai.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by L. Kapitanski.

Dedicated to Olga Aleksandrovna Ladyzhenskaya.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection Ladyzhenskaya Centennial Anniversary edited by Gregory Seregin, Konstantinas Pileckas and Lev Kapitanski.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheskidov, A., Dai, M. & Friedlander, S. Dyadic Models for Fluid Equations: A Survey. J. Math. Fluid Mech. 25, 62 (2023). https://doi.org/10.1007/s00021-023-00799-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00799-3

Keywords

Mathematics Subject Classification

Navigation