Skip to main content

Advertisement

Log in

RhoC in association with TET2/WDR5 regulates cancer stem cells by epigenetically modifying the expression of pluripotency genes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Emerging evidence illustrates that RhoC has divergent roles in cervical cancer progression where it controls epithelial to mesenchymal transition (EMT), migration, angiogenesis, invasion, tumor growth, and radiation response. Cancer stem cells (CSCs) are the primary cause of recurrence and metastasis and exhibit all of the above phenotypes. It, therefore, becomes imperative to understand if RhoC regulates CSCs in cervical cancer. In this study, cell lines and clinical specimen-based findings demonstrate that RhoC regulates tumor phenotypes such as clonogenicity and anoikis resistance. Accordingly, inhibition of RhoC abrogated these phenotypes. RNA-seq analysis revealed that RhoC over-expression resulted in up-regulation of 27% of the transcriptome. Further, the Infinium MethylationEPIC array showed that RhoC over-expressing cells had a demethylated genome. Studies divulged that RhoC via TET2 signaling regulated the demethylation of the genome. Further investigations comprising ChIP-seq, reporter assays, and mass spectrometry revealed that RhoC associates with WDR5 in the nucleus and regulates the expression of pluripotency genes such as Nanog. Interestingly, clinical specimen-based investigations revealed the existence of a subset of tumor cells marked by RhoC+/Nanog+ expression. Finally, combinatorial inhibition (in vitro) of RhoC and its partners (WDR5 and TET2) resulted in increased sensitization of clinical specimen-derived cells to radiation. These findings collectively reveal a novel role for nuclear RhoC in the epigenetic regulation of Nanog and identify RhoC as a regulator of CSCs. The study nominates RhoC and associated signaling pathways as therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets during and/or analyzed during the current study are available on Annotare 2.0.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  2. Endo D, Todo Y, Okamoto K, Minobe S, Kato H, Nishiyama N (2014) Prognostic factors for patients with cervical cancer treated with concurrent chemoradiotherapy: a retrospective analysis in a Japanese cohort. J Gynecol Oncol 26(1):12–18

    Article  Google Scholar 

  3. Kim TE, Park BJ, Kwack HS, Kwon JY, Kim JH, Yoon SC (2012) Outcomes and prognostic factors of cervical cancer after concurrent chemoradiation. J Obstet Gynaecol Res 38(11):1315–1320

    Article  Google Scholar 

  4. Steinbichler TB, Dudas J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II (2018) Therapy resistance mediated by cancer stem cells. Semin Cancer Biol 53:156–167

    Article  CAS  Google Scholar 

  5. Chang JC (2016) Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 95(1 Suppl 1):S20–S25

    Article  CAS  Google Scholar 

  6. Najafi M, Mortezaee K, Majidpoor J (2019) Cancer stem cell (CSC) resistance drivers. Life Sci 234:116781

    Article  CAS  Google Scholar 

  7. Thomas P, Pranatharthi A, Ross C, Srivastava S (2019) RhoC: a fascinating journey from a cytoskeletal organizer to a cancer stem cell therapeutic target. J Exp Clin Cancer Res 38(1):328

    Article  Google Scholar 

  8. Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 8(4):1087–1092

    Article  CAS  Google Scholar 

  9. Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535

    Article  CAS  Google Scholar 

  10. Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R, Mak TW (2005) RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 19(17):1974–1979

    Article  CAS  Google Scholar 

  11. Pranatharthi A, Thomas P, Udayashankar AH, Bhavani C, Suresh SB, Krishna S, Thatte J, Srikantia N, Ross CR, Srivastava S (2019) RhoC regulates radioresistance via crosstalk of ROCK2 with the DNA repair machinery in cervical cancer. J Exp Clin Cancer Res 38(1):392

    Article  Google Scholar 

  12. Srivastava S, Ramdass B, Nagarajan S, Rehman M, Mukherjee G, Krishna S (2009) Notch1 regulates the functional contribution of RhoC to cervical carcinoma progression. Br J Cancer 102(1):196–205

    Article  Google Scholar 

  13. Ruth MC, Xu Y, Maxwell IH, Ahn NG, Norris DA, Shellman YG (2006) RhoC promotes human melanoma invasion in a PI3K/Akt-dependent pathway. J Invest Dermatol 126(4):862–868

    Article  CAS  Google Scholar 

  14. van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD (2002) Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 19(4):301–311

    Article  Google Scholar 

  15. van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD (2000) RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia 2(5):418–425

    Article  Google Scholar 

  16. Zhao ZH, Tian Y, Yang JP, Zhou J, Chen KS (2015) RhoC, vascular endothelial growth factor and microvascular density in esophageal squamous cell carcinoma. World J Gastroenterol 21(3):905–912

    Article  CAS  Google Scholar 

  17. Islam M, Sharma S, Teknos TN (2014) RhoC regulates cancer stem cells in head and neck squamous cell carcinoma by overexpressing IL-6 and phosphorylation of STAT3. PLoS ONE 9(2):e88527

    Article  Google Scholar 

  18. Rosenthal DT, Zhang J, Bao L, Zhu L, Wu Z, Toy K, Kleer CG, Merajver SD (2012) RhoC impacts the metastatic potential and abundance of breast cancer stem cells. PLoS ONE 7(7):e40979

    Article  CAS  Google Scholar 

  19. Grimberg J, Nawoschik S, Belluscio L, McKee R, Turck A, Eisenberg A (1989) A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res 17(20):8390

    Article  CAS  Google Scholar 

  20. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):W39-49

    Article  CAS  Google Scholar 

  21. Lopez J, Poitevin A, Mendoza-Martinez V, Perez-Plasencia C, Garcia-Carranca A (2012) Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer 12:48

    Article  CAS  Google Scholar 

  22. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101(39):14228–14233

    Article  CAS  Google Scholar 

  23. Lee CH, Yu CC, Wang BY, Chang WW (2015) Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs. Oncotarget 7(2):1215–1226

    Article  Google Scholar 

  24. Sieburg HB, Cho RH, Muller-Sieburg CE (2002) Limiting dilution analysis for estimating the frequency of hematopoietic stem cells: uncertainty and significance. Exp Hematol 30(12):1436–1443

    Article  Google Scholar 

  25. Lim DA (2015) Transcriptional and epigenetic insights from stem cells and developing tissues. Development 142(15):2549–2553

    Article  CAS  Google Scholar 

  26. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12(1):36–47

    Article  CAS  Google Scholar 

  27. Hardy K, Wu F, Tu W, Zafar A, Boulding T, McCuaig R, Sutton CR, Theodoratos A, Rao S (2016) Identification of chromatin accessibility domains in human breast cancer stem cells. Nucleus 7(1):50–67

    Article  CAS  Google Scholar 

  28. Linhoff MW, Garg SK, Mandel G (2015) A high-resolution imaging approach to investigate chromatin architecture in complex tissues. Cell 163(1):246–255

    Article  CAS  Google Scholar 

  29. Fraga MF, Herranz M, Espada J, Ballestar E, Paz MF, Ropero S, Erkek E, Bozdogan O, Peinado H, Niveleau A et al (2004) A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 64(16):5527–5534

    Article  CAS  Google Scholar 

  30. Kamdar S, Isserlin R, Van der Kwast T, Zlotta AR, Bader GD, Fleshner NE, Bapat B (2019) Exploring targets of TET2-mediated methylation reprogramming as potential discriminators of prostate cancer progression. Clin Epigenetics 11(1):54

    Article  Google Scholar 

  31. Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300(4):C723-742

    Article  CAS  Google Scholar 

  32. Punzi S, Balestrieri C, D’Alesio C, Bossi D, Dellino GI, Gatti E, Pruneri G, Criscitiello C, Lovati G, Meliksetyan M et al (2019) WDR5 inhibition halts metastasis dissemination by repressing the mesenchymal phenotype of breast cancer cells. Breast Cancer Res 21(1):123

    Article  Google Scholar 

  33. Chen X, Xie W, Gu P, Cai Q, Wang B, Xie Y, Dong W, He W, Zhong G, Lin T et al (2015) Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation. Sci Rep 5:8293

    Article  CAS  Google Scholar 

  34. Bailey TL (2021) STREME: accurate and versatile sequence motif discovery. Bioinformatics 37:2834–2840

    Article  CAS  Google Scholar 

  35. Tanaka E, Bailey T, Grant CE, Noble WS, Keich U (2011) Improved similarity scores for comparing motifs. Bioinformatics 27(12):1603–1609

    Article  CAS  Google Scholar 

  36. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:169

    Article  Google Scholar 

  37. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48(D1):D498–D503

    CAS  Google Scholar 

  38. Pinto JP, Kalathur RK, Oliveira DV, Barata T, Machado RS, Machado S, Pacheco-Leyva I, Duarte I, Futschik ME (2015) StemChecker: a web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res 43(W1):W72-77

    Article  CAS  Google Scholar 

  39. Hu J, Liu J, Chen A, Lyu J, Ai G, Zeng Q, Sun Y, Chen C, Wang J, Qiu J et al (2016) Ino80 promotes cervical cancer tumorigenesis by activating Nanog expression. Oncotarget 7(44):72250–72262

    Article  Google Scholar 

  40. Zhang X, Yang J, Shi D, Cao Z (2020) TET2 suppresses nasopharyngeal carcinoma progression by inhibiting glycolysis metabolism. Cancer Cell Int 20:363

    Article  CAS  Google Scholar 

  41. Zhang J, Zhou Q, Xie K, Cheng L, Peng S, Xie R, Liu L, Zhang Y, Dong W, Han J et al (2021) Targeting WD repeat domain 5 enhances chemosensitivity and inhibits proliferation and programmed death-ligand 1 expression in bladder cancer. J Exp Clin Cancer Res 40(1):203

    Article  CAS  Google Scholar 

  42. Rycaj K, Tang DG (2014) Cancer stem cells and radioresistance. Int J Radiat Biol 90(8):615–621

    Article  CAS  Google Scholar 

  43. Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS (2013) Cancer stem cells and their role in metastasis. Pharmacol Ther 138(2):285–293

    Article  CAS  Google Scholar 

  44. Yoshida GJ, Saya H (2021) Molecular pathology underlying the robustness of cancer stem cells. Regen Ther 17:38–50

    Article  CAS  Google Scholar 

  45. Turajlic S, Swanton C (2016) Metastasis as an evolutionary process. Science 352(6282):169–175

    Article  CAS  Google Scholar 

  46. Alan JK, Lundquist EA (2013) Mutationally activated Rho GTPases in cancer. Small GTPases 4(3):159–163

    Article  Google Scholar 

  47. Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol 198(3):281–293

    Article  CAS  Google Scholar 

  48. Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 13(7):497–512

    Article  CAS  Google Scholar 

  49. Iiizumi M, Bandyopadhyay S, Pai SK, Watabe M, Hirota S, Hosobe S, Tsukada T, Miura K, Saito K, Furuta E et al (2008) RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer. Cancer Res 68(18):7613–7620

    Article  CAS  Google Scholar 

  50. Ross SE, Bogdanovic O (2019) TET enzymes, DNA demethylation and pluripotency. Biochem Soc Trans 47(3):875–885

    Article  CAS  Google Scholar 

  51. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479

    Article  CAS  Google Scholar 

  52. Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30(7):733–750

    Article  CAS  Google Scholar 

  53. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534

    Article  CAS  Google Scholar 

  54. Su PH, Hsu YW, Huang RL, Chen LY, Chao TK, Liao CC, Chen CW, Wu TI, Mao SP, Balch C et al (2019) TET1 promotes 5hmC-dependent stemness, and inhibits a 5hmC-independent epithelial-mesenchymal transition, in cervical precancerous lesions. Cancer Lett 450:53–62

    Article  CAS  Google Scholar 

  55. Shirai K, Nagae G, Seki M, Kudo Y, Kamio A, Hayashi A, Okabe A, Ota S, Tsutsumi S, Fujita T et al (2021) TET1 upregulation drives cancer cell growth through aberrant enhancer hydroxymethylation of HMGA2 in hepatocellular carcinoma. Cancer Sci 112(7):2855–2869

    Article  CAS  Google Scholar 

  56. Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications - writers that read. EMBO Rep 16(11):1467–1481

    Article  CAS  Google Scholar 

  57. Xu YP, Lv L, Liu Y, Smith MD, Li WC, Tan XM, Cheng M, Li Z, Bovino M, Aube J et al (2019) Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J Clin Invest 129(10):4316–4331

    Article  Google Scholar 

  58. Neilsen BK, Chakraborty B, McCall JL, Frodyma DE, Sleightholm RL, Fisher KW, Lewis RE (2018) WDR5 supports colon cancer cells by promoting methylation of H3K4 and suppressing DNA damage. BMC Cancer 18(1):673

    Article  Google Scholar 

  59. Lu C, Liu Z, Klement JD, Yang D, Merting AD, Poschel D, Albers T, Waller JL, Shi H, Liu K (2021) WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer 9(7):e002624

    Article  Google Scholar 

  60. Zhou Q, Chen X, He H, Peng S, Zhang Y, Zhang J, Cheng L, Liu S, Huang M, Xie R et al (2021) WD repeat domain 5 promotes chemoresistance and Programmed Death-Ligand 1 expression in prostate cancer. Theranostics 11(10):4809–4824

    Article  CAS  Google Scholar 

  61. Sun W, Guo F, Liu M (2018) Up-regulated WDR5 promotes gastric cancer formation by induced cyclin D1 expression. J Cell Biochem 119(4):3304–3316

    Article  CAS  Google Scholar 

  62. Pan G, Thomson JA (2007) Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17(1):42–49

    Article  CAS  Google Scholar 

  63. Fatma H, Siddique HR, Maurya SK (2021) The multiple faces of NANOG in cancer: a therapeutic target to chemosensitize therapy-resistant cancers. Epigenomics 13(23):1885–1900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Science and Technology (DST), India for funding. Pavana Thomas has been awarded a fellowship by the Council for Scientific and Industrial Research (CSIR), India for the course of her PhD. Dr Sweta Srivastava was awarded a travel grant by the Indian Council for Medical Research (ICMR). We would like to thank the Central Imaging and Flow Facility (CIFF) at National Centre for Biological Sciences (NCBS), Bangalore for help with selected flow experiments.

Author information

Authors and Affiliations

Authors

Contributions

PT: concept and design, data acquisition, analysis and interpretation, drafting of the manuscript, final approval. SS: concept and design, data acquisition, analysis and interpretation, drafting of the manuscript, final approval. AHU: sample collection and clinical data analysis, revision of the manuscript, final approval. SD: data acquisition, analysis. LY: data acquisition, analysis. BM: acquisition and interpretation of 2D gel data, final approval. SBS: acquisition and analysis of flow cytometry data. AKM: acquisition and interpretation of 2D gel data. NS: sample collection and clinical data acquisition. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Sweta Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

The study was approved by the Institutional Ethics Committee (IEC) at St. John’s Medical College. The samples were collected with patient consent and all experiments were carried out as per the guidelines.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, P., Srivastava, S., Udayashankara, A.H. et al. RhoC in association with TET2/WDR5 regulates cancer stem cells by epigenetically modifying the expression of pluripotency genes. Cell. Mol. Life Sci. 80, 1 (2023). https://doi.org/10.1007/s00018-022-04645-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04645-z

Keywords

Navigation