Skip to main content
Log in

Analyticity and Gevrey-Class Regularity for the Second-Grade Fluid Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We address the global persistence of analyticity and Gevrey-class regularity of solutions to the two and three-dimensional visco-elastic second-grade fluid equations. We obtain an explicit novel lower bound on the radius of analyticity of the solutions that does not vanish as t → ∞, and which is independent of the Rivlin–Ericksen material parameter α. Applications to the damped incompressible Euler equations are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac S., Métivier G.: Propagation de l’analyticité locale pour les solutions de l’équation d’Euler. Arch. Ration. Mech. Anal. 92(4), 287–296 (1986)

    Article  MATH  Google Scholar 

  2. Babin A.V., Vishik M.I.: Attractors of Evolutionary Equations. North-Holland, Amsterdam (1989)

    Google Scholar 

  3. Bardos C., Benachour S.: Domaine d’analycité des solutions de l’équation d’Euler dans un ouvert de \({\mathbb{R}^n}\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(4), 647–687 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Bardos C., Benachour S., Zerner M.: Analycité des solutions périodiques de l’équation d’Euler en deux dimensions. C. R. Acad. Sci. Paris 282, 995–998 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Bardos C., Titi E.S.: Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations. Discrete Contin. Dyn. Syst. 3(2), 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benachour S.: Analycité des solutions périodiques de l’équation d’Euler en trois dimension. C. R. Acad. Sci. Paris 283, 107–110 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales Scientifiques de l’École Normale Supérieure 14, 209–246 (1981)

    MathSciNet  MATH  Google Scholar 

  8. Brézis H., Gallouet T.: Nonlinear Shrödinger evolution equation. Nonlinear Anal. 4(4), 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao Y., Lunasin E.M., Titi E.S.: Global well-posedness of three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Chemin J.-Y.: Fluides parfaits incompressibles. Astérisque 230, 177 (1995)

    MathSciNet  Google Scholar 

  11. Chemin J.-Y.: Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray. Séminaire et Congrès 9, 99–123 (2004)

    MathSciNet  Google Scholar 

  12. Chemin, J.-Y., Gallagher, I., Paicu, M.: Global regularity for some classes of large solutions to the Navier-Stokes equations. Ann. Math. (accepted)

  13. Cioranescu D., Girault V.: Weak and classical solutions of a family of second-grade fluids. Int. J. Non-Linear Mech. 32(2), 317–335 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Cioranescu, D., Ouazar, E.H.: Existence and uniqueness for fluids of second-grade. In: Nonlinear Partial Differential Equations and Their Applications. Collége de France seminar, vol. VI (Paris, 1982/1983), pp. 178–197. Res. Notes in Math., vol. 109. Pitman, Boston (1984)

  15. Cockburn B., Jones D., Titi E.S.: Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Math. Comput. 66, 1073–1087 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Constantin, P., Foias, C.: Navier–Stokes equations. In: Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)

  17. DiPerna R., Majda A.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108(4), 667–689 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Dunn J.E., Fosdick R.L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second-grade. Arch. Ration. Mech. Anal. 56, 191–252 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferrari A.B., Titi E.S.: Gevrey regularity for nonlinear analytic parabolic equations. Comm. Partial Differ. Equ. 23(1–2), 1–16 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Foias C., Holm D., Titi E.S.: The three dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equations and turbulence theory. J. Dyn. Differ. Equ. 14(1), 1–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Foias, C., Holm, D., Titi, E.S.: The Navier-Stokes-alpha model of fluid turbulence. Advances in nonlinear mathematics and science. Phy. D 152/153, 505–519 (2001)

  22. Foias C., Prodi G.: Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension deux. Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Foias C., Temam R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Galdi G.P., Sequeira A.: Further existence results for classical solutions of the equations of second-grade fluids. Arch. Ration. Mech. Anal. 128, 297–312 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Galdi G.P., Grobbelaar-van Dalsen M., Sauer N.: Existence and uniqueness of classical-solutions of the equations of motion for second-grade fluids. Arch. Ration. Mech. Anal. 124, 221–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ghidaglia J.-M., Temam R.: Regularity of the solutions of second order evolution equations and their attractors. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14(3), 485–511 (1987)

    MathSciNet  MATH  Google Scholar 

  27. Hale J.K., Raugel G.: Regularity, determining modes and Galerkin method. J. Math. Pures Appl. 82(9), 1075–1136 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Henshaw W.D., Kreiss H.-O., Reyna L.G.: Smallest scale estimates for the Navier-Stokes equations for incompressible fluids. Arch. Ration. Mech. Anal. 112(1), 21–44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Iftimie D.: Remarques sur la limite α→ 0 pour les fluides de grade 2. C. R. Acad. Sci. Paris Sér. I Math. 334(1), 83–86 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Jones D., Titi E.S.: Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations. Indiana Math. J. 42, 875–887 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kukavica I.: On the dissipative scale for the Navier-Stokes equation. Indiana Univ. Math. J. 48(3), 1057–1081 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kukavica I., Vicol V.: On the radius of analyticity of solutions to the three-dimensional Euler equations. Proc. Am. Math. Soc. 137, 669–677 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kukavica I., Vicol V.: The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete Contin. Dyn. Syst. Ser. A 29, 285–303 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Larios A., Titi E.S.: On the Higher-Order Global Regularity of the Inviscid Voigt-Regularization of Three-Dimensional Hydrodynamic Models. Discrete Contin. Dyn. Syst. 14, 603–627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lemarié–Rieusset P.G.: Une remarque sur l’analyticité des solutions milds des équations de Navier–Stokes dans R 3. C. R. Acad. Sci. Paris Sér. I Math. 330(3), 183–186 (2000)

    ADS  MATH  Google Scholar 

  36. Levermore C.D., Oliver M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133(2), 321–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Linshiz J.S., Titi E.S.: On the convergence rate of the Euler-α, an inviscid second-grade complex fluid, model to the Euler equations. J. Stat. Phys. 138, 305–332 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. In: Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)

  39. Moise I., Rosa R.: On the regularity of the global attractor of a weakly damped, forced Korteweg-de Vries equation. Adv. Differ. Equ. 2, 257–296 (1997)

    MathSciNet  MATH  Google Scholar 

  40. Moise I., Rosa R., Wang X.: Attractors for non-compact semigroups via energy equations. Nonlinearity 11, 1369–1393 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Ngo, V.S.: Thèse de l’Université Paris-Sud (2009)

  42. Nussbaum R.: Periodic solutions of analytic functional differential equations are analytic. Mich. Math. J. 20, 249–255 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  43. Oliver M., Titi E.S.: Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Schrödinger equation. Indiana Univ. Math. J. 47, 49–73 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Oliver M., Titi E.S.: On the domain of analyticity of solutions of second order analytic nonlinear differential equations. J. Differ. Equ. 174(1), 55–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Paicu, M., Raugel, G., Rekalo, A.: Regularity of the global attractor and finite-dimensional behaviour for the second grade fluid equations. J. Differ. Equ. (accepted)

  46. Paicu, M., Zhang, Z.: Global Regularity for the Navier-Stokes equations with large, slowly varying initial data in the vertical direction. Preprint (2009)

  47. Raugel, G.: Global attractors in partial differential equations. In: Handbook of Dynamical Systems, vol. 2, pp. 885–982. North-Holland, Amsterdam (2002)

  48. Rivlin R.S., Ericksen J.L.: Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MathSciNet  MATH  Google Scholar 

  49. Temam R.: Navier-Stokes Equations, Theory and Numerical Analysis, 3rd edn. North-Holland, Amsterdam (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Paicu.

Additional information

Communicated by S. Friedlander

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paicu, M., Vicol, V. Analyticity and Gevrey-Class Regularity for the Second-Grade Fluid Equations. J. Math. Fluid Mech. 13, 533–555 (2011). https://doi.org/10.1007/s00021-010-0032-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-010-0032-z

Mathematics Subject Classification (2010)

Keywords

Navigation