Skip to main content
Log in

Self-Adjointness, \(\varvec{m}\)-Accretivity, and Separability for Perturbations of Laplacian and Bi-Laplacian on Riemannian Manifolds

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \(\Delta _{A}\) and \(\Delta ^2_{A}\) be the magnetic Laplacian and magnetic bi-Laplacian (with a smooth magnetic field A) on a geodesically complete Riemannian manifold M and let V be a real-valued function on M. We give a sufficient condition for the essential self-adjointness of \(\Delta _{A}+V\) on the space of smooth compactly supported functions on M. Additionally, we provide sufficient conditions for the m-accretivity of the operator sum \(T^{(p)}_{\Delta _{A}}+T^{(p)}_{V}\) and the self-adjointness of \(T^{(2)}_{\Delta ^2_{A}}+T^{(2)}_{V}\), where \(T^{(p)}_{\Delta _{A}}\), \(T^{(p)}_{\Delta ^2_{A}}\), \(T^{(p)}_{V}\) are the “maximal” operators in \(L^p(M)\), \(1<p<\infty \), corresponding to \(\Delta _{A}\), \(\Delta ^2_{A}\), and V. As a consequence of these results, we obtain the separation property for \(\Delta _{A}+V\) in \(L^{p}(M)\) and the same property for \(\Delta ^2_{A}+V\) in \(L^2(M)\). In some results pertaining to \(\Delta ^2_{A}+V\), we assume that the Ricci curvature of M is bounded from below by a (possibly unbounded) non-positive function depending on the distance from a reference point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atia, H.A., Alsaedi, R.S., Ramady, A.: Separation of bi-harmonic differential operators on Riemannian manifolds. Forum Math. 26, 953–966 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandara, L., Saratchandran, H.: Essential self-adjointness of powers of first-order differential operators on non-compact manifolds with low-regularity metrics. J. Funct. Anal. 273, 3719–3758 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bianchi, D., Setti, A.G.: Laplacian cut-offs, porous and fast diffusion on manifolds and other applications. Calc. Var. (2018). https://doi.org/10.1007/s00526-017-1267-9

    MATH  Google Scholar 

  4. Boimatov, KKh: Separability theorems, weighted spaces and their applications. Trudy Mat. Inst. Steklov. 170, 37–76 (1984). (Russian)

    MathSciNet  Google Scholar 

  5. Boimatov, KKh: Coercive estimates and separation for second order elliptic differential equations. Soviet Math. Dokl. 38, 157–160 (1989)

    MathSciNet  Google Scholar 

  6. Braverman, M., Cecchini, S.: Spectral theory of von Neumann algebra valued differential operators over non-compact manifolds. J. Noncommut. Geom. 10, 1589–1609 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Braverman, M., Milatovic, O., Shubin, M.: Essential self-adjointness of Schrödinger type operators on manifolds. Rus. Math. Surveys 57, 641–692 (2002)

    Article  MATH  Google Scholar 

  8. Cordes, H.O.: Self-adjointness of powers of elliptic operators on non-compact manifolds. Math. Ann. 195, 257–272 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics. Springer, Berlin (1987)

    MATH  Google Scholar 

  10. Eichhorn, J.: Global Analysis on Open Manifolds. Nova Science Publishers, New York (2007)

    MATH  Google Scholar 

  11. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics 194. Springer, Berlin (2000)

    Google Scholar 

  12. Everitt, W.N., Giertz, M.: Inequalities and separation for Schrödinger type operators in \(L^2(\mathbb{R}^n)\). Proc. R. Soc. Edinb. Sect. A 79, 257–265 (1977)

    Article  MATH  Google Scholar 

  13. Gaffney, M.: A special Stokes’s theorem for complete Riemannian manifolds. Ann. Math. 60, 140–145 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics 47. American Mathematical Society, Providence, RI; International Press, Boston, MA (2009)

  15. Grummt, R., Kolb, M.: Essential selfadjointness of singular magnetic Schrödinger operators on Riemannian manifolds. J. Math. Anal. Appl. 388, 480–489 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Güneysu, B.: Kato’s inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds. Proc. Am. Math. Soc. 142, 1289–1300 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Güneysu, B.: Sequences of Laplacian cut-off functions. J. Geom. Anal. 26, 171–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Güneysu, B.: Covariant Schrödinger Semigroups on Riemannian Manifolds. Operator Theory: Advances and Applications 264. Birkhäuser, Basel (2017)

    Book  MATH  Google Scholar 

  19. Güneysu, B.: The BMS-conjecture. Ulmer Seminare. Preprint: arXiv:1709.07463 (to appear)

  20. Güneysu, B., Post, O.: Path integrals and the essential self-adjointness of differential operators on noncompact manifolds. Math. Z. 275, 331–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1980)

    MATH  Google Scholar 

  22. Milatovic, O.: On \(m\)-accretivity of perturbed Bochner Laplacian in \(L^p\)-spaces on Riemannian manifolds. Integral Equ. Op. Theory 68, 243–254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Milatovic, O.: Separation property for Schrödinger operators in \(L^p\)-spaces on non-compact manifolds. Complex Var. Elliptic Equ. 58, 853–864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Milatovic, O.: Self-adjointness of perturbed biharmonic operators on Riemannian manifolds. Math. Nachr. 290, 2948–2960 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nguyen, X.D.: Essential self-adjointness and self-adjointness for even order elliptic operators. Proc. R. Soc. Edinb. Sect. A 93, 161–179 (1982)

    Article  MATH  Google Scholar 

  26. Okazawa, N.: On the perturbation of linear operators in Banach and Hilbert spaces. J. Math. Soc. Jpn. 34, 677–701 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Okazawa, N.: An \(L^{p}\) theory for Schrödinger operators with nonnegative potentials. J. Math. Soc. Jpn. 36, 675–688 (1984)

    Article  MATH  Google Scholar 

  28. Prandi, D., Rizzi, L., Seri, M.: Quantum confinement on non-complete Riemannian manifolds. J. Spectr. Theory. Preprint: arxiv:1609.01724 (to appear)

  29. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ognjen Milatovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milatovic, O. Self-Adjointness, \(\varvec{m}\)-Accretivity, and Separability for Perturbations of Laplacian and Bi-Laplacian on Riemannian Manifolds. Integr. Equ. Oper. Theory 90, 22 (2018). https://doi.org/10.1007/s00020-018-2452-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2452-8

Keywords

Mathematics Subject Classification

Navigation