Skip to main content
Log in

(Strongly-)Dunford–Pettis Operators and Narrow Operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \({{\mathcal {M}}}\) be a semifinite von Neumann algebra. We show that an operator T from the predual \(L_1({{\mathcal {M}}},\tau )\) of \({{\mathcal {M}}}\) into a Banach space X is strongly Dunford–Pettis if and only if \(T\circ i: L_1({{\mathcal {M}}},\tau ) \cap {{\mathcal {M}}}\rightarrow _i L_1({{\mathcal {M}}},\tau ) \rightarrow _T X\) is compact. We also show that for a finite measure space \((A,\Sigma ,\nu )\) and a reflexive Banach space X, a linear bounded operator \(T:L_{1}(\nu ,X)\rightarrow c_0\) is a Dunford–Pettis operator if and only if T is a dominated operator. We also prove that all bounded operators T from \(L_p(0,1)\) into the Schatten–von Neumann r-class \( C_r\) are necessarily narrow whenever \(1\le p<2\), \(1\le r\le p\), which answers a question raised in Huang et al. (Mediterr. J Math 19, 2022). Finally, we show that for a reflexive Banach space X all Dunford–Pettis operators from \(T:L_{1}(\nu ,X)\rightarrow c_0\) are narrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Date availability is not applicable to this article as no new date were created or analyzed in this study.

References

  1. Abasov, N., Pliev, M.: Two definitions of narrow operators on Köthe-Bochner spaces. Arch. Math. 111, 167–176 (2018)

    MathSciNet  Google Scholar 

  2. Abasov, N., Megahed, A.E.M., Pliev, M.: Dominated operators from lattice-normed spaces to sequence Banach lattices. Ann. Func. Anal. 7 (2016)

  3. Abasov, N., Pliev, M.: Dominated orthogonally additive operators in lattice-normed spaces. Adv. Oper. Theory 4, 251–264 (2019)

    MathSciNet  Google Scholar 

  4. Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. AMS, Providence, RI (2002)

    Google Scholar 

  5. Akemann, C.: The dual space of an operator algebra. Trans. Am. Math. Soc. 126, 286–302 (1967)

    MathSciNet  Google Scholar 

  6. Albiac, F., Kalton, N.: Topics in Banach Space Theory, Graduate Texts in Mathematics, vol. 233. Springer, Berlin (2006)

    Google Scholar 

  7. Aliprantis, C., Burkinshaw, O.: Positive Operators, Pure and Applied Mathematics, vol. 119. Academic Press, Orlando, FL (1985)

    Google Scholar 

  8. Arazy, J.: Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces. Integr. Equa. Oper. Theo. 1(4), 453–495 (1978)

    MathSciNet  Google Scholar 

  9. Arazy, J.: Basic sequences, embeddings, and the uniqueness of the symmetric structure in unitary matrix spaces. J. Funct. Anal. 40, 2611–2630 (1981)

    MathSciNet  Google Scholar 

  10. Arazy, J., Lindenstrauss, J.: Some linear topological properties of the spaces \(C_p\) of operators on Hilbert space. Compos. Math. 30, 81–111 (1975)

    Google Scholar 

  11. Astashkin, S., Huang, J., Sukochev, F.: Lack of isomorphic embeddings of symmetric function spaces into operator ideals. J. Funct. Anal. 280(5) (2021). Paper No. 108895, 34 pp

  12. Astashkin, S., Kalton, N., Sukochev, F.: Cesaro mean convergence of martingale differences in rearrangement invaraint spaces. Positivity 12, 387–406 (2008)

    MathSciNet  Google Scholar 

  13. Aydın, A., Emelyanov, E., Erkursun Özcan, N., Marabeh, M.A.A.: Compact-like operators in lattice-normed spaces. Indag. Math. 29, 633–656 (2018)

    MathSciNet  Google Scholar 

  14. Basaeva, E., Kulaev, R., Pliev, M.: On orthogonally additive operators in Köthe-Bochner spaces. Results Math. 76 (2021). article number 20

  15. Bourgain, J.: Dunford-Pettis operators on \(L^1\) and the Radon-Nikodym property. Israel J. Math. 37, 34–47 (1980)

    MathSciNet  Google Scholar 

  16. Castillo, J., Gonzáles, M.: On the Dunford-Pettis property in Banach spaces. Acta Univ. Carolin. Math. Phys. 35, 5–12 (1994)

    MathSciNet  Google Scholar 

  17. Calabuig, J.M., Fernandez-Unzueta, M., Galaz-Fontes, F., Sánchez-Pérez, E.A.: Maximal factorization of operators acting in Köthe-Bochner spaces. J. Geom. Anal. 31, 560–578 (2021)

    MathSciNet  Google Scholar 

  18. Diestel, J.: A survey of results related to the Dunford–Pettis property, Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979), pp. 15–60, Contemp. Math., 2, Amer. Math. Soc., Providence, RI (1980)

  19. Diestel, J.: Sequences and series in Banach spaces. Springer, Berlin (1984)

    Google Scholar 

  20. Diestel, J., Uhl, J.J., Jr.: Vector Measures. AMS, Providence, RI (1977)

    Google Scholar 

  21. Dodds, P., Dodds, T., Sukochev, F.: Banach-Saks properties in symmetric spaces of measurable spaces. Stud. Math. 178, 125–166 (2007)

    Google Scholar 

  22. Dodds, P., de Pagter, B.: Normed Köthe spaces: A non-commutative viewpoint. Indag. Math. 25, 206–249 (2014)

    MathSciNet  Google Scholar 

  23. Dodds, P., de Pagter, B., Sukochev, F.: Sets of uniformly absolutely continuous norm in symmetric spaces of measurable operators. Trans. Am. Math. Soc. 368, 4315–4355 (2016)

    MathSciNet  Google Scholar 

  24. Dzhusoeva, N., Moslehian, M.S., Pliev, M., Popov, M.: Operators taking values in Lebesgue-Bochner spaces. Proc. Am. Math. Soc. 151(8), 3493–3502 (2023)

    MathSciNet  Google Scholar 

  25. Dunford, N., Pettis, B.: Linear operations on summable functions. Trans. Am. Math. Soc. 47, 323–392 (1940)

    MathSciNet  Google Scholar 

  26. Fack, T., Kosaki, H.: Generalized s-numbers of \(\tau \)-measurable operators. Pacific J. Math. 123, 269–300 (1986)

    MathSciNet  Google Scholar 

  27. Grothendieck, A.: Sur les applications linéaires faiblement compactes d’espaces du type \(C(K)\). Canad. J. Math. 5, 129–173 (1953)

    MathSciNet  Google Scholar 

  28. Gretsky, N., Ostroy, J.: Thick and thin market non-atomic exchange economies. Adv. Equilib. Theory Lect. Notes Econ. Math. Syst. No. 244, 107–130 (1985)

    Google Scholar 

  29. Gretsky, N., Ostroy, J.: The compact range property and \(C_0\). Glasgow Math. J. 28, 113–114 (1986)

    MathSciNet  Google Scholar 

  30. Haagerup, U., Rosenthal, H., Sukochev, F.: Banach embedding properties of non-commutative \(L^p\)-spaces. Mem. Am. Math. Soc. 163(776) (2003). vi+68 pp

  31. Holub, J.: A note on Dunford-Pettis operators. Glagow Math. J. 29, 271–273 (1987)

    MathSciNet  Google Scholar 

  32. Holub, J.: The regularity of Dunford-Pettis operators. Proc. Am. Math. Soc. 104, 89–95 (1988)

    MathSciNet  Google Scholar 

  33. Holub, J.: Dunford-Pettis and strongly-Dunford-Pettis operators on \(L_1(\nu )\). Glasgow Math. J. 31, 49–57 (1989)

    MathSciNet  Google Scholar 

  34. Huang, J., Pliev, M., Sukochev, F.: \(\ell _2\)-strictly singular operators on the predual of a hyperfinite von Neumann algebra. Proc. Am. Math. Soc. 150, 1623–1633 (2022)

    Google Scholar 

  35. Huang, J., Pliev, M., Sukochev, F.: On narrow operators from \(L_p\) into operator ideals. Mediterr. J. Math. 19 (2022). Paper No. 208

  36. Huang, J., Pliev, M., Sukochev, F.: A noncommutative Gretsky–Ostroy Theorem and its applications. Proc. Am. Math. Soc. 151(3), 1147–1155 (2023)

    MathSciNet  Google Scholar 

  37. Huang, J., Sadovskaya, O., Sukochev, F.: On Arazy’s problem concerning isomorphic embeddings of ideals of compact operators. Adv. Math. 406 (2022). Paper No. 108530, 21 pp

  38. Kalton, N., Sukochev, F.: Symmetric norms and spaces of operators. J. Reine Angew. Math. 621, 81–121 (2008)

    MathSciNet  Google Scholar 

  39. Kantorovich, L.V.: On a class of functional equations. Dokl. Akad. Nauk SSSR 4, 211–216 (1936)

    Google Scholar 

  40. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Amsterdam (1982)

    Google Scholar 

  41. Krein, S., Petunin, Yu., Semenov, E.: Interpolation of Linear Operators, Translations of Mathematical Monographs, 54. American Mathematical Society, Providence, R.I. (1982)

    Google Scholar 

  42. Kusraev, A.G.: Linear operators in lattice-normed spaces, Trudy Inst. Mat. Sib. Otd. AN SSSR 9, 84–123 (1987). ((In Russian))

    Google Scholar 

  43. Kusraev, A.G.: Dominated Operators. Kluwer Acad. Publ, Dordrecht (2000)

    Google Scholar 

  44. Lin, P.K.: Köthe-Bochner Function Spaces. Birkhäuser, Boston (2004)

    Google Scholar 

  45. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979)

    Google Scholar 

  46. Lord, S., Sukochev, F., Zanin, D.: Singular Traces: Theory and Applications, De Gruyter Studies in Mathematics, vol. 46. De Gruyter, Berlin (2013)

    Google Scholar 

  47. Mykhaylyuk, V., Popov, M., Randrianantoanina, B., Schechtman, G.: Narrow and \(\ell _{2}\)-strictly singular operators from \(L_p\). Israel J. Math. 203, 81–108 (2014)

    MathSciNet  Google Scholar 

  48. Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103–116 (1974)

    MathSciNet  Google Scholar 

  49. Nowak, M.: Continuous linear operators on Orlicz-Bochner spaces. Open Math. 17, 1147–1155 (2019)

    MathSciNet  Google Scholar 

  50. Nowak, M.: Dunford-Pettis operators on the space of Bochner integrable functions. Banach Centre Publ. 95, 353–358 (2011)

    MathSciNet  Google Scholar 

  51. Pliev, M.: Narrow operators on lattice-normed spaces. Cent. Eur. J. Math. 9, 1276–1287 (2011)

    MathSciNet  Google Scholar 

  52. Pliev, M.A., Polat, F., Weber, M.R.: Narrow and \(C\)-compact orthogonally additive operators in lattice-normed spaces. Results Math. 74(4) (2019). article number 157

  53. Pliev, M., Sukochev, F.: The Kalton and Rosenthal type decomposition of operators in Köthe-Bochner spaces. J. Math. Anal. Appl. 494(1), 124594 (2021)

    MathSciNet  Google Scholar 

  54. Popov, M., Randrianantoanina, B.: Narrow operators on function spaces and vector lattices, Studies in Mathematics, vol. 45. De Gruyter, Berlin/Boston

  55. Rosenthal, H.: Convolution by a biased coin, The Altgeld Book, University of Illinois, II (1975/6)

  56. Semenov, E., Sukochev, F.: Sums and intersections of symmetric operators spaces. J. Math. Anal. Appl. 414, 742–755 (2014)

    MathSciNet  Google Scholar 

  57. Sukochev, F.: Non-isomorphism of \(L_p\)-spaces associated with finite and infinite von Neuman algebras. Proc. Am. Math. Soc. 124(5), 1517–1527 (1996)

    Google Scholar 

  58. Talagrand, M.: Pettis integral and measure theory. Mem. Amer. Math. Soc. No. 307, Rhode Island (1984)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for helpful comments, which significantly improves the presentation of the paper.

Funding

J. Huang was supported by the NNSF of China (No. 12031004 and 12301160). M. Pliev was supported by the Ministry of Science and Education of Russian Federation (Grant Number 075-02-2023-939). F. Sukochev’s research was supported by the Australian Research Council (FL170100052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghao Huang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Pliev, M. & Sukochev, F. (Strongly-)Dunford–Pettis Operators and Narrow Operators. Integr. Equ. Oper. Theory 95, 22 (2023). https://doi.org/10.1007/s00020-023-02739-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-023-02739-2

Keywords

Mathematics Subject Classification

Navigation