Skip to main content
Log in

A Classification of \({\varvec{n}}\)-Tuples of Commuting Shifts of Finite Multiplicity

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \(\mathbb {V}\) denote an n-tuple of shifts of finite multiplicity, and denote by \({{\mathrm{Ann}}}(\mathbb {V})\) the ideal consisting of polynomials p in n complex variables such that \(p(\mathbb {V})=0\). If \(\mathbb {W}\) on \(\mathfrak {K}\) is another n-tuple of shifts of finite multiplicity, and there is a \(\mathbb {W}\)-invariant subspace \(\mathfrak {K}'\) of finite codimension in \(\mathfrak {K}\) so that \(\mathbb {W}|\mathfrak {K}'\) is similar to \(\mathbb {V}\), then we write \(\mathbb {V}\lesssim \mathbb {W}\). If \(\mathbb {W}\lesssim \mathbb {V}\) as well, then we write \(\mathbb {W}\approx \mathbb {V}\). In the case that \({{\mathrm{Ann}}}(\mathbb {V})\) is a prime ideal we show that the equivalence class of \(\mathbb {V}\) is determined by \({{\mathrm{Ann}}}(\mathbb {V})\) and a positive integer k. More generally, the equivalence class of \(\mathbb {V}\) is determined by \({{\mathrm{Ann}}}(\mathbb {V})\) and an m-tuple of positive integers, where m is the number of irreducible components of the zero set of \({{\mathrm{Ann}}}(\mathbb {V})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahamse, M.B., Douglas, R.G.: A class of subnormal operators related to multiply-connected domains. Adv. Math. 19(1), 106–148 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agler, J., Knese, G., McCarthy, J.E.: Algebraic pairs of isometries. J. Oper. Theory 67(1), 215–236 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Agler, J., McCarthy, J.E.: Distinguished varieties. Acta Math. 194, 133–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahern, P.R., Sarason, D.: On some hypo-Dirichlet algebras of analytic functions. Am. J. Math. 89, 932–941 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bungart, L.: On analytic fiber bundles. I. Holomorphic fiber bundles with infinite dimensional fibers. Topology 7, 55–68 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farkas, H., Kra, I.: Riemann surfaces. In: Axler, S., Gehring, F.W., Ribet, K.A. (eds.) Graduate Texts in Mathematics, vol. 71, 2nd edn. Springer, New York (1992)

  7. Gamelin, T.: Embedding Riemann surfaces in maximal ideal spaces. J. Funct. Anal. 2, 123–146 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gamelin, T., Lumer, G.: Theory of abstract Hardy spaces and the universal Hardy class. Adv. Math. 2, 118–174 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gamelin, T.: Uniform Algebras. Prentice-Hall Inc, Englewood Cliffs (1969)

    MATH  Google Scholar 

  10. Gunning, R.: Lectures on Riemann Surfaces. Princeton Mathematical Notes. Princeton University Press, Princeton (1966)

    MATH  Google Scholar 

  11. Helson, H.: Lectures on Invariant Subspaces. Academic Press, New York (1964)

    MATH  Google Scholar 

  12. Kendig, K.: Elementary Algebraic Geometry. Graduate Texts in Mathematics, vol. 44. Springer, New York (1977)

    Book  MATH  Google Scholar 

  13. Khavinson, S.Y.: Theory of factorization of single-valued analytic functions on compact Riemann surfaces with a boundary. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 44 (1989) no. 4(268) 155–189, 256; translation. Russian Math. Surveys 44(4), 113–156 (1989)

  14. Nagy, B.S., Foias, C., Bercovici, H., Krchy, L.: Harmonic Analysis of Operators on Hilbert Space. Revised and Enlarged Edition. Universitext, 2nd edn. Springer, New York (2010)

    Book  Google Scholar 

  15. Rudin, W.: Analytic functions of class \(H^p\). Trans. Am. Math. Soc. 78, 46–66 (1955)

    MathSciNet  MATH  Google Scholar 

  16. Stout, E.L.: On some algebras of analytic functions on finite open Riemann surfaces. Math. Z. 92, 366–379 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Timko, E.: On polynomial \(n\)-tuples of commuting isometries. J. Oper. Theory 77, 391–420 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tsuji, M.: Potential Theory in Modern Function Theory. Reprinting of the 1959, p. 1975. Chelsea Publishing Co., New York (1959)

    Google Scholar 

  19. Wermer, J.: Analytic disks in maximal ideal spaces. Am. J. Math. 86, 161–170 (1964)

    Article  MathSciNet  Google Scholar 

  20. Wijesooriya, U.: Finite Rank Isopairs. arxiv:1610.02602

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Timko.

Additional information

Partially supported with funding from NSF DMS1362954.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timko, E.J. A Classification of \({\varvec{n}}\)-Tuples of Commuting Shifts of Finite Multiplicity. Integr. Equ. Oper. Theory 90, 24 (2018). https://doi.org/10.1007/s00020-018-2449-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2449-3

Mathematics Subject Classification

Keywords

Navigation