Skip to main content
Log in

Global Well-Posedness and Decay Rates for the Three-Dimensional Compressible Phan-Thein–Tanner Model

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the global well-posedness and decay rates of strong solutions for the three-dimensional compressible Phan-Thein–Tanner model. We prove that this set of equations admits a unique global strong solution provided the initial data are close to the constant equilibrium state in \(H^3\)-framework. Moreover, if the initial data belong to \(L^{1}\), the convergence rates of the higher-order spatial derivatives of the solution are obtained by combining the decay estimates for the linearized equations and the Fourier splitting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaes. Academic Press, New York (1985)

    Google Scholar 

  2. Bautista, O., Sánchez, S., Arcos, J.C., Méndez, F.: Lubrication theory for electro-osmotic flow in a slit microchannel with the Phan-Thien and Tanner model. J. Fluid Mech. 722, 496–532 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1. Wiley, New York (1977)

    Google Scholar 

  4. Chen, Y.H., Luo, W., Yao, Z.A.: Blow up and global existence for the periodic Phan-Thein–Tanner model. J. Differ. Equ. 267, 6758–6782 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Chen, Y.H., Luo, W., Zhai, X.P.: Global well-posedness for the Phan-Thein–Tanner model in critical Besov spaceswithout damping. J. Math. Phys. 60, 061503 (2019). https://doi.org/10.1063/1.5094086

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Duan, R.J., Ukai, S., Yang, T., Zhao, H.J.: Optimal convergence rate for compressible Navier–Stokes equations with potential force. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Duan, R.J., Ukai, S., Yang, T., Zhao, H.J.: Optimal \(L^p\!-\!L^q\) convergence rate for the compressible Navier-Stokes equations with potential force. J. Differ. Equ. 238, 220–223 (2007)

    ADS  MATH  Google Scholar 

  8. Fang, D.Y., Hieber, M., Zi, R.Z.: Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters. Math. Ann. 357, 687–709 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Fang, D.Y., Zi, R.Z.: Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J. Math. Anal. 48, 1054–1084 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Fang, D.Y., Zi, R.Z.: Strong solutions of 3D compressible Oldroyd-B fluids. Math. Methods Appl. Sci. 36, 1423–1439 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Fang, D.Y., Zi, R.Z.: Incompressible limit of Oldroyd-B fluids in the whole space. J. Differ. Equ. 256, 2559–2602 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Garduño, I..E., Tamaddon-Jahromi, H..R.., Walters, K., Webster, M..F.: The interpretation of a long-standing rheological flow problem using computational rheology and a PTT constitutive model. J. Non-Newton. Fluid Mech. 233, 27–36 (2016)

    MathSciNet  Google Scholar 

  13. Guillopé, C., Salloum, Z., Talhouk, R.: Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete Contin. Dyn. Syst. Ser. B 14, 1001–1028 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Guillopé, C., Saut, J.C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Guillopé, C., Saut, J.C.: Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér. 24, 369–401 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Guo, Y., Wang, Y.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Hu, X.P., Wang, D.: Local strong solution to the compressible viscoelastic flow with large data. J. Differ. Equ. 249, 1179–1198 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Hu, X.P., Wu, G.C.: Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows. SIAM J. Math. Anal. 45, 2815–2833 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Ju, N.: Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space. Commun. Math. Phys. 251, 365–376 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Lei, Z.: Global existence of classical solutions for some Oldroyd-B model via the incompressible limit. Chin. Ann. Math. 27B, 565–580 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188, 371–398 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Lei, Z., Zhou, Y.: Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM J. Math. Anal. 37, 797–814 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Li, Y., Wei, R.Y., Yao, Z.A.: Optimal decay rates for the compressible viscoelastic flows. J. Math. Phys. 57, 111506 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Lin, F.H., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Matsumura, A.: An Energy Method for the Equations of Motion of Compressible Viscous and Heat-conductiveFluids. University of Wisconsin-Madison MRC Technical Summary Report 2194, pp. 1–16 (1986)

  26. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    MathSciNet  MATH  Google Scholar 

  27. Matsumura, A., Nishida, T.: The initial value problems for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  28. Molinet, L., Talhouk, R.: On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law. Nonlinear Differ. Equ. Appl. 11, 349–359 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Mu, Y., Zhao, G., Chen, A., Wu, X.: Modeling and simulation of three-dimensional extrusion swelling of viscoelastic fluids with PTT, Giesekus and FENE-P constitutive models. Internat. J. Numer. Methods Fluids 72, 846–863 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  31. Oldroyd, J.G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Lond. Ser. A 245, 278–297 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Oliveira, P.J., Pinho, F.T.: Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids. J. Fluid Mech. 387, 271–280 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. 9, 339–418 (1985)

    MathSciNet  Google Scholar 

  34. Qian, J.Z., Zhang, Z.F.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198, 835–868 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Schonbek, M.E.: \(L^2\) decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88, 209–222 (1985)

    MATH  Google Scholar 

  36. Schonbek, M.E., Wiegner, M.: On the decay of higher-order norms of the solutions of Navier–Stokes equations. Proc. Roy. Soc. Edinb. Sect. A 126, 677–685 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Tan, Z., Wang, Y.J.: On hyperbolic-dissipative systems of composite type. J. Differ. Equ. 260, 1091–1125 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Wang, Y.J.: Decay of the Navier–Stokes–Poisson equations. J. Differ. Equ. 253, 273–297 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Wei, R.Y., Li, Y., Yao, Z.A.: Decay of the compressible viscoelastic flows. Commun. Pure Appl. Anal. 15, 1603–1624 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, T., Fang, D.: Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical \(L^p\) framework. SIAM J. Math. Anal. 44, 2266–2288 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Zi, R..Z.: Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete Contin. Dyn. Syst. Ser. A 37, 6437–6470 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Zhou, Z.S., Zhu, C.J., Zi, R.Z.: Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model. J. Differ. Equ. 265, 1259–1278 (2018)

    ADS  MathSciNet  Google Scholar 

  43. Zhu, Y.: Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J. Funct. Anal. 274, 2039–2060 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China(No.11926354, 11971496), Natural Science Foundation of Guangdong Province(No.2019A1515011320, 2021A1515010292), Innovative team project of ordinary universities of Guangdong Province(No.2020KCXTD024), Characteristic innovation projects of ordinary colleges and universities in Guangdong Province (No.2020KTSCX134), The Education Research Platform Project of Guangdong Province(No.2018179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li.

Additional information

Communicated by G. G. Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Analytic Tools

Appendix A. Analytic Tools

We will extensively use the Sobolev interpolation of the Gagliardo-Nirenberg inequality.

Lemma 5.1

Let \(0\le m,\alpha \le l\), then we have

$$\begin{aligned} \Vert \nabla ^{\alpha }f\Vert _{L^{p}}\lesssim \Vert \nabla ^{m}f\Vert _{L^{q}}^{1-\theta }\Vert \nabla ^{l}f\Vert _{L^{r}}^{\theta }. \end{aligned}$$
(5.1)

where \(0\le \theta \le 1\) and \(\alpha \) satisfies

$$\begin{aligned} \frac{\alpha }{3}-\frac{1}{p}=\left( \frac{m}{3}-\frac{1}{q}\right) (1-\theta )+\left( \frac{l}{3}-\frac{1}{r}\right) \theta . \end{aligned}$$
(5.2)

Here when \(p=\infty \) we require that \(0<\theta <1\).

Proof

This can be found in [30, p. 125, Theorem]. \(\square \)

We recall the following commutator estimate:

Lemma 5.2

Let \(m\ge 1\) be an integer and define the commutator

$$\begin{aligned}{}[\nabla ^{m},f]g=\nabla ^{m}(fg)-f\nabla ^{m}g, \end{aligned}$$

then we have

$$\begin{aligned} \Vert [\nabla ^{m},f]g\Vert _{L^{p}}\lesssim \Vert \nabla f\Vert _{L^{p_{1}}}\Vert \nabla ^{m-1}g\Vert _{L^{p_{2}}}+\Vert \nabla ^{m}f\Vert _{L^{p_{3}}}\Vert g\Vert _{L^{p_{4}}}. \end{aligned}$$
(5.3)

and for \(m\ge 0\)

$$\begin{aligned} \Vert \nabla ^{m}(fg)\Vert _{L^{p}}\lesssim \Vert f\Vert _{L^{p_{1}}}\Vert \nabla ^{m}g\Vert _{L^{p_{2}}}+\Vert \nabla ^{m}f\Vert _{L^{p_{3}}}\Vert g\Vert _{L^{p_{4}}}. \end{aligned}$$
(5.4)

where \(p, p_{2}, p_{3}\in (1, \infty )\) and \(\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}+\frac{1}{p_{4}}.\)

Proof

For \(p=p_{2}=p_{3}=2\), it can be proved by using Lemma 5.1. For the general cases, one may refer to [19, Lemma 3.1]. \(\square \)

We should now recall the following elementary but useful inequality.

Lemma 5.3

Assume that \(\Vert \varrho \Vert _{L^{\infty }}\le 1\) and \(p>1\). Let \(g(\varrho )\) be a smooth function of \(\varrho \) with bounded derivatives of any order, then for any integer \(m\ge 1\), we have

$$\begin{aligned} \Vert \nabla ^{m}g(\varrho )\Vert _{L^{p}}\lesssim \Vert \nabla ^{m}\varrho \Vert _{L^{p}}. \end{aligned}$$
(5.5)

Proof

The proof is similar to the proof of Lemma A.2 in [38] and is omitted here. \(\square \)

Lemma 5.4

[6] If \(r_1>1\) and \(r_2\in [0, r_1]\), then it holds that

$$\begin{aligned} \int _{0}^{t} (1+t-s)^{-r_1}(1+s)^{-r_2}ds\le C(r_1,r_2)(1+t)^{-r_2}. \end{aligned}$$
(5.6)

Lemma 5.5

[1] Let \(f\in H^2(\mathbb {R}^{3})\). Then we have

$$\begin{aligned}&\Vert f\Vert _{L^{\infty }}\lesssim \Vert \nabla f\Vert _{L^{2}}^{\frac{1}{2}}\Vert \nabla f\Vert _{H^{1}}^{\frac{1}{2}} \lesssim \Vert \nabla f\Vert _{H^{1}},\\&\Vert f\Vert _{L^{6}}\lesssim \Vert \nabla f\Vert _{L^{2}},\\&\Vert f\Vert _{L^{q}}\lesssim \Vert f\Vert _{H^{1}},\ 2\le q\le 6. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Li, Y. & Yao, Za. Global Well-Posedness and Decay Rates for the Three-Dimensional Compressible Phan-Thein–Tanner Model. J. Math. Fluid Mech. 23, 72 (2021). https://doi.org/10.1007/s00021-021-00599-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00599-7

Keywords

Mathematics Subject Classification

Navigation