Skip to main content

Advertisement

Log in

Hypothalamic inflammation in metabolic disorders and aging

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause–effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu T, Xu Y, Yi CX, Tong Q, Cai D (2021) The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell. https://doi.org/10.1007/s13238-021-00834-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morita-Takemura S, Wanaka A (2019) Blood-to-brain communication in the hypothalamus for energy intake regulation. Neurochem Int 128:135–142. https://doi.org/10.1016/j.neuint.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  3. Lee ML, Matsunaga H, Sugiura Y, Hayasaka T, Yamamoto I, Ishimoto T, Imoto D, Suematsu M, Iijima N, Kimura K, Diano S, Toda C (2021) Prostaglandin in the ventromedial hypothalamus regulates peripheral glucose metabolism. Nat Commun 12:2330. https://doi.org/10.1038/s41467-021-22431-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lam TK, Pocai A, Gutierrez-Juarez R, Obici S, Bryan J, Aguilar-Bryan L, Schwartz GJ, Rossetti L (2005) Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 11:320–327. https://doi.org/10.1038/nm1201

    Article  CAS  PubMed  Google Scholar 

  5. Tonon MC, Lanfray D, Castel H, Vaudry H, Morin F (2013) Hypothalamic glucose-sensing: role of glia-to-neuron signaling. Horm Metab Res 45:955–959. https://doi.org/10.1055/s-0033-1355357

    Article  CAS  PubMed  Google Scholar 

  6. Palkovits M (2003) Hypothalamic regulation of food intake. Ideggyogy Sz 56:288–302

    PubMed  Google Scholar 

  7. Jolicoeur FB, Bouali SM, Fournier A, St-Pierre S (1995) Mapping of hypothalamic sites involved in the effects of NPY on body temperature and food intake. Brain Res Bull 36:125–129. https://doi.org/10.1016/0361-9230(94)00176-2

    Article  CAS  PubMed  Google Scholar 

  8. Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH (2001) The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav 74:683–701. https://doi.org/10.1016/s0031-9384(01)00612-6

    Article  CAS  PubMed  Google Scholar 

  9. Douma LG, Gumz ML (2018) Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med 119:108–114. https://doi.org/10.1016/j.freeradbiomed.2017.11.024

    Article  CAS  PubMed  Google Scholar 

  10. Kim K, Choe HK (2019) Role of hypothalamus in aging and its underlying cellular mechanisms. Mech Ageing Dev 177:74–79. https://doi.org/10.1016/j.mad.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  11. Valdearcos M, Xu AW, Koliwad SK (2015) Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 77:131–160. https://doi.org/10.1146/annurev-physiol-021014-071656

    Article  CAS  PubMed  Google Scholar 

  12. Kumar RB, Aronne LJ (2014) Hypothalamic inflammation: is there evidence for human obesity? Curr Obes Rep 3:242–247. https://doi.org/10.1007/s13679-014-0104-0

    Article  PubMed  Google Scholar 

  13. Timper K, Bruning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10:679–689. https://doi.org/10.1242/dmm.026609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waterson MJ, Horvath TL (2015) Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab 22:962–970. https://doi.org/10.1016/j.cmet.2015.09.026

    Article  CAS  PubMed  Google Scholar 

  15. Freire-Regatillo A, Argente-Arizon P, Argente J, Garcia-Segura LM, Chowen JA (2017) Non-neuronal cells in the hypothalamic adaptation to metabolic signals. Front Endocrinol (Lausanne) 8:51. https://doi.org/10.3389/fendo.2017.00051

    Article  Google Scholar 

  16. Thaler JP, Choi SJ, Schwartz MW, Wisse BE (2010) Hypothalamic inflammation and energy homeostasis: resolving the paradox. Front Neuroendocrinol 31:79–84. https://doi.org/10.1016/j.yfrne.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  17. Mendes NF, Gaspar JM, Lima-Junior JC, Donato J Jr, Velloso LA, Araujo EP (2018) TGF-beta1 down-regulation in the mediobasal hypothalamus attenuates hypothalamic inflammation and protects against diet-induced obesity. Metabolism 85:171–182. https://doi.org/10.1016/j.metabol.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  18. Purkayastha S, Zhang G, Cai D (2011) Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB. Nat Med 17:883–887. https://doi.org/10.1038/nm.2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dorfman MD, Krull JE, Douglass JD, Fasnacht R, Lara-Lince F, Meek TH, Shi X, Damian V, Nguyen HT, Matsen ME, Morton GJ, Thaler JP (2017) Sex differences in microglial CX3CR1 signalling determine obesity susceptibility in mice. Nat Commun 8:14556. https://doi.org/10.1038/ncomms14556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73. https://doi.org/10.1016/j.cell.2008.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Purkayastha S, Zhang H, Zhang G, Ahmed Z, Wang Y, Cai D (2011) Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci USA 108:2939–2944. https://doi.org/10.1073/pnas.1006875108

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meng Q, Cai D (2011) Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J Biol Chem 286:32324–32332. https://doi.org/10.1074/jbc.M111.254417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJ, Velloso LA (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146:4192–4199. https://doi.org/10.1210/en.2004-1520

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D (2017) Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure, and body weight. Cell Metab 25(1091–1102):e1094. https://doi.org/10.1016/j.cmet.2017.04.002

    Article  CAS  Google Scholar 

  25. Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, Li L, Cai D (2014) Obesity- and aging-induced excess of central transforming growth factor-beta potentiates diabetic development via an RNA stress response. Nat Med 20:1001–1008. https://doi.org/10.1038/nm.3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benzler J, Ganjam GK, Legler K, Stohr S, Kruger M, Steger J, Tups A (2013) Acute inhibition of central c-Jun N-terminal kinase restores hypothalamic insulin signalling and alleviates glucose intolerance in diabetic mice. J Neuroendocrinol 25:446–454. https://doi.org/10.1111/jne.12018

    Article  CAS  PubMed  Google Scholar 

  27. Milanski M, Arruda AP, Coope A, Ignacio-Souza LM, Nunez CE, Roman EA, Romanatto T, Pascoal LB, Caricilli AM, Torsoni MA, Prada PO, Saad MJ, Velloso LA (2012) Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61:1455–1462. https://doi.org/10.2337/db11-0390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rahman MH, Bhusal A, Kim JH, Jha MK, Song GJ, Go Y, Jang IS, Lee IK, Suk K (2020) Astrocytic pyruvate dehydrogenase kinase-2 is involved in hypothalamic inflammation in mouse models of diabetes. Nat Commun 11:5906. https://doi.org/10.1038/s41467-020-19576-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schellong K, Melchior K, Ziska T, Ott R, Henrich W, Rancourt RC, Plagemann A (2019) Hypothalamic insulin receptor expression and DNA promoter methylation are sex-specifically altered in adult offspring of high-fat diet (HFD)-overfed mother rats. J Nutr Biochem 67:28–35. https://doi.org/10.1016/j.jnutbio.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  30. Barrand S, Crowley TM, Wood-Bradley RJ, De Jong KA, Armitage JA (2017) Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats. PLoS ONE 12:e0189492. https://doi.org/10.1371/journal.pone.0189492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Noble EE, Kanoski SE (2016) Early life exposure to obesogenic diets and learning and memory dysfunction. Curr Opin Behav Sci 9:7–14. https://doi.org/10.1016/j.cobeha.2015.11.014

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C, Cai D (2017) Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548:52–57. https://doi.org/10.1038/nature23282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D (2013) Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature 497:211–216. https://doi.org/10.1038/nature12143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monti D, Ostan R, Borelli V, Castellani G, Franceschi C (2017) Inflammaging and human longevity in the omics era. Mech Ageing Dev 165:129–138. https://doi.org/10.1016/j.mad.2016.12.008

    Article  PubMed  Google Scholar 

  35. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘garb-aging.’ Trends Endocrinol Metab 28:199–212. https://doi.org/10.1016/j.tem.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  36. Cai D, Khor S (2019) “Hypothalamic microinflammation” paradigm in aging and metabolic diseases. Cell Metab 30:19–35. https://doi.org/10.1016/j.cmet.2019.05.021

    Article  CAS  PubMed  Google Scholar 

  37. Frasca D, Blomberg BB, Paganelli R (2017) Aging, obesity, and inflammatory age-related diseases. Front Immunol 8:1745. https://doi.org/10.3389/fimmu.2017.01745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mobbs CV, Moreno CL, Poplawski M (2013) Metabolic mystery: aging, obesity, diabetes, and the ventromedial hypothalamus. Trends Endocrinol Metab 24:488–494. https://doi.org/10.1016/j.tem.2013.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jais A, Bruning JC (2017) Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest 127:24–32. https://doi.org/10.1172/JCI88878

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschop MH, Schwartz MW (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162. https://doi.org/10.1172/JCI59660

    Article  PubMed  Google Scholar 

  41. Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK (2014) Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124–2138. https://doi.org/10.1016/j.celrep.2014.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Douglass JD, Dorfman MD, Fasnacht R, Shaffer LD, Thaler JP (2017) Astrocyte IKKbeta/NF-kappaB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol Metab 6:366–373. https://doi.org/10.1016/j.molmet.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bottcher M, Muller-Fielitz H, Sundaram SM, Gallet S, Neve V, Shionoya K, Zager A, Quan N, Liu X, Schmidt-Ullrich R, Haenold R, Wenzel J, Blomqvist A, Engblom D, Prevot V, Schwaninger M (2020) NF-kappaB signaling in tanycytes mediates inflammation-induced anorexia. Mol Metab 39:101022. https://doi.org/10.1016/j.molmet.2020.101022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee CH, Kim HJ, Lee YS, Kang GM, Lim HS, Lee SH, Song DK, Kwon O, Hwang I, Son M, Byun K, Sung YH, Kim S, Kim JB, Choi EY, Kim YB, Kim K, Kweon MN, Sohn JW, Kim MS (2018) Hypothalamic macrophage inducible nitric oxide synthase mediates obesity-associated hypothalamic inflammation. Cell Rep 25(934–946):e935. https://doi.org/10.1016/j.celrep.2018.09.070

    Article  CAS  Google Scholar 

  45. Lee CH, Shin SH, Kang GM, Kim S, Kim J, Yu R, Kim MS (2019) Cellular source of hypothalamic macrophage accumulation in diet-induced obesity. J Neuroinflammation 16:221. https://doi.org/10.1186/s12974-019-1607-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee CH, Suk K, Yu R, Kim MS (2020) Cellular contributors to hypothalamic inflammation in obesity. Mol Cells 43:431–437. https://doi.org/10.14348/molcells.2020.0055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morari J, Anhe GF, Nascimento LF, de Moura RF, Razolli D, Solon C, Guadagnini D, Souza G, Mattos AH, Tobar N, Ramos CD, Pascoal VD, Saad MJ, Lopes-Cendes I, Moraes JC, Velloso LA (2014) Fractalkine (CX3CL1) is involved in the early activation of hypothalamic inflammation in experimental obesity. Diabetes 63:3770–3784. https://doi.org/10.2337/db13-1495

    Article  CAS  PubMed  Google Scholar 

  48. Di Pasquale MG (2009) The essentials of essential fatty acids. J Diet Suppl 6:143–161. https://doi.org/10.1080/19390210902861841

    Article  PubMed  Google Scholar 

  49. Calder PC (2015) Functional roles of fatty acids and their effects on human health. JPEN J Parenter Enter Nutr 39:18S-32S. https://doi.org/10.1177/0148607115595980

    Article  Google Scholar 

  50. Kearney J (2010) Food consumption trends and drivers. Philos Trans R Soc Lond B Biol Sci 365:2793–2807. https://doi.org/10.1098/rstb.2010.0149

    Article  PubMed  PubMed Central  Google Scholar 

  51. Alonso-Pedrero L, Ojeda-Rodriguez A, Martinez-Gonzalez MA, Zalba G, Bes-Rastrollo M, Marti A (2020) Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project. Am J Clin Nutr 111:1259–1266. https://doi.org/10.1093/ajcn/nqaa075

    Article  PubMed  Google Scholar 

  52. Nardocci M, Polsky JY, Moubarac JC (2021) Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. Can J Public Health 112:421–429. https://doi.org/10.17269/s41997-020-00429-9

    Article  PubMed  Google Scholar 

  53. Sergi D, Williams LM (2020) Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity. Nutr Rev 78:261–277. https://doi.org/10.1093/nutrit/nuz056

    Article  PubMed  Google Scholar 

  54. Nam KN, Mounier A, Wolfe CM, Fitz NF, Carter AY, Castranio EL, Kamboh HI, Reeves VL, Wang J, Han X, Schug J, Lefterov I, Koldamova R (2017) Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer’s model mice. Sci Rep 7:4307. https://doi.org/10.1038/s41598-017-04412-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu YJ, Wang C, Song G, Zang SS, Liu YX, Li L (2015) Toll-like receptor-2 and -4 are associated with hyperlipidemia. Mol Med Rep 12:8241–8246. https://doi.org/10.3892/mmr.2015.4465

    Article  CAS  PubMed  Google Scholar 

  56. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK, Curi R, Oliveira HC, Carvalheira JB, Bordin S, Saad MJ, Velloso LA (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29:359–370. https://doi.org/10.1523/JNEUROSCI.2760-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Erridge C, Samani NJ (2009) Saturated fatty acids do not directly stimulate toll-like receptor signaling. Arterioscler Thromb Vasc Biol 29:1944–1949. https://doi.org/10.1161/ATVBAHA.109.194050

    Article  CAS  PubMed  Google Scholar 

  58. Sergi D, Morris AC, Kahn DE, McLean FH, Hay EA, Kubitz P, MacKenzie A, Martinoli MG, Drew JE, Williams LM (2020) Palmitic acid triggers inflammatory responses in N42 cultured hypothalamic cells partially via ceramide synthesis but not via TLR4. Nutr Neurosci 23:321–334. https://doi.org/10.1080/1028415X.2018.1501533

    Article  CAS  PubMed  Google Scholar 

  59. Murumalla RK, Gunasekaran MK, Padhan JK, Bencharif K, Gence L, Festy F, Cesari M, Roche R, Hoareau L (2012) Fatty acids do not pay the toll: effect of SFA and PUFA on human adipose tissue and mature adipocytes inflammation. Lipids Health Dis 11:175. https://doi.org/10.1186/1476-511X-11-175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lancaster GI, Langley KG, Berglund NA, Kammoun HL, Reibe S, Estevez E, Weir J, Mellett NA, Pernes G, Conway JRW, Lee MKS, Timpson P, Murphy AJ, Masters SL, Gerondakis S, Bartonicek N, Kaczorowski DC, Dinger ME, Meikle PJ, Bond PJ, Febbraio MA (2018) Evidence that TLR4 Is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 27(1096–1110):e1095. https://doi.org/10.1016/j.cmet.2018.03.014

    Article  CAS  Google Scholar 

  61. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, Ray S, Majumdar SS, Bhattacharya S (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279–1285. https://doi.org/10.1038/nm.2851

    Article  CAS  PubMed  Google Scholar 

  62. Schaeffler A, Gross P, Buettner R, Bollheimer C, Buechler C, Neumeier M, Kopp A, Schoelmerich J, Falk W (2009) Fatty acid-induced induction of toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 126:233–245. https://doi.org/10.1111/j.1365-2567.2008.02892.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Borg ML, Omran SF, Weir J, Meikle PJ, Watt MJ (2012) Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J Physiol 590:4377–4389. https://doi.org/10.1113/jphysiol.2012.233288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. DeLany JP, Windhauser MM, Champagne CM, Bray GA (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72:905–911. https://doi.org/10.1093/ajcn/72.4.905

    Article  CAS  PubMed  Google Scholar 

  65. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, Pennathur S, Baskin DG, Heinecke JW, Woods SC, Schwartz MW, Niswender KD (2009) Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 296:E1003-1012. https://doi.org/10.1152/ajpendo.90377.2008

    Article  CAS  PubMed  Google Scholar 

  66. Cheng L, Yu Y, Szabo A, Wu Y, Wang H, Camer D, Huang XF (2015) Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice. J Nutr Biochem 26:541–548. https://doi.org/10.1016/j.jnutbio.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  67. Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, Grimaldi R, Stahl M, Carvalheira JB, Saad MJ, Velloso LA (2012) Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS ONE 7:e30571. https://doi.org/10.1371/journal.pone.0030571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dragano NRV, Solon C, Ramalho AF, de Moura RF, Razolli DS, Christiansen E, Azevedo C, Ulven T, Velloso LA (2017) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation. J Neuroinflammation 14:91. https://doi.org/10.1186/s12974-017-0869-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Melo HM, Seixas da Silva GDS, Sant’Ana MR, Teixeira CVL, Clarke JR, Miya Coreixas VS, de Melo BC, Fortuna JTS, Forny-Germano L, Ledo JH, Oliveira MS, Figueiredo CP, Pardossi-Piquard R, Checler F, Delgado-Garcia JM, Gruart A, Velloso LA, Balthazar MLF, Cintra DE, Ferreira ST, De Felice FG (2020) Palmitate is increased in the cerebrospinal fluid of humans with obesity and induces memory impairment in mice via pro-inflammatory TNF-alpha. Cell Rep 30(2180–2194):e2188. https://doi.org/10.1016/j.celrep.2020.01.072

    Article  CAS  Google Scholar 

  70. Marwarha G, Claycombe K, Schommer J, Collins D, Ghribi O (2016) Palmitate-induced endoplasmic reticulum stress and subsequent C/EBPalpha homologous protein activation attenuates leptin and Insulin-like growth factor 1 expression in the brain. Cell Signal 28:1789–1805. https://doi.org/10.1016/j.cellsig.2016.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mayer CM, Belsham DD (2010) Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5’ monophosphate-activated protein kinase activation. Endocrinology 151:576–585. https://doi.org/10.1210/en.2009-1122

    Article  CAS  PubMed  Google Scholar 

  72. Heiss CN, Manneras-Holm L, Lee YS, Serrano-Lobo J, Hakansson Gladh A, Seeley RJ, Drucker DJ, Backhed F, Olofsson LE (2021) The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Rep 35:109163. https://doi.org/10.1016/j.celrep.2021.109163

    Article  CAS  PubMed  Google Scholar 

  73. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481. https://doi.org/10.2337/db07-1403

    Article  CAS  PubMed  Google Scholar 

  74. Ferder L, Ferder MD, Inserra F (2010) The role of high-fructose corn syrup in metabolic syndrome and hypertension. Curr Hypertens Rep 12:105–112. https://doi.org/10.1007/s11906-010-0097-3

    Article  CAS  PubMed  Google Scholar 

  75. Stanhope KL (2016) Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci 53:52–67. https://doi.org/10.3109/10408363.2015.1084990

    Article  CAS  PubMed  Google Scholar 

  76. Gao Y, Bielohuby M, Fleming T, Grabner GF, Foppen E, Bernhard W, Guzman-Ruiz M, Layritz C, Legutko B, Zinser E, Garcia-Caceres C, Buijs RM, Woods SC, Kalsbeek A, Seeley RJ, Nawroth PP, Bidlingmaier M, Tschop MH, Yi CX (2017) Dietary sugars, not lipids, drive hypothalamic inflammation. Mol Metab 6:897–908. https://doi.org/10.1016/j.molmet.2017.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu P, Thinschmidt JS, Caballero S, Adamson S, Cole L, Chan-Ling T, Grant MB (2015) Loss of survival factors and activation of inflammatory cascades in brain sympathetic centers in type 1 diabetic mice. Am J Physiol Endocrinol Metab 308:E688-698. https://doi.org/10.1152/ajpendo.00504.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sharma R, Buras E, Terashima T, Serrano F, Massaad CA, Hu L, Bitner B, Inoue T, Chan L, Pautler RG (2010) Hyperglycemia induces oxidative stress and impairs axonal transport rates in mice. PLoS ONE 5:e13463. https://doi.org/10.1371/journal.pone.0013463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jacob RJ, Fan X, Evans ML, Dziura J, Sherwin RS (2002) Brain glucose levels are elevated in chronically hyperglycemic diabetic rats: no evidence for protective adaptation by the blood brain barrier. Metabolism 51:1522–1524. https://doi.org/10.1053/meta.2002.36347

    Article  CAS  PubMed  Google Scholar 

  80. Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, Feldman EL (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16:1738–1748. https://doi.org/10.1096/fj.01-1027com

    Article  CAS  PubMed  Google Scholar 

  81. Li ZG, Zhang W, Grunberger G, Sima AA (2002) Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 946:221–231. https://doi.org/10.1016/s0006-8993(02)02887-1

    Article  CAS  PubMed  Google Scholar 

  82. Rahman MH, Jha MK, Suk K (2016) Evolving insights into the pathophysiology of diabetic neuropathy: implications of malfunctioning glia and discovery of novel therapeutic targets. Curr Pharm Des 22:738–757. https://doi.org/10.2174/1381612822666151204001234

    Article  CAS  PubMed  Google Scholar 

  83. Bhusal A, Lee WH, Suk K (2021) Lipocalin-2 in diabetic complications of the nervous system: physiology, pathology, and beyond. Front Physiol 12:638112. https://doi.org/10.3389/fphys.2021.638112

    Article  PubMed  PubMed Central  Google Scholar 

  84. Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y (2019) From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina (Kaunas). https://doi.org/10.3390/medicina55090546

    Article  PubMed Central  Google Scholar 

  85. Hu P, Thinschmidt JS, Yan Y, Hazra S, Bhatwadekar A, Caballero S, Salazar T, Miyan JA, Li W, Derbenev A, Zsombok A, Tikhonenko M, Dominguez JM 2nd, McGorray SP, Saban DR, Boulton ME, Busik JV, Raizada MK, Chan-Ling T, Grant MB (2013) CNS inflammation and bone marrow neuropathy in type 1 diabetes. Am J Pathol 183:1608–1620. https://doi.org/10.1016/j.ajpath.2013.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klein JP, Hains BC, Craner MJ, Black JA, Waxman SG (2004) Apoptosis of vasopressinergic hypothalamic neurons in chronic diabetes mellitus. Neurobiol Dis 15:221–228. https://doi.org/10.1016/j.nbd.2003.10.009

    Article  CAS  PubMed  Google Scholar 

  87. Patkar OL, Mohamed AZ, Narayanan A, Mardon K, Cowin G, Bhalla R, Stimson DHR, Kassiou M, Beecher K, Belmer A, Alvarez Cooper I, Morgan M, Hume DA, Irvine KM, Bartlett SE, Nasrallah F, Cumming P (2021) A binge high sucrose diet provokes systemic and cerebral inflammation in rats without inducing obesity. Sci Rep 11:11252. https://doi.org/10.1038/s41598-021-90817-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mizuno TM, Lew PS, Spirkina A, Xu Y (2013) Mediation of glucose-induced anorexia by central nervous system interleukin 1 signaling. Behav Brain Res 256:512–519. https://doi.org/10.1016/j.bbr.2013.08.050

    Article  CAS  PubMed  Google Scholar 

  89. Li W, Liu X, Tu Y, Ding D, Yi Q, Sun X, Wang Y, Wang K, Zhu M, Mao J (2020) Dysfunctional Nurr1 promotes high glucose-induced Muller cell activation by up-regulating the NF-kappaB/NLRP3 inflammasome axis. Neuropeptides 82:102057. https://doi.org/10.1016/j.npep.2020.102057

    Article  CAS  PubMed  Google Scholar 

  90. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J, Ling EA, Wang L, Hao A (2012) High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 202:58–68. https://doi.org/10.1016/j.neuroscience.2011.11.062

    Article  CAS  PubMed  Google Scholar 

  91. Quan Y, Jiang CT, Xue B, Zhu SG, Wang X (2011) High glucose stimulates TNFalpha and MCP-1 expression in rat microglia via ROS and NF-kappaB pathways. Acta Pharmacol Sin 32:188–193. https://doi.org/10.1038/aps.2010.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bahniwal M, Little JP, Klegeris A (2017) High glucose enhances neurotoxicity and inflammatory cytokine secretion by stimulated human astrocytes. Curr Alzheimer Res 14:731–741. https://doi.org/10.2174/1567205014666170117104053

    Article  CAS  PubMed  Google Scholar 

  93. Huang L, You J, Yao Y, Xie M (2021) High glucose induces pyroptosis of retinal microglia through NLPR3 inflammasome signaling. Arq Bras Oftalmol 84:67–73. https://doi.org/10.5935/0004-2749.20210010

    Article  PubMed  Google Scholar 

  94. Chen C, Wu S, Hong Z, Chen X, Shan X, Fischbach S, Xiao X (2019) Chronic hyperglycemia regulates microglia polarization through ERK5. Aging (Albany NY) 11:697–706. https://doi.org/10.18632/aging.101770

    Article  CAS  Google Scholar 

  95. Yabu M, Shime H, Hara H, Saito T, Matsumoto M, Seya T, Akazawa T, Inoue N (2011) IL-23-dependent and -independent enhancement pathways of IL-17A production by lactic acid. Int Immunol 23:29–41. https://doi.org/10.1093/intimm/dxq455

    Article  CAS  PubMed  Google Scholar 

  96. Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T, Inoue N (2008) Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol 180:7175–7183. https://doi.org/10.4049/jimmunol.180.11.7175

    Article  CAS  PubMed  Google Scholar 

  97. Newman AB, Sanders JL, Kizer JR, Boudreau RM, Odden MC, Zeki Al Hazzouri A, Arnold AM (2016) Trajectories of function and biomarkers with age: the CHS All Stars Study. Int J Epidemiol 45:1135–1145. https://doi.org/10.1093/ije/dyw092

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bruunsgaard H, Ladelund S, Pedersen AN, Schroll M, Jorgensen T, Pedersen BK (2003) Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clin Exp Immunol 132:24–31. https://doi.org/10.1046/j.1365-2249.2003.02137.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cohen HJ, Pieper CF, Harris T, Rao KM, Currie MS (1997) The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J Gerontol A Biol Sci Med Sci 52:M201-208. https://doi.org/10.1093/gerona/52a.4.m201

    Article  CAS  PubMed  Google Scholar 

  100. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. https://doi.org/10.1038/s41574-018-0059-4

    Article  CAS  PubMed  Google Scholar 

  101. Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA (2014) Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13:273–282. https://doi.org/10.1111/acel.12170

    Article  CAS  PubMed  Google Scholar 

  102. Sadagurski M, Cady G, Miller RA (2017) Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner. Aging Cell 16:652–660. https://doi.org/10.1111/acel.12590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22:75–95. https://doi.org/10.1038/s41580-020-00314-w

    Article  CAS  PubMed  Google Scholar 

  104. Herranz N, Gil J (2018) Mechanisms and functions of cellular senescence. J Clin Invest 128:1238–1246. https://doi.org/10.1172/JCI95148

    Article  PubMed  PubMed Central  Google Scholar 

  105. Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435. https://doi.org/10.1038/nm.4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Khosla S, Farr JN, Tchkonia T, Kirkland JL (2020) The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 16:263–275. https://doi.org/10.1038/s41574-020-0335-y

    Article  CAS  PubMed  Google Scholar 

  107. Lasry A, Ben-Neriah Y (2015) Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol 36:217–228. https://doi.org/10.1016/j.it.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  108. Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, Wang Y, Chen W, Yu X, Wang L, Chen H, Li C, Luo T, Deng H (2020) Elimination of senescent cells by beta-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res 30:574–589. https://doi.org/10.1038/s41422-020-0314-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Franceschi C, Valensin S, Bonafe M, Paolisso G, Yashin AI, Monti D, De Benedictis G (2000) The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 35:879–896. https://doi.org/10.1016/s0531-5565(00)00172-8

    Article  CAS  PubMed  Google Scholar 

  110. Andre C, Guzman-Quevedo O, Rey C, Remus-Borel J, Clark S, Castellanos-Jankiewicz A, Ladeveze E, Leste-Lasserre T, Nadjar A, Abrous DN, Laye S, Cota D (2017) Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation. Diabetes 66:908–919. https://doi.org/10.2337/db16-0586

    Article  CAS  PubMed  Google Scholar 

  111. Kim JD, Yoon NA, Jin S, Diano S (2019) Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metab 30(952–962):e955. https://doi.org/10.1016/j.cmet.2019.08.010

    Article  CAS  Google Scholar 

  112. Balland E, Cowley MA (2017) Short-term high-fat diet increases the presence of astrocytes in the hypothalamus of C57BL6 mice without altering leptin sensitivity. J Neuroendocrinol. https://doi.org/10.1111/jne.12504

    Article  PubMed  Google Scholar 

  113. Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, Gerritse I, Fasnacht R, Barres BA, Thaler JP, Koliwad SK (2017) Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 26(185–197):e183. https://doi.org/10.1016/j.cmet.2017.05.015

    Article  CAS  Google Scholar 

  114. Guillemot-Legris O, Masquelier J, Everard A, Cani PD, Alhouayek M, Muccioli GG (2016) High-fat diet feeding differentially affects the development of inflammation in the central nervous system. J Neuroinflammation 13:206. https://doi.org/10.1186/s12974-016-0666-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baufeld C, Osterloh A, Prokop S, Miller KR, Heppner FL (2016) High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol 132:361–375. https://doi.org/10.1007/s00401-016-1595-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gao Y, Ottaway N, Schriever SC, Legutko B, Garcia-Caceres C, de la Fuente E, Mergen C, Bour S, Thaler JP, Seeley RJ, Filosa J, Stern JE, Perez-Tilve D, Schwartz MW, Tschop MH, Yi CX (2014) Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62:17–25. https://doi.org/10.1002/glia.22580

    Article  PubMed  Google Scholar 

  117. Fioravante M, Bombassaro B, Ramalho AF, de Moura RF, Haddad-Tovolli R, Solon C, Dragano NR, Vettorazzi JF, Gaspar RS, Ropelle ER, Carneiro EM, Morari J, Velloso LA (2019) Hypothalamic expression of the atypical chemokine receptor ACKR2 is involved in the systemic regulation of glucose tolerance. Biochim Biophys Acta Mol Basis Dis 1865:1126–1137. https://doi.org/10.1016/j.bbadis.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  118. Cansell C, Stobbe K, Sanchez C, Le Thuc O, Mosser CA, Ben-Fradj S, Leredde J, Lebeaupin C, Debayle D, Fleuriot L, Brau F, Devaux N, Benani A, Audinat E, Blondeau N, Nahon JL, Rovere C (2021) Dietary fat exacerbates postprandial hypothalamic inflammation involving glial fibrillary acidic protein-positive cells and microglia in male mice. Glia 69:42–60. https://doi.org/10.1002/glia.23882

    Article  CAS  PubMed  Google Scholar 

  119. Dalvi PS, Chalmers JA, Luo V, Han DY, Wellhauser L, Liu Y, Tran DQ, Castel J, Luquet S, Wheeler MB, Belsham DD (2017) High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-alpha on appetite-regulating NPY neurons. Int J Obes (Lond) 41:149–158. https://doi.org/10.1038/ijo.2016.183

    Article  CAS  Google Scholar 

  120. Cazettes F, Cohen JI, Yau PL, Talbot H, Convit A (2011) Obesity-mediated inflammation may damage the brain circuit that regulates food intake. Brain Res 1373:101–109. https://doi.org/10.1016/j.brainres.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  121. Puig J, Blasco G, Daunis IEJ, Molina X, Xifra G, Ricart W, Pedraza S, Fernandez-Aranda F, Fernandez-Real JM (2015) Hypothalamic damage is associated with inflammatory markers and worse cognitive performance in obese subjects. J Clin Endocrinol Metab 100:E276-281. https://doi.org/10.1210/jc.2014-2682

    Article  CAS  PubMed  Google Scholar 

  122. van de Sande-Lee S, Melhorn SJ, Rachid B, Rodovalho S, De-Lima-Junior JC, Campos BM, Pedro T, Beltramini GC, Chaim EA, Pareja JC, Cendes F, Maravilla KR, Schur EA, Velloso LA (2020) Radiologic evidence that hypothalamic gliosis is improved after bariatric surgery in obese women with type 2 diabetes. Int J Obes (Lond) 44:178–185. https://doi.org/10.1038/s41366-019-0399-8

    Article  CAS  Google Scholar 

  123. Schur EA, Melhorn SJ, Oh SK, Lacy JM, Berkseth KE, Guyenet SJ, Sonnen JA, Tyagi V, Rosalynn M, De Leon B, Webb MF, Gonsalves ZT, Fligner CL, Schwartz MW, Maravilla KR (2015) Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity (Silver Spring) 23:2142–2148. https://doi.org/10.1002/oby.21248

    Article  CAS  Google Scholar 

  124. Roth CL, Eslamy H, Werny D, Elfers C, Shaffer ML, Pihoker C, Ojemann J, Dobyns WB (2015) Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity (Silver Spring) 23:1226–1233. https://doi.org/10.1002/oby.21067

    Article  Google Scholar 

  125. Boaz M, Lisy L, Zandman-Goddard G, Wainstein J (2009) The effect of anti-inflammatory (aspirin and/or statin) therapy on body weight in Type 2 diabetic individuals: EAT, a retrospective study. Diabet Med 26:708–713. https://doi.org/10.1111/j.1464-5491.2009.02747.x

    Article  CAS  PubMed  Google Scholar 

  126. Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T, Wunderlich FT, Medzhitov R, Bruning JC (2009) MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10:249–259. https://doi.org/10.1016/j.cmet.2009.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12:14–21. https://doi.org/10.1016/s0959-437x(01)00258-1

    Article  CAS  PubMed  Google Scholar 

  128. Sabio G, Cavanagh-Kyros J, Barrett T, Jung DY, Ko HJ, Ong H, Morel C, Mora A, Reilly J, Kim JK, Davis RJ (2010) Role of the hypothalamic-pituitary-thyroid axis in metabolic regulation by JNK1. Genes Dev 24:256–264. https://doi.org/10.1101/gad.1878510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Belgardt BF, Mauer J, Wunderlich FT, Ernst MB, Pal M, Spohn G, Bronneke HS, Brodesser S, Hampel B, Schauss AC, Bruning JC (2010) Hypothalamic and pituitary c-Jun N-terminal kinase 1 signaling coordinately regulates glucose metabolism. Proc Natl Acad Sci USA 107:6028–6033. https://doi.org/10.1073/pnas.1001796107

    Article  PubMed  PubMed Central  Google Scholar 

  130. Liu H, Du T, Li C, Yang G (2021) STAT3 phosphorylation in central leptin resistance. Nutr Metab (Lond) 18:39. https://doi.org/10.1186/s12986-021-00569-w

    Article  CAS  Google Scholar 

  131. Tsunekawa T, Banno R, Mizoguchi A, Sugiyama M, Tominaga T, Onoue T, Hagiwara D, Ito Y, Iwama S, Goto M, Suga H, Sugimura Y, Arima H (2017) Deficiency of PTP1B attenuates hypothalamic inflammation via activation of the JAK2-STAT3 pathway in microglia. EBioMedicine 16:172–183. https://doi.org/10.1016/j.ebiom.2017.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  132. Plum L, Lin HV, Dutia R, Tanaka J, Aizawa KS, Matsumoto M, Kim AJ, Cawley NX, Paik JH, Loh YP, DePinho RA, Wardlaw SL, Accili D (2009) The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat Med 15:1195–1201. https://doi.org/10.1038/nm.2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, Kim KS, Kim SW, Kim HS, Park JY, Kim YB, Lee KU (2006) Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci 9:901–906. https://doi.org/10.1038/nn1731

    Article  CAS  PubMed  Google Scholar 

  134. Mori H, Inoki K, Munzberg H, Opland D, Faouzi M, Villanueva EC, Ikenoue T, Kwiatkowski D, MacDougald OA, Myers MG Jr, Guan KL (2009) Critical role for hypothalamic mTOR activity in energy balance. Cell Metab 9:362–374. https://doi.org/10.1016/j.cmet.2009.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Andre C, Catania C, Remus-Borel J, Ladeveze E, Leste-Lasserre T, Mazier W, Binder E, Gonzales D, Clark S, Guzman-Quevedo O, Abrous DN, Laye S, Cota D (2018) mTORC1 pathway disruption abrogates the effects of the ciliary neurotrophic factor on energy balance and hypothalamic neuroinflammation. Brain Behav Immun 70:325–334. https://doi.org/10.1016/j.bbi.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  136. Cota D (2009) Mammalian target of rapamycin complex 1 (mTORC1) signaling in energy balance and obesity. Physiol Behav 97:520–524. https://doi.org/10.1016/j.physbeh.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  137. Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY (2012) Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75:425–436. https://doi.org/10.1016/j.neuron.2012.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kaszubska W, Falls HD, Schaefer VG, Haasch D, Frost L, Hessler P, Kroeger PE, White DW, Jirousek MR, Trevillyan JM (2002) Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol Cell Endocrinol 195:109–118. https://doi.org/10.1016/s0303-7207(02)00178-8

    Article  CAS  PubMed  Google Scholar 

  139. Wisse BE, Schwartz MW (2009) Does hypothalamic inflammation cause obesity? Cell Metab 10:241–242. https://doi.org/10.1016/j.cmet.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  140. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295. https://doi.org/10.1038/nature05026

    Article  CAS  PubMed  Google Scholar 

  141. Burguera B, Couce ME (2001) Leptin access into the brain: a saturated transport mechanism in obesity. Physiol Behav 74:717–720. https://doi.org/10.1016/s0031-9384(01)00615-1

    Article  CAS  PubMed  Google Scholar 

  142. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV (1996) Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348:159–161. https://doi.org/10.1016/s0140-6736(96)03173-x

    Article  CAS  PubMed  Google Scholar 

  143. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 2:589–593. https://doi.org/10.1038/nm0596-589

    Article  CAS  PubMed  Google Scholar 

  144. Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS (1998) Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1:619–625. https://doi.org/10.1016/s1097-2765(00)80062-3

    Article  CAS  PubMed  Google Scholar 

  145. Myers MG, Cowley MA, Munzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556. https://doi.org/10.1146/annurev.physiol.70.113006.100707

    Article  CAS  PubMed  Google Scholar 

  146. Velloso LA, Schwartz MW (2011) Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond) 35:1455–1465. https://doi.org/10.1038/ijo.2011.56

    Article  CAS  Google Scholar 

  147. Bjorbak C, Lavery HJ, Bates SH, Olson RK, Davis SM, Flier JS, Myers MG Jr (2000) SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem 275:40649–40657. https://doi.org/10.1074/jbc.M007577200

    Article  CAS  PubMed  Google Scholar 

  148. Emilsson V, Arch JR, de Groot RP, Lister CA, Cawthorne MA (1999) Leptin treatment increases suppressors of cytokine signaling in central and peripheral tissues. FEBS Lett 455:170–174. https://doi.org/10.1016/s0014-5793(99)00874-1

    Article  CAS  PubMed  Google Scholar 

  149. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB, Elmquist JK, Tartaglia LA, Kahn BB, Neel BG (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2:489–495. https://doi.org/10.1016/s1534-5807(02)00148-x

    Article  CAS  PubMed  Google Scholar 

  150. Xue B, Pulinilkunnil T, Murano I, Bence KK, He H, Minokoshi Y, Asakura K, Lee A, Haj F, Furukawa N, Catalano KJ, Delibegovic M, Balschi JA, Cinti S, Neel BG, Kahn BB (2009) Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol Cell Biol 29:4563–4573. https://doi.org/10.1128/MCB.01914-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5:566–572. https://doi.org/10.1038/nn0602-861

    Article  CAS  PubMed  Google Scholar 

  152. Hopkins DF, Williams G (1997) Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med 14:1044–1050. https://doi.org/10.1002/(SICI)1096-9136(199712)14:12%3c1044::AID-DIA508%3e3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  153. Young WS 3rd (1986) Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 8:93–97. https://doi.org/10.1016/0143-4179(86)90035-1

    Article  CAS  PubMed  Google Scholar 

  154. Mirshamsi S, Laidlaw HA, Ning K, Anderson E, Burgess LA, Gray A, Sutherland C, Ashford ML (2004) Leptin and insulin stimulation of signalling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and KATP channel activation. BMC Neurosci 5:54. https://doi.org/10.1186/1471-2202-5-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH (2004) The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53:1959–1965. https://doi.org/10.2337/diabetes.53.8.1959

    Article  CAS  PubMed  Google Scholar 

  156. Benedict C, Kern W, Schultes B, Born J, Hallschmid M (2008) Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab 93:1339–1344. https://doi.org/10.1210/jc.2007-2606

    Article  CAS  PubMed  Google Scholar 

  157. Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382. https://doi.org/10.1038/nm1202-798

    Article  CAS  PubMed  Google Scholar 

  158. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125. https://doi.org/10.1126/science.289.5487.2122

    Article  CAS  PubMed  Google Scholar 

  159. Chan O, Sherwin RS (2012) Hypothalamic regulation of glucose-stimulated insulin secretion. Diabetes 61:564–565. https://doi.org/10.2337/db11-1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Osundiji MA, Lam DD, Shaw J, Yueh CY, Markkula SP, Hurst P, Colliva C, Roda A, Heisler LK, Evans ML (2012) Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion. Diabetes 61:321–328. https://doi.org/10.2337/db11-1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pozo M, Claret M (2018) Hypothalamic control of systemic glucose homeostasis: the pancreas connection. Trends Endocrinol Metab 29:581–594. https://doi.org/10.1016/j.tem.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  162. Arruda AP, Milanski M, Coope A, Torsoni AS, Ropelle E, Carvalho DP, Carvalheira JB, Velloso LA (2011) Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology 152:1314–1326. https://doi.org/10.1210/en.2010-0659

    Article  CAS  PubMed  Google Scholar 

  163. Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, Lefevre AL, Cruciani-Guglielmacci C, Magnan C, Yu F, Niswender K, Irani BG, Holland WL, Clegg DJ (2009) Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 119:2577–2589. https://doi.org/10.1172/JCI36714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB (2008) Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 283:14230–14241. https://doi.org/10.1074/jbc.M800061200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 274:30059–30065. https://doi.org/10.1074/jbc.274.42.30059

    Article  CAS  PubMed  Google Scholar 

  166. Burgos-Ramos E, Chowen JA, Arilla-Ferreiro E, Canelles S, Argente J, Barrios V (2011) Chronic central leptin infusion modifies the response to acute central insulin injection by reducing the interaction of the insulin receptor with IRS2 and increasing its association with SOCS3. J Neurochem 117:175–185. https://doi.org/10.1111/j.1471-4159.2011.07191.x

    Article  CAS  PubMed  Google Scholar 

  167. Benomar Y, Roy AF, Aubourg A, Djiane J, Taouis M (2005) Cross down-regulation of leptin and insulin receptor expression and signalling in a human neuronal cell line. Biochem J 388:929–939. https://doi.org/10.1042/BJ20041621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445. https://doi.org/10.1146/annurev-immunol-031210-101322

    Article  CAS  PubMed  Google Scholar 

  169. Kwon O, Kim KW, Kim MS (2016) Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci 73:1457–1477. https://doi.org/10.1007/s00018-016-2133-1

    Article  CAS  PubMed  Google Scholar 

  170. Souza GF, Solon C, Nascimento LF, De-Lima-Junior JC, Nogueira G, Moura R, Rocha GZ, Fioravante M, Bobbo V, Morari J, Razolli D, Araujo EP, Velloso LA (2016) Defective regulation of POMC precedes hypothalamic inflammation in diet-induced obesity. Sci Rep 6:29290. https://doi.org/10.1038/srep29290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Buckman LB, Thompson MM, Lippert RN, Blackwell TS, Yull FE, Ellacott KL (2015) Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice. Mol Metab 4:58–63. https://doi.org/10.1016/j.molmet.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  172. Berkseth KE, Guyenet SJ, Melhorn SJ, Lee D, Thaler JP, Schur EA, Schwartz MW (2014) Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study. Endocrinology 155:2858–2867. https://doi.org/10.1210/en.2014-1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang X, Ge A, Cheng M, Guo F, Zhao M, Zhou X, Liu L, Yang N (2012) Increased hypothalamic inflammation associated with the susceptibility to obesity in rats exposed to high-fat diet. Exp Diabetes Res 2012:847246. https://doi.org/10.1155/2012/847246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Harrison L, Pfuhlmann K, Schriever SC, Pfluger PT (2019) Profound weight loss induces reactive astrogliosis in the arcuate nucleus of obese mice. Mol Metab 24:149–155. https://doi.org/10.1016/j.molmet.2019.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, Gerritse I, Fasnacht R, Barres BA, Thaler JP, Koliwad SK (2018) Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 27:1356. https://doi.org/10.1016/j.cmet.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  176. Buckman LB, Hasty AH, Flaherty DK, Buckman CT, Thompson MM, Matlock BK, Weller K, Ellacott KL (2014) Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun 35:33–42. https://doi.org/10.1016/j.bbi.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  177. Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, Thal DR, Charo IF, Heppner FL, Aguzzi A, Garaschuk O, Ransohoff RM, Jucker M (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci USA 109:18150–18155. https://doi.org/10.1073/pnas.1210150109

    Article  PubMed  PubMed Central  Google Scholar 

  178. Diserbo M, Agin A, Lamproglou I, Mauris J, Staali F, Multon E, Amourette C (2002) Blood-brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can J Physiol Pharmacol 80:670–678. https://doi.org/10.1139/y02-070

    Article  CAS  PubMed  Google Scholar 

  179. Tatsumi K, Isonishi A, Yamasaki M, Kawabe Y, Morita-Takemura S, Nakahara K, Terada Y, Shinjo T, Okuda H, Tanaka T, Wanaka A (2018) Olig2-lineage astrocytes: a distinct subtype of astrocytes that differs from GFAP astrocytes. Front Neuroanat 12:8. https://doi.org/10.3389/fnana.2018.00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Srinivasan R, Lu TY, Chai H, Xu J, Huang BS, Golshani P, Coppola G, Khakh BS (2016) New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron 92:1181–1195. https://doi.org/10.1016/j.neuron.2016.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R, Gotz M (2006) Inducible gene deletion in astroglia and radial glia-a valuable tool for functional and lineage analysis. Glia 54:21–34. https://doi.org/10.1002/glia.20350

    Article  PubMed  Google Scholar 

  182. Kocalis HE, Turney MK, Printz RL, Laryea GN, Muglia LJ, Davies SS, Stanwood GD, McGuinness OP, Niswender KD (2012) Neuron-specific deletion of peroxisome proliferator-activated receptor delta (PPARdelta) in mice leads to increased susceptibility to diet-induced obesity. PLoS ONE 7:e42981. https://doi.org/10.1371/journal.pone.0042981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pamir N, McMillen TS, Kaiyala KJ, Schwartz MW, LeBoeuf RC (2009) Receptors for tumor necrosis factor-alpha play a protective role against obesity and alter adipose tissue macrophage status. Endocrinology 150:4124–4134. https://doi.org/10.1210/en.2009-0137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Garcia MC, Wernstedt I, Berndtsson A, Enge M, Bell M, Hultgren O, Horn M, Ahren B, Enerback S, Ohlsson C, Wallenius V, Jansson JO (2006) Mature-onset obesity in interleukin-1 receptor I knockout mice. Diabetes 55:1205–1213. https://doi.org/10.2337/db05-1304

    Article  CAS  PubMed  Google Scholar 

  185. Chida D, Osaka T, Hashimoto O, Iwakura Y (2006) Combined interleukin-6 and interleukin-1 deficiency causes obesity in young mice. Diabetes 55:971–977. https://doi.org/10.2337/diabetes.55.04.06.db05-1250

    Article  CAS  PubMed  Google Scholar 

  186. Schreyer SA, Chua SC Jr, LeBoeuf RC (1998) Obesity and diabetes in TNF-alpha receptor- deficient mice. J Clin Invest 102:402–411. https://doi.org/10.1172/JCI2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wallenius K, Wallenius V, Sunter D, Dickson SL, Jansson JO (2002) Intracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochem Biophys Res Commun 293:560–565. https://doi.org/10.1016/S0006-291X(02)00230-9

    Article  CAS  PubMed  Google Scholar 

  188. Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8:75–79. https://doi.org/10.1038/nm0102-75

    Article  CAS  PubMed  Google Scholar 

  189. Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, Ferrante AW Jr (2010) Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 120:3466–3479. https://doi.org/10.1172/JCI42845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tang T, Zhang J, Yin J, Staszkiewicz J, Gawronska-Kozak B, Jung DY, Ko HJ, Ong H, Kim JK, Mynatt R, Martin RJ, Keenan M, Gao Z, Ye J (2010) Uncoupling of inflammation and insulin resistance by NF-kappaB in transgenic mice through elevated energy expenditure. J Biol Chem 285:4637–4644. https://doi.org/10.1074/jbc.M109.068007

    Article  CAS  PubMed  Google Scholar 

  191. Harrison L, Schriever SC, Feuchtinger A, Kyriakou E, Baumann P, Pfuhlmann K, Messias AC, Walch A, Tschop MH, Pfluger PT (2019) Fluorescent blood-brain barrier tracing shows intact leptin transport in obese mice. Int J Obes (Lond) 43:1305–1318. https://doi.org/10.1038/s41366-018-0221-z

    Article  CAS  Google Scholar 

  192. Arruda AP, Milanski M, Romanatto T, Solon C, Coope A, Alberici LC, Festuccia WT, Hirabara SM, Ropelle E, Curi R, Carvalheira JB, Vercesi AE, Velloso LA (2010) Hypothalamic actions of tumor necrosis factor alpha provide the thermogenic core for the wastage syndrome in cachexia. Endocrinology 151:683–694. https://doi.org/10.1210/en.2009-0865

    Article  CAS  PubMed  Google Scholar 

  193. Serino R, Ueta Y, Tokunaga M, Hara Y, Nomura M, Kabashima N, Shibuya I, Hattori Y, Yamashita H (1998) Upregulation of hypothalamic nitric oxide synthase gene expression in streptozotocin-induced diabetic rats. Diabetologia 41:640–648. https://doi.org/10.1007/s001250050962

    Article  CAS  PubMed  Google Scholar 

  194. Luo Y, Kaur C, Ling EA (2002) Neuronal and glial response in the rat hypothalamus-neurohypophysis complex with streptozotocin-induced diabetes. Brain Res 925:42–54. https://doi.org/10.1016/s0006-8993(01)03258-9

    Article  CAS  PubMed  Google Scholar 

  195. Rana I, Badoer E, Alahmadi E, Leo CH, Woodman OL, Stebbing MJ (2014) Microglia are selectively activated in endocrine and cardiovascular control centres in streptozotocin-induced diabetic rats. J Neuroendocrinol 26:413–425. https://doi.org/10.1111/jne.12161

    Article  CAS  PubMed  Google Scholar 

  196. Thinschmidt JS, Colon-Perez LM, Febo M, Caballero S, King MA, White FA, Grant MB (2016) Depressed basal hypothalamic neuronal activity in type-1 diabetic mice is correlated with proinflammatory secretion of HMBG1. Neurosci Lett 615:21–27. https://doi.org/10.1016/j.neulet.2016.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Dheen ST, Tay SS, Wong WC (1994) Arginine vasopressin- and oxytocin-like immunoreactive neurons in the hypothalamic paraventricular and supraoptic nuclei of streptozotocin-induced diabetic rats. Arch Histol Cytol 57:461–472. https://doi.org/10.1679/aohc.57.461

    Article  CAS  PubMed  Google Scholar 

  198. Dheen ST, Tay SS, Wong WC (1994) Ultrastructural changes in the hypothalamic paraventricular nucleus of the streptozotocin-induced diabetic rat. Acta Anat (Basel) 149:291–299. https://doi.org/10.1159/000147590

    Article  CAS  Google Scholar 

  199. Cabrera SM, Henschel AM, Hessner MJ (2016) Innate inflammation in type 1 diabetes. Transl Res 167:214–227. https://doi.org/10.1016/j.trsl.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  200. Warncke K, Dressel P, Ziegler AG, Steinborn M, Bonfig W, Burdach S, Engelsberger I (2014) Severe pretreatment cerebral edema in newly diagnosed type 1 diabetes. Horm Res Paediatr 81:285–288. https://doi.org/10.1159/000357140

    Article  CAS  PubMed  Google Scholar 

  201. Gallardo-Moreno GB, Gonzalez-Garrido AA, Gudayol-Ferre E, Guardia-Olmos J (2015) Type 1 diabetes modifies brain activation in young patients while performing visuospatial working memory tasks. J Diabetes Res 2015:703512. https://doi.org/10.1155/2015/703512

    Article  PubMed  PubMed Central  Google Scholar 

  202. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185. https://doi.org/10.1038/nature21363

    Article  CAS  PubMed  Google Scholar 

  203. DeMarco VG, Aroor AR, Sowers JR (2014) The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 10:364–376. https://doi.org/10.1038/nrendo.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li JJ, Fang CH, Hui RT (2005) Is hypertension an inflammatory disease? Med Hypotheses 64:236–240. https://doi.org/10.1016/j.mehy.2004.06.017

    Article  CAS  PubMed  Google Scholar 

  205. Basting T, Xu J, Mukerjee S, Epling J, Fuchs R, Sriramula S, Lazartigues E (2018) Glutamatergic neurons of the paraventricular nucleus are critical contributors to the development of neurogenic hypertension. J Physiol 596:6235–6248. https://doi.org/10.1113/JP276229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346. https://doi.org/10.1038/nrn1902

    Article  CAS  PubMed  Google Scholar 

  207. Dampney RA, Michelini LC, Li DP, Pan HL (2018) Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 315:H1200–H1214. https://doi.org/10.1152/ajpheart.00216.2018

    Article  PubMed  PubMed Central  Google Scholar 

  208. Allen AM (2002) Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 39:275–280. https://doi.org/10.1161/hy0202.104272

    Article  CAS  PubMed  Google Scholar 

  209. Kang YM, Ma Y, Zheng JP, Elks C, Sriramula S, Yang ZM, Francis J (2009) Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc Res 82:503–512. https://doi.org/10.1093/cvr/cvp073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sriramula S, Haque M, Majid DS, Francis J (2008) Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51:1345–1351. https://doi.org/10.1161/HYPERTENSIONAHA.107.102152

    Article  CAS  PubMed  Google Scholar 

  211. Gao HL, Yu XJ, Liu KL, Zuo YY, Fu LY, Chen YM, Zhang DD, Shi XL, Qi J, Li Y, Yi QY, Tian H, Wang XM, Yu JY, Zhu GQ, Liu JJ, Kang KB, Kang YM (2021) Chronic infusion of Astaxanthin into hypothalamic paraventricular nucleus modulates cytokines and attenuates the renin-angiotensin system in spontaneously hypertensive rats. J Cardiovasc Pharmacol 77:170–181. https://doi.org/10.1097/FJC.0000000000000953

    Article  CAS  PubMed  Google Scholar 

  212. Wang FF, Ba J, Yu XJ, Shi XL, Liu JJ, Liu KL, Fu LY, Su Q, Li HB, Kang KB, Yi QY, Wang SQ, Gao HL, Qi J, Li Y, Zhu GQ, Kang YM (2021) Central blockade of E-prostanoid 3 receptor ameliorated hypertension partially by attenuating oxidative stress and inflammation in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Cardiovasc Toxicol 21:286–300. https://doi.org/10.1007/s12012-020-09619-w

    Article  CAS  PubMed  Google Scholar 

  213. Wu Q, Chen Y, Zhang W, Song S, Xu Z, Zhang H, Liu L, Sun J (2020) Upregulation of chemokines in the paraventricular nucleus of the hypothalamus in rats with stress-induced hypertension. Med Sci Monit 26:e926807. https://doi.org/10.12659/MSM.926807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Shi Z, Gan XB, Fan ZD, Zhang F, Zhou YB, Gao XY, De W, Zhu GQ (2011) Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf) 203:289–297. https://doi.org/10.1111/j.1748-1716.2011.02313.x

    Article  CAS  Google Scholar 

  215. Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, Sriramula S, Francis J, Sumners C, Raizada MK (2010) Brain microglial cytokines in neurogenic hypertension. Hypertension 56:297–303. https://doi.org/10.1161/HYPERTENSIONAHA.110.150409

    Article  CAS  PubMed  Google Scholar 

  216. Khor S, Cai D (2017) Hypothalamic and inflammatory basis of hypertension. Clin Sci (Lond) 131:211–223. https://doi.org/10.1042/CS20160001

    Article  Google Scholar 

  217. Carmichael CY, Wainford RD (2015) Hypothalamic signaling mechanisms in hypertension. Curr Hypertens Rep 17:39. https://doi.org/10.1007/s11906-015-0550-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM (2005) Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol 32:419–425. https://doi.org/10.1111/j.1440-1681.2005.04205.x

    Article  CAS  PubMed  Google Scholar 

  219. Yu Y, Zhang ZH, Wei SG, Serrats J, Weiss RM, Felder RB (2010) Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction. Hypertension 55:652–659. https://doi.org/10.1161/HYPERTENSIONAHA.109.142836

    Article  CAS  PubMed  Google Scholar 

  220. Cardinale JP, Sriramula S, Mariappan N, Agarwal D, Francis J (2012) Angiotensin II-induced hypertension is modulated by nuclear factor-kappaBin the paraventricular nucleus. Hypertension 59:113–121. https://doi.org/10.1161/HYPERTENSIONAHA.111.182154

    Article  CAS  PubMed  Google Scholar 

  221. Benigni A, Cassis P, Remuzzi G (2010) Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med 2:247–257. https://doi.org/10.1002/emmm.201000080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE (2016) Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 310:H404-415. https://doi.org/10.1152/ajpheart.00247.2015

    Article  PubMed  Google Scholar 

  223. Woods C, Marques-Lopes J, Contoreggi NH, Milner TA, Pickel VM, Wang G, Glass MJ (2021) Tumor necrosis factor alpha receptor type 1 activation in the hypothalamic paraventricular nucleus contributes to glutamate signaling and angiotensin II-dependent hypertension. J Neurosci 41:1349–1362. https://doi.org/10.1523/JNEUROSCI.2360-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dobrian AD, Davies MJ, Prewitt RL, Lauterio TJ (2000) Development of hypertension in a rat model of diet-induced obesity. Hypertension 35:1009–1015. https://doi.org/10.1161/01.hyp.35.4.1009

    Article  CAS  PubMed  Google Scholar 

  225. Mills E, Kuhn CM, Feinglos MN, Surwit R (1993) Hypertension in CB57BL/6J mouse model of non-insulin-dependent diabetes mellitus. Am J Physiol 264:R73-78. https://doi.org/10.1152/ajpregu.1993.264.1.R73

    Article  CAS  PubMed  Google Scholar 

  226. Duan SZ, Usher MG, Mortensen RM (2009) PPARs: the vasculature, inflammation and hypertension. Curr Opin Nephrol Hypertens 18:128–133. https://doi.org/10.1097/MNH.0b013e328325803b

    Article  CAS  PubMed  Google Scholar 

  227. Harrison DG, Guzik TJ, Goronzy J, Weyand C (2008) Is hypertension an immunologic disease? Curr Cardiol Rep 10:464–469. https://doi.org/10.1007/s11886-008-0073-6

    Article  PubMed  Google Scholar 

  228. Savoia C, Schiffrin EL (2006) Inflammation in hypertension. Curr Opin Nephrol Hypertens 15:152–158. https://doi.org/10.1097/01.mnh.0000203189.57513.76

    Article  CAS  PubMed  Google Scholar 

  229. de Kloet AD, Pioquinto DJ, Nguyen D, Wang L, Smith JA, Hiller H, Sumners C (2014) Obesity induces neuroinflammation mediated by altered expression of the renin-angiotensin system in mouse forebrain nuclei. Physiol Behav 136:31–38. https://doi.org/10.1016/j.physbeh.2014.01.016

    Article  CAS  PubMed  Google Scholar 

  230. Rahmouni K, Davisson RL, Sigmund CD (2011) Inflaming hypothalamic neurons raises blood pressure. Cell Metab 14:3–4. https://doi.org/10.1016/j.cmet.2011.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Shen XZ, Li Y, Li L, Shah KH, Bernstein KE, Lyden P, Shi P (2015) Microglia participate in neurogenic regulation of hypertension. Hypertension 66:309–316. https://doi.org/10.1161/HYPERTENSIONAHA.115.05333

    Article  CAS  PubMed  Google Scholar 

  232. Simonds SE, Pryor JT, Ravussin E, Greenway FL, Dileone R, Allen AM, Bassi J, Elmquist JK, Keogh JM, Henning E, Myers MG Jr, Licinio J, Brown RD, Enriori PJ, O’Rahilly S, Sternson SM, Grove KL, Spanswick DC, Farooqi IS, Cowley MA (2014) Leptin mediates the increase in blood pressure associated with obesity. Cell 159:1404–1416. https://doi.org/10.1016/j.cell.2014.10.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Han C, Wu W, Ale A, Kim MS, Cai D (2016) Central leptin and tumor necrosis factor-alpha (TNFalpha) in diurnal control of blood pressure and hypertension. J Biol Chem 291:15131–15142. https://doi.org/10.1074/jbc.M116.730408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, Matsuoka N, Hayashi T, Hosoda K, Inoue G, Yoshimasa Y, Nakao K (2000) Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest 105:1243–1252. https://doi.org/10.1172/JCI8341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Liu X, Zheng H (2021) Modulation of Sirt1 and FoxO1 on hypothalamic leptin-mediated sympathetic activation and inflammation in diet-induced obese rats. J Am Heart Assoc 10:e020667. https://doi.org/10.1161/JAHA.120.020667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Gruber T, Pan C, Contreras RE, Wiedemann T, Morgan DA, Skowronski AA, Lefort S, De Bernardis MC, Le Thuc O, Legutko B, Ruiz-Ojeda FJ, Fuente-Fernandez M, Garcia-Villalon AL, Gonzalez-Hedstrom D, Huber M, Szigeti-Buck K, Muller TD, Ussar S, Pfluger P, Woods SC, Erturk A, LeDuc CA, Rahmouni K, Granado M, Horvath TL, Tschop MH, Garcia-Caceres C (2021) Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab 33:1155-1170.e1110. https://doi.org/10.1016/j.cmet.2021.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Suda Y, Nakashima T, Matsumoto H, Sato D, Nagano S, Mikata H, Yoshida S, Tanaka K, Hamada Y, Kuzumaki N, Narita M (2021) Normal aging induces PD-1-enriched exhausted microglia and A1-like reactive astrocytes in the hypothalamus. Biochem Biophys Res Commun 541:22–29. https://doi.org/10.1016/j.bbrc.2020.12.086

    Article  CAS  PubMed  Google Scholar 

  238. Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA 115:E1896–E1905. https://doi.org/10.1073/pnas.1800165115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kounatidis I, Chtarbanova S, Cao Y, Hayne M, Jayanth D, Ganetzky B, Ligoxygakis P (2017) NF-kappaB immunity in the brain determines fly lifespan in healthy aging and age-related neurodegeneration. Cell Rep 19:836–848. https://doi.org/10.1016/j.celrep.2017.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park JS, Couillard-Despres S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94. https://doi.org/10.1038/nature10357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Li J, Tang Y, Cai D (2012) IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14:999–1012. https://doi.org/10.1038/ncb2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15:700–702. https://doi.org/10.1038/nn.3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, Berkutzki T, Barnett-Itzhaki Z, Bezalel D, Wyss-Coray T, Amit I, Schwartz M (2014) Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346:89–93. https://doi.org/10.1126/science.1252945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Sun F, Mao X, Xie L, Ding M, Shao B, Jin K (2013) Notch1 signaling modulates neuronal progenitor activity in the subventricular zone in response to aging and focal ischemia. Aging Cell 12:978–987. https://doi.org/10.1111/acel.12134

    Article  CAS  PubMed  Google Scholar 

  245. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452. https://doi.org/10.1038/nature05091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Xiao YZ, Yang M, Xiao Y, Guo Q, Huang Y, Li CJ, Cai D, Luo XH (2020) Reducing hypothalamic stem cell senescence protects against aging-associated physiological decline. Cell Metab 31(534–548):e535. https://doi.org/10.1016/j.cmet.2020.01.002

    Article  CAS  Google Scholar 

  247. Catalin B, Cupido A, Iancau M, Albu CV, Kirchhoff F (2013) Microglia: first responders in the central nervous system. Rom J Morphol Embryol 54:467–472

    CAS  PubMed  Google Scholar 

  248. Takesue K, Kishi T, Hirooka Y, Sunagawa K (2017) Activation of microglia within paraventricular nucleus of hypothalamus is NOT involved in maintenance of established hypertension. J Cardiol 69:84–88. https://doi.org/10.1016/j.jjcc.2016.01.004

    Article  PubMed  Google Scholar 

  249. Mauerer R, Walczak Y, Langmann T (2009) Comprehensive mRNA profiling of lipid-related genes in microglia and macrophages using taqman arrays. Methods Mol Biol 580:187–201. https://doi.org/10.1007/978-1-60761-325-1_10

    Article  CAS  PubMed  Google Scholar 

  250. Button EB, Mitchell AS, Domingos MM, Chung JH, Bradley RM, Hashemi A, Marvyn PM, Patterson AC, Stark KD, Quadrilatero J, Duncan RE (2014) Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are proinflammatory. Lipids 49:305–316. https://doi.org/10.1007/s11745-014-3882-y

    Article  CAS  PubMed  Google Scholar 

  251. Tracy LM, Bergqvist F, Ivanova EV, Jacobsen KT, Iverfeldt K (2013) Exposure to the saturated free fatty acid palmitate alters BV-2 microglia inflammatory response. J Mol Neurosci 51:805–812. https://doi.org/10.1007/s12031-013-0068-7

    Article  CAS  PubMed  Google Scholar 

  252. Wang Z, Liu D, Wang F, Liu S, Zhao S, Ling EA, Hao A (2012) Saturated fatty acids activate microglia via Toll-like receptor 4/NF-kappaB signalling. Br J Nutr 107:229–241. https://doi.org/10.1017/S0007114511002868

    Article  CAS  PubMed  Google Scholar 

  253. Degasperi GR, Romanatto T, Denis RG, Araujo EP, Moraes JC, Inada NM, Vercesi AE, Velloso LA (2008) UCP2 protects hypothalamic cells from TNF-alpha-induced damage. FEBS Lett 582:3103–3110. https://doi.org/10.1016/j.febslet.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  254. Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY (2019) Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep 9:840. https://doi.org/10.1038/s41598-018-37215-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Huang Y, Liao Z, Lin X, Wu X, Chen X, Bai X, Zhuang Y, Yang Y, Zhang J (2019) Overexpression of miR-146a might regulate polarization transitions of BV-2 cells induced by high glucose and glucose fluctuations. Front Endocrinol (Lausanne) 10:719. https://doi.org/10.3389/fendo.2019.00719

    Article  Google Scholar 

  256. Ho CY, Lin YT, Chen HH, Ho WY, Sun GC, Hsiao M, Lu PJ, Cheng PW, Tseng CJ (2020) CX3CR1-microglia mediates neuroinflammation and blood pressure regulation in the nucleus tractus solitarii of fructose-induced hypertensive rats. J Neuroinflammation 17:185. https://doi.org/10.1186/s12974-020-01857-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Sharma RK, Yang T, Oliveira AC, Lobaton GO, Aquino V, Kim S, Richards EM, Pepine CJ, Sumners C, Raizada MK (2019) Microglial cells impact gut microbiota and gut pathology in angiotensin II-induced hypertension. Circ Res 124:727–736. https://doi.org/10.1161/CIRCRESAHA.118.313882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Li Y, Shen XZ, Li L, Zhao TV, Bernstein KE, Johnson AK, Lyden P, Fang J, Shi P (2017) Brain transforming growth factor-beta resists hypertension via regulating microglial activation. Stroke 48:2557–2564. https://doi.org/10.1161/STROKEAHA.117.017370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond GR (2014) IL-1beta and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol 171:5589–5602. https://doi.org/10.1111/bph.12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Yu Y, Wei SG, Weiss RM, Felder RB (2018) Angiotensin II type 1a receptors in the subfornical organ modulate neuroinflammation in the hypothalamic paraventricular nucleus in heart failure rats. Neuroscience 381:46–58. https://doi.org/10.1016/j.neuroscience.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  261. Liu M, Shi P, Sumners C (2016) Direct anti-inflammatory effects of angiotensin-(1–7) on microglia. J Neurochem 136:163–171. https://doi.org/10.1111/jnc.13386

    Article  PubMed  Google Scholar 

  262. Spittau B (2017) Aging microglia-phenotypes, functions and implications for age-related neurodegenerative diseases. Front Aging Neurosci 9:194. https://doi.org/10.3389/fnagi.2017.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, Pluvinage JV, Mathur V, Hahn O, Morgens DW, Kim J, Tevini J, Felder TK, Wolinski H, Bertozzi CR, Bassik MC, Aigner L, Wyss-Coray T (2020) Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 23:194–208. https://doi.org/10.1038/s41593-019-0566-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C, Duking T, Winchenbach J, Neuber J, Ewers D, Scholz P, van der Meer F, Cantuti-Castelvetri L, Sasmita AO, Meschkat M, Ruhwedel T, Mobius W, Sankowski R, Prinz M, Huitinga I, Sereda MW, Odoardi F, Ischebeck T, Simons M, Stadelmann-Nessler C, Edgar JM, Nave KA, Saher G (2021) Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci 24:47–60. https://doi.org/10.1038/s41593-020-00757-6

    Article  CAS  PubMed  Google Scholar 

  265. Maya-Monteiro CM, Correa-da-Silva F, Hofmann SS, Hesselink MKC, la Fleur SE, Yi CX (2021) Lipid droplets accumulate in the hypothalamus of mice and humans with and without metabolic diseases. Neuroendocrinology 111:263–272. https://doi.org/10.1159/000508735

    Article  CAS  PubMed  Google Scholar 

  266. Stott NL, Marino JS (2020) High fat rodent models of type 2 diabetes: from rodent to human. Nutrients. https://doi.org/10.3390/nu12123650

    Article  PubMed  PubMed Central  Google Scholar 

  267. Kwon YH, Kim J, Kim CS, Tu TH, Kim MS, Suk K, Kim DH, Lee BJ, Choi HS, Park T, Choi MS, Goto T, Kawada T, Ha TY, Yu R (2017) Hypothalamic lipid-laden astrocytes induce microglia migration and activation. FEBS Lett 591:1742–1751. https://doi.org/10.1002/1873-3468.12691

    Article  CAS  PubMed  Google Scholar 

  268. Bernoud N, Fenart L, Benistant C, Pageaux JF, Dehouck MP, Moliere P, Lagarde M, Cecchelli R, Lecerf J (1998) Astrocytes are mainly responsible for the polyunsaturated fatty acid enrichment in blood-brain barrier endothelial cells in vitro. J Lipid Res 39:1816–1824

    Article  CAS  PubMed  Google Scholar 

  269. Morand O, Baumann N, Bourre JM (1979) In vivo incorporation of exogenous [1-14C]stearic acid into neurons and astrocytes. Neurosci Lett 13:177–181. https://doi.org/10.1016/0304-3940(79)90038-7

    Article  CAS  PubMed  Google Scholar 

  270. Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59:242–255. https://doi.org/10.1002/glia.21094

    Article  PubMed  Google Scholar 

  271. Krasovska V, Doering LC (2018) Regulation of IL-6 secretion by astrocytes via TLR4 in the fragile X mouse model. Front Mol Neurosci 11:272. https://doi.org/10.3389/fnmol.2018.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, Zhou H, Lv Y, Chen Z, Wang J, Zhou YD (2016) Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol 215:719–734. https://doi.org/10.1083/jcb.201605046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2017) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol 54:2969–2985. https://doi.org/10.1007/s12035-016-9880-8

    Article  CAS  PubMed  Google Scholar 

  274. Jiang T, Cadenas E (2014) Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell 13:1059–1067. https://doi.org/10.1111/acel.12268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Orre M, Kamphuis W, Osborn LM, Melief J, Kooijman L, Huitinga I, Klooster J, Bossers K, Hol EM (2014) Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging 35:1–14. https://doi.org/10.1016/j.neurobiolaging.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  276. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, Freeman TC, Summers KM, McColl BW (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516. https://doi.org/10.1038/nn.4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Gruber T, Pan C, Contreras RE, Wiedemann T, Morgan DA, Skowronski AA, Lefort S, De Bernardis MC, Le Thuc O, Legutko B, Ruiz-Ojeda FJ, Fuente-Fernandez M, Garcia-Villalon AL, Gonzalez-Hedstrom D, Huber M, Szigeti-Buck K, Muller TD, Ussar S, Pfluger P, Woods SC, Erturk A, LeDuc CA, Rahmouni K, Granado M, Horvath TL, Tschop MH, Garcia-Caceres C (2021) Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab 33(1155–1170):e1110. https://doi.org/10.1016/j.cmet.2021.04.007

    Article  CAS  Google Scholar 

  278. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468. https://doi.org/10.1172/JCI60842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Chawla A, Nguyen KD, Goh YP (2011) Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 11:738–749. https://doi.org/10.1038/nri3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Lainez NM, Jonak CR, Nair MG, Ethell IM, Wilson EH, Carson MJ, Coss D (2018) Diet-induced obesity elicits macrophage infiltration and reduction in spine density in the hypothalami of male but not female mice. Front Immunol 9:1992. https://doi.org/10.3389/fimmu.2018.01992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Kerkhofs D, van Hagen BT, Milanova IV, Schell KJ, van Essen H, Wijnands E, Goossens P, Blankesteijn WM, Unger T, Prickaerts J, Biessen EA, van Oostenbrugge RJ, Foulquier S (2020) Pharmacological depletion of microglia and perivascular macrophages prevents vascular cognitive impairment in Ang II-induced hypertension. Theranostics 10:9512–9527. https://doi.org/10.7150/thno.44394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Iyonaga T, Shinohara K, Mastuura T, Hirooka Y, Tsutsui H (2020) Brain perivascular macrophages contribute to the development of hypertension in stroke-prone spontaneously hypertensive rats via sympathetic activation. Hypertens Res 43:99–110. https://doi.org/10.1038/s41440-019-0333-4

    Article  CAS  PubMed  Google Scholar 

  283. Yi CX, Tschop MH, Woods SC, Hofmann SM (2012) High-fat-diet exposure induces IgG accumulation in hypothalamic microglia. Dis Model Mech 5:686–690. https://doi.org/10.1242/dmm.009464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Salameh TS, Mortell WG, Logsdon AF, Butterfield DA, Banks WA (2019) Disruption of the hippocampal and hypothalamic blood-brain barrier in a diet-induced obese model of type II diabetes: prevention and treatment by the mitochondrial carbonic anhydrase inhibitor, topiramate. Fluids Barriers CNS 16:1. https://doi.org/10.1186/s12987-018-0121-6

    Article  PubMed  PubMed Central  Google Scholar 

  285. Yi CX, Gericke M, Kruger M, Alkemade A, Kabra DG, Hanske S, Filosa J, Pfluger P, Bingham N, Woods SC, Herman J, Kalsbeek A, Baumann M, Lang R, Stern JE, Bechmann I, Tschop MH (2012) High calorie diet triggers hypothalamic angiopathy. Mol Metab 1:95–100. https://doi.org/10.1016/j.molmet.2012.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Kalin S, Heppner FL, Bechmann I, Prinz M, Tschop MH, Yi CX (2015) Hypothalamic innate immune reaction in obesity. Nat Rev Endocrinol 11:339–351. https://doi.org/10.1038/nrendo.2015.48

    Article  CAS  PubMed  Google Scholar 

  287. Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, Mauer J, Steculorum SM, Hampel B, Goldau J, Alber J, Forster CY, Eming SA, Schwaninger M, Ferrara N, Karsenty G, Bruning JC (2016) Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 166:1338–1340. https://doi.org/10.1016/j.cell.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  288. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227–1235. https://doi.org/10.1038/nn.2923

    Article  CAS  PubMed  Google Scholar 

  289. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543. https://doi.org/10.1038/nn2014

    Article  CAS  PubMed  Google Scholar 

  290. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292. https://doi.org/10.1126/science.3276004

    Article  CAS  PubMed  Google Scholar 

  291. Acarin L, Gonzalez B, Castellano B (2000) Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci 12:3505–3520. https://doi.org/10.1046/j.1460-9568.2000.00226.x

    Article  CAS  PubMed  Google Scholar 

  292. Shibata M (1990) Hypothalamic neuronal responses to cytokines. Yale J Biol Med 63:147–156

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Masson GS, Nair AR, Dange RB, Silva-Soares PP, Michelini LC, Francis J (2015) Toll-like receptor 4 promotes autonomic dysfunction, inflammation and microglia activation in the hypothalamic paraventricular nucleus: role of endoplasmic reticulum stress. PLoS ONE 10:e0122850. https://doi.org/10.1371/journal.pone.0122850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Wellhauser L, Belsham DD (2014) Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons. J Neuroinflammation 11:60. https://doi.org/10.1186/1742-2094-11-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Choi SJ, Kim F, Schwartz MW, Wisse BE (2010) Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids. Am J Physiol Endocrinol Metab 298:E1122-1130. https://doi.org/10.1152/ajpendo.00006.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Shechter R, London A, Kuperman Y, Ronen A, Rolls A, Chen A, Schwartz M (2013) Hypothalamic neuronal toll-like receptor 2 protects against age-induced obesity. Sci Rep 3:1254. https://doi.org/10.1038/srep01254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Dwarkasing JT, Witkamp RF, Boekschoten MV, Ter Laak MC, Heins MS, van Norren K (2016) Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci 17:26. https://doi.org/10.1186/s12868-016-0260-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Rizzoti K, Lovell-Badge R (2017) Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Mol Cell Endocrinol 445:7–13. https://doi.org/10.1016/j.mce.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  299. Barahona MJ, Llanos P, Recabal A, Escobar-Acuna K, Elizondo-Vega R, Salgado M, Ordenes P, Uribe E, Sepulveda FJ, Araneda RC, Garcia-Robles MA (2018) Glial hypothalamic inhibition of GLUT2 expression alters satiety, impacting eating behavior. Glia 66:592–605. https://doi.org/10.1002/glia.23267

    Article  PubMed  Google Scholar 

  300. Collden G, Balland E, Parkash J, Caron E, Langlet F, Prevot V, Bouret SG (2015) Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Mol Metab 4:15–24. https://doi.org/10.1016/j.molmet.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  301. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-Morel A, Anouar Y, Dehouck B, Trinquet E, Jockers R, Bouret SG, Prevot V (2014) Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 19:293–301. https://doi.org/10.1016/j.cmet.2013.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A, Mazur D, Carmeliet P, Bouret SG, Prevot V, Dehouck B (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:607–617. https://doi.org/10.1016/j.cmet.2013.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, Al-Amoudi A, Kuerschner L (2017) Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia 65:231–249. https://doi.org/10.1002/glia.23088

    Article  PubMed  Google Scholar 

  304. Ramalho AF, Bombassaro B, Dragano NR, Solon C, Morari J, Fioravante M, Barbizan R, Velloso LA, Araujo EP (2018) Dietary fats promote functional and structural changes in the median eminence blood/spinal fluid interface-the protective role for BDNF. J Neuroinflammation 15:10. https://doi.org/10.1186/s12974-017-1046-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Dimou L, Gallo V (2015) NG2-glia and their functions in the central nervous system. Glia 63:1429–1451. https://doi.org/10.1002/glia.22859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Nakano M, Tamura Y, Yamato M, Kume S, Eguchi A, Takata K, Watanabe Y, Kataoka Y (2017) NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival. Sci Rep 7:42041. https://doi.org/10.1038/srep42041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Nishiyama A, Boshans L, Goncalves CM, Wegrzyn J, Patel KD (2016) Lineage, fate, and fate potential of NG2-glia. Brain Res 1638:116–128. https://doi.org/10.1016/j.brainres.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  308. Nishiyama A, Suzuki R, Zhu X (2014) NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci 8:133. https://doi.org/10.3389/fnins.2014.00133

    Article  PubMed  PubMed Central  Google Scholar 

  309. Kirby L, Jin J, Cardona JG, Smith MD, Martin KA, Wang J, Strasburger H, Herbst L, Alexis M, Karnell J, Davidson T, Dutta R, Goverman J, Bergles D, Calabresi PA (2019) Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat Commun 10:3887. https://doi.org/10.1038/s41467-019-11638-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Falcao AM, van Bruggen D, Marques S, Meijer M, Jakel S, Agirre E, Samudyata FEM, Vanichkina DP, Ffrench-Constant C, Williams A, Guerreiro-Cacais AO, Castelo-Branco G (2018) Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 24:1837–1844. https://doi.org/10.1038/s41591-018-0236-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Djogo T, Robins SC, Schneider S, Kryzskaya D, Liu X, Mingay A, Gillon CJ, Kim JH, Storch KF, Boehm U, Bourque CW, Stroh T, Dimou L, Kokoeva MV (2016) Adult NG2-glia are required for median eminence-mediated leptin sensing and body weight control. Cell Metab 23:797–810. https://doi.org/10.1016/j.cmet.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  312. Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10:321–330. https://doi.org/10.1038/nn1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Liu Y, Aguzzi A (2020) NG2 glia are required for maintaining microglia homeostatic state. Glia 68:345–355. https://doi.org/10.1002/glia.23721

    Article  PubMed  Google Scholar 

  314. Zhang SZ, Wang QQ, Yang QQ, Gu HY, Yin YQ, Li YD, Hou JC, Chen R, Sun QQ, Sun YF, Hu G, Zhou JW (2019) NG2 glia regulate brain innate immunity via TGF-beta2/TGFBR2 axis. BMC Med 17:204. https://doi.org/10.1186/s12916-019-1439-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  316. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660. https://doi.org/10.1083/jcb.200302070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Beard RS Jr, Haines RJ, Wu KY, Reynolds JJ, Davis SM, Elliott JE, Malinin NL, Chatterjee V, Cha BJ, Wu MH, Yuan SY (2014) Non-muscle Mlck is required for beta-catenin- and FoxO1-dependent downregulation of Cldn5 in IL-1beta-mediated barrier dysfunction in brain endothelial cells. J Cell Sci 127:1840–1853. https://doi.org/10.1242/jcs.144550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, Moorhouse AJ, Nabekura J, Wake H (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 10:5816. https://doi.org/10.1038/s41467-019-13812-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Pillon NJ, Azizi PM, Li YE, Liu J, Wang C, Chan KL, Hopperton KE, Bazinet RP, Heit B, Bilan PJ, Lee WL, Klip A (2015) Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis. Am J Physiol Endocrinol Metab 309:E35-44. https://doi.org/10.1152/ajpendo.00611.2014

    Article  CAS  PubMed  Google Scholar 

  320. Freeman LR, Granholm AC (2012) Vascular changes in rat hippocampus following a high saturated fat and cholesterol diet. J Cereb Blood Flow Metab 32:643–653. https://doi.org/10.1038/jcbfm.2011.168

    Article  CAS  PubMed  Google Scholar 

  321. Reyes TM, Fabry Z, Coe CL (1999) Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res 851:215–220. https://doi.org/10.1016/s0006-8993(99)02189-7

    Article  CAS  PubMed  Google Scholar 

  322. Ridder DA, Lang MF, Salinin S, Roderer JP, Struss M, Maser-Gluth C, Schwaninger M (2011) TAK1 in brain endothelial cells mediates fever and lethargy. J Exp Med 208:2615–2623. https://doi.org/10.1084/jem.20110398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Quan N, He L, Lai W (2003) Endothelial activation is an intermediate step for peripheral lipopolysaccharide induced activation of paraventricular nucleus. Brain Res Bull 59:447–452. https://doi.org/10.1016/s0361-9230(02)00951-6

    Article  CAS  PubMed  Google Scholar 

  324. Prevot V, Dehouck B, Poulain P, Beauvillain JC, Buee-Scherrer V, Bouret S (2007) Neuronal-glial-endothelial interactions and cell plasticity in the postnatal hypothalamus: implications for the neuroendocrine control of reproduction. Psychoneuroendocrinology 32(Suppl 1):S46-51. https://doi.org/10.1016/j.psyneuen.2007.03.018

    Article  CAS  PubMed  Google Scholar 

  325. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ (2020) Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol 11:1024. https://doi.org/10.3389/fimmu.2020.01024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Chen T, Lennon VA, Liu YU, Bosco DB, Li Y, Yi MH, Zhu J, Wei S, Wu LJ (2020) Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest 130:4025–4038. https://doi.org/10.1172/JCI134816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 14:99. https://doi.org/10.1186/s12974-017-0871-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Jha MK, Jo M, Kim JH, Suk K (2019) Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 25:227–240. https://doi.org/10.1177/1073858418783959

    Article  CAS  PubMed  Google Scholar 

  329. Rahman MH, Kim MS, Lee IK, Yu R, Suk K (2018) Interglial crosstalk in obesity-induced hypothalamic inflammation. Front Neurosci 12:939. https://doi.org/10.3389/fnins.2018.00939

    Article  PubMed  PubMed Central  Google Scholar 

  330. Kim J, Kwon YH, Kim CS, Tu TH, Kim BS, Joe Y, Chung HT, Goto T, Kawada T, Park T, Choi MS, Kim MS, Yu R (2018) The involvement of 4–1BB/4-1BBL signaling in glial cell-mediated hypothalamic inflammation in obesity. FEBS Open Bio 8:843–853. https://doi.org/10.1002/2211-5463.12426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW 2nd, Mochly-Rosen D (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22:1635–1648. https://doi.org/10.1038/s41593-019-0486-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Jin S, Kim KK, Park BS, Kim DH, Jeong B, Kang D, Lee TH, Park JW, Kim JG, Lee BJ (2020) Function of astrocyte MyD88 in high-fat-diet-induced hypothalamic inflammation. J Neuroinflammation 17:195. https://doi.org/10.1186/s12974-020-01846-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Yeo YA, Martinez Gomez JM, Croxford JL, Gasser S, Ling EA, Schwarz H (2012) CD137 ligand activated microglia induces oligodendrocyte apoptosis via reactive oxygen species. J Neuroinflammation 9:173. https://doi.org/10.1186/1742-2094-9-173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Reali C, Curto M, Sogos V, Scintu F, Pauly S, Schwarz H, Gremo F (2003) Expression of CD137 and its ligand in human neurons, astrocytes, and microglia: modulation by FGF-2. J Neurosci Res 74:67–73. https://doi.org/10.1002/jnr.10727

    Article  CAS  PubMed  Google Scholar 

  335. Baxter PS, Dando O, Emelianova K, He X, McKay S, Hardingham GE, Qiu J (2021) Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. Cell Rep 34:108882. https://doi.org/10.1016/j.celrep.2021.108882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, Pasolli HA, Xu CS, Pang S, Matthies D, Hess HF, Lippincott-Schwartz J, Liu Z (2019) Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177(1522–1535):e1514. https://doi.org/10.1016/j.cell.2019.04.001

    Article  CAS  Google Scholar 

  337. Erichsen D, Lopez AL, Peng H, Niemann D, Williams C, Bauer M, Morgello S, Cotter RL, Ryan LA, Ghorpade A, Gendelman HE, Zheng J (2003) Neuronal injury regulates fractalkine: relevance for HIV-1 associated dementia. J Neuroimmunol 138:144–155. https://doi.org/10.1016/s0165-5728(03)00117-6

    Article  CAS  PubMed  Google Scholar 

  338. de Jong EK, Dijkstra IM, Hensens M, Brouwer N, van Amerongen M, Liem RS, Boddeke HW, Biber K (2005) Vesicle-mediated transport and release of CCL21 in endangered neurons: a possible explanation for microglia activation remote from a primary lesion. J Neurosci 25:7548–7557. https://doi.org/10.1523/JNEUROSCI.1019-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS (2005) Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 79:11457–11466. https://doi.org/10.1128/JVI.79.17.11457-11466.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Pawelec P, Ziemka-Nalecz M, Sypecka J, Zalewska T (2020) The impact of the CX3CL1/CX3CR1 axis in neurological disorders. Cells. https://doi.org/10.3390/cells9102277

    Article  PubMed  PubMed Central  Google Scholar 

  341. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91:521–530. https://doi.org/10.1016/s0092-8674(00)80438-9

    Article  CAS  PubMed  Google Scholar 

  342. Zujovic V, Benavides J, Vige X, Carter C, Taupin V (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29:305–315

    Article  CAS  PubMed  Google Scholar 

  343. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30:596–602. https://doi.org/10.1016/j.tins.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  344. Morselli E, Frank AP, Palmer BF, Rodriguez-Navas C, Criollo A, Clegg DJ (2016) A sexually dimorphic hypothalamic response to chronic high-fat diet consumption. Int J Obes (Lond) 40:206–209. https://doi.org/10.1038/ijo.2015.114

    Article  CAS  Google Scholar 

  345. Yang Y, Smith DL Jr, Keating KD, Allison DB, Nagy TR (2014) Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity (Silver Spring) 22:2147–2155. https://doi.org/10.1002/oby.20811

    Article  CAS  Google Scholar 

  346. Stubbins RE, Holcomb VB, Hong J, Nunez NP (2012) Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur J Nutr 51:861–870. https://doi.org/10.1007/s00394-011-0266-4

    Article  CAS  PubMed  Google Scholar 

  347. Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ (2010) A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. Int J Obes (Lond) 34:989–1000. https://doi.org/10.1038/ijo.2010.12

    Article  CAS  Google Scholar 

  348. Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers HM, Wenk GL, Giovannini MG (2012) The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus. PLoS ONE 7:e45250. https://doi.org/10.1371/journal.pone.0045250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. da Silva SM, Campos GD, Gomes FCA, Stipursky J (2019) Radial glia-endothelial cells’ bidirectional interactions control vascular maturation and astrocyte differentiation: impact for blood-brain barrier formation. Curr Neurovascular Res 16:291–300. https://doi.org/10.2174/1567202616666191014120156

    Article  CAS  Google Scholar 

  350. Lebrin F, Deckers M, Bertolino P, Ten Dijke P (2005) TGF-beta receptor function in the endothelium. Cardiovasc Res 65:599–608. https://doi.org/10.1016/j.cardiores.2004.10.036

    Article  CAS  PubMed  Google Scholar 

  351. Garcia CM, Darland DC, Massingham LJ, D’Amore PA (2004) Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res 152:25–38. https://doi.org/10.1016/j.devbrainres.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  352. Garcia-Caceres C, Balland E, Prevot V, Luquet S, Woods SC, Koch M, Horvath TL, Yi CX, Chowen JA, Verkhratsky A, Araque A, Bechmann I, Tschop MH (2019) Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci 22:7–14. https://doi.org/10.1038/s41593-018-0286-y

    Article  CAS  PubMed  Google Scholar 

  353. Mayo L, Trauger SA, Blain M, Nadeau M, Patel B, Alvarez JI, Mascanfroni ID, Yeste A, Kivisakk P, Kallas K, Ellezam B, Bakshi R, Prat A, Antel JP, Weiner HL, Quintana FJ (2014) Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 20:1147–1156. https://doi.org/10.1038/nm.3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Omari KM, John GR, Sealfon SC, Raine CS (2005) CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 128:1003–1015. https://doi.org/10.1093/brain/awh479

    Article  PubMed  Google Scholar 

  355. Ramesh G, Benge S, Pahar B, Philipp MT (2012) A possible role for inflammation in mediating apoptosis of oligodendrocytes as induced by the Lyme disease spirochete Borrelia burgdorferi. J Neuroinflammation 9:72. https://doi.org/10.1186/1742-2094-9-72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Linnerbauer M, Wheeler MA, Quintana FJ (2020) Astrocyte crosstalk in CNS inflammation. Neuron 108:608–622. https://doi.org/10.1016/j.neuron.2020.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Malone JI, Hansen BC (2019) Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr Diabetes 20:5–9. https://doi.org/10.1111/pedi.12787

    Article  PubMed  Google Scholar 

  358. Sowers JR, Whaley-Connell A, Hayden MR (2011) The role of overweight and obesity in the cardiorenal syndrome. Cardiorenal Med 1:5–12. https://doi.org/10.1159/000322822

    Article  PubMed  PubMed Central  Google Scholar 

  359. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867. https://doi.org/10.1038/nature05485

    Article  CAS  PubMed  Google Scholar 

  360. Youn JY, Siu KL, Lob HE, Itani H, Harrison DG, Cai H (2014) Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes 63:2344–2355. https://doi.org/10.2337/db13-0719

    Article  PubMed  PubMed Central  Google Scholar 

  361. Mendes NF, Kim YB, Velloso LA, Araujo EP (2018) Hypothalamic microglial activation in obesity: a mini-review. Front Neurosci 12:846. https://doi.org/10.3389/fnins.2018.00846

    Article  PubMed  PubMed Central  Google Scholar 

  362. Li Y, Wei B, Liu X, Shen XZ, Shi P (2020) Microglia, autonomic nervous system, immunity and hypertension: is there a link? Pharmacol Res 155:104451. https://doi.org/10.1016/j.phrs.2019.104451

    Article  CAS  PubMed  Google Scholar 

  363. Romanatto T, Cesquini M, Amaral ME, Roman EA, Moraes JC, Torsoni MA, Cruz-Neto AP, Velloso LA (2007) TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient–effects on leptin and insulin signaling pathways. Peptides 28:1050–1058. https://doi.org/10.1016/j.peptides.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  364. Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11:411–418. https://doi.org/10.1038/ni.1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917. https://doi.org/10.1016/j.cell.2010.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Singh T, Newman AB (2011) Inflammatory markers in population studies of aging. Ageing Res Rev 10:319–329. https://doi.org/10.1016/j.arr.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  367. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8:18–30. https://doi.org/10.1016/j.arr.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  368. Matias I, Morgado J, Gomes FCA (2019) Astrocyte heterogeneity: impact to brain aging and disease. Front Aging Neurosci 11:59. https://doi.org/10.3389/fnagi.2019.00059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Salvestrini V, Sell C, Lorenzini A (2019) Obesity may accelerate the aging process. Front Endocrinol (Lausanne) 10:266. https://doi.org/10.3389/fendo.2019.00266

    Article  Google Scholar 

  370. De Luca SN, Sominsky L, Soch A, Wang H, Ziko I, Rank MM, Spencer SJ (2019) Conditional microglial depletion in rats leads to reversible anorexia and weight loss by disrupting gustatory circuitry. Brain Behav Immun 77:77–91. https://doi.org/10.1016/j.bbi.2018.12.008

    Article  PubMed  Google Scholar 

  371. Yi CX, Al-Massadi O, Donelan E, Lehti M, Weber J, Ress C, Trivedi C, Muller TD, Woods SC, Hofmann SM (2012) Exercise protects against high-fat diet-induced hypothalamic inflammation. Physiol Behav 106:485–490. https://doi.org/10.1016/j.physbeh.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  372. Masson GS, Nair AR, Silva Soares PP, Michelini LC, Francis J (2015) Aerobic training normalizes autonomic dysfunction, HMGB1 content, microglia activation and inflammation in hypothalamic paraventricular nucleus of SHR. Am J Physiol Heart Circ Physiol 309:H1115-1122. https://doi.org/10.1152/ajpheart.00349.2015

    Article  CAS  PubMed  Google Scholar 

  373. Soch A, Sominsky L, De Luca SN, Spencer SJ (2019) Obesity after neonatal overfeeding is independent of hypothalamic microgliosis. J Neuroendocrinol 31:e12757. https://doi.org/10.1111/jne.12757

    Article  CAS  PubMed  Google Scholar 

  374. Ali S, Mansour AG, Huang W, Queen NJ, Mo X, Anderson JM, Hassan QN 2nd, Patel RS, Wilkins RK, Caligiuri MA, Cao L (2020) CSF1R inhibitor PLX5622 and environmental enrichment additively improve metabolic outcomes in middle-aged female mice. Aging (Albany NY) 12:2101–2122. https://doi.org/10.18632/aging.102724

    Article  CAS  Google Scholar 

  375. Benzler J, Ganjam GK, Pretz D, Oelkrug R, Koch CE, Legler K, Stohr S, Culmsee C, Williams LM, Tups A (2015) Central inhibition of IKKbeta/NF-kappaB signaling attenuates high-fat diet-induced obesity and glucose intolerance. Diabetes 64:2015–2027. https://doi.org/10.2337/db14-0093

    Article  CAS  PubMed  Google Scholar 

  376. Tsaousidou E, Paeger L, Belgardt BF, Pal M, Wunderlich CM, Bronneke H, Collienne U, Hampel B, Wunderlich FT, Schmidt-Supprian M, Kloppenburg P, Bruning JC (2014) Distinct roles for JNK and IKK activation in agouti-related peptide neurons in the development of obesity and insulin resistance. Cell Rep 9:1495–1506. https://doi.org/10.1016/j.celrep.2014.10.045

    Article  CAS  PubMed  Google Scholar 

  377. Weissmann L, Quaresma PG, Santos AC, de Matos AH, Pascoal VD, Zanotto TM, Castro G, Guadagnini D, da Silva JM, Velloso LA, Bittencourt JC, Lopes-Cendes I, Saad MJ, Prada PO (2014) IKKepsilon is key to induction of insulin resistance in the hypothalamus, and its inhibition reverses obesity. Diabetes 63:3334–3345. https://doi.org/10.2337/db13-1817

    Article  CAS  PubMed  Google Scholar 

  378. Qi J, Yu XJ, Shi XL, Gao HL, Yi QY, Tan H, Fan XY, Zhang Y, Song XA, Cui W, Liu JJ, Kang YM (2016) NF-kappaB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and caspase-1. Cardiovasc Toxicol 16:345–354. https://doi.org/10.1007/s12012-015-9344-9

    Article  CAS  PubMed  Google Scholar 

  379. Amaral ME, Barbuio R, Milanski M, Romanatto T, Barbosa HC, Nadruz W, Bertolo MB, Boschero AC, Saad MJ, Franchini KG, Velloso LA (2006) Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters. J Neurochem 98:203–212. https://doi.org/10.1111/j.1471-4159.2006.03857.x

    Article  CAS  PubMed  Google Scholar 

  380. Song XA, Jia LL, Cui W, Zhang M, Chen W, Yuan ZY, Guo J, Li HH, Zhu GQ, Liu H, Kang YM (2014) Inhibition of TNF-alpha in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats. Toxicol Appl Pharmacol 281:101–108. https://doi.org/10.1016/j.taap.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  381. Mutsnaini L, Yang J, Kim J, Kim C-S, Lee C-H, Kim M-S, Park T, Goto T, Yu R (2021) Filbertone protects obesity-induced hypothalamic inflammation by reduction of microglia-mediated inflammatory responses. Biotechnol Bioprocess Eng 26:86–92. https://doi.org/10.1007/s12257-020-0220-5

    Article  CAS  Google Scholar 

  382. Park BS, Tu TH, Lee H, Jeong DY, Yang S, Lee BJ, Kim JG (2019) Beta-aminoisobutyric acid inhibits hypothalamic inflammation by reversing microglia activation. Cells. https://doi.org/10.3390/cells8121609

    Article  PubMed  PubMed Central  Google Scholar 

  383. Zhou J, Mao L, Xu P, Wang Y (2018) Effects of (-)-epigallocatechin gallate (EGCG) on energy expenditure and microglia-mediated hypothalamic inflammation in mice fed a high-fat diet. Nutrients. https://doi.org/10.3390/nu10111681

    Article  PubMed  PubMed Central  Google Scholar 

  384. Yang J, Kim CS, Tu TH, Kim MS, Goto T, Kawada T, Choi MS, Park T, Sung MK, Yun JW, Choe SY, Lee JH, Joe Y, Choi HS, Back SH, Chung HT, Yu R (2017) Quercetin protects obesity-induced hypothalamic inflammation by reducing microglia-mediated inflammatory responses via HO-1 induction. Nutrients. https://doi.org/10.3390/nu9070650

    Article  PubMed  PubMed Central  Google Scholar 

  385. Sadagurski M, Landeryou T, Cady G, Kopchick JJ, List EO, Berryman DE, Bartke A, Miller RA (2015) Growth hormone modulates hypothalamic inflammation in long-lived pituitary dwarf mice. Aging Cell 14:1045–1054. https://doi.org/10.1111/acel.12382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Sadagurski M, Landeryou T, Cady G, Bartke A, Bernal-Mizrachi E, Miller RA (2015) Transient early food restriction leads to hypothalamic changes in the long-lived crowded litter female mice. Physiol Rep. https://doi.org/10.14814/phy2.12379

    Article  PubMed  PubMed Central  Google Scholar 

  387. Wu Z, Xi P, Zhang Y, Wang H, Xue J, Sun X, Tian D (2021) LKB1 up-regulation inhibits hypothalamic inflammation and attenuates diet-induced obesity in mice. Metabolism 116:154694. https://doi.org/10.1016/j.metabol.2020.154694

    Article  CAS  PubMed  Google Scholar 

  388. Gao HL, Yu XJ, Liu KL, Shi XL, Qi J, Chen YM, Zhang Y, Bai J, Yi QY, Feng ZP, Chen WS, Cui W, Liu JJ, Zhu GQ, Kang YM (2017) PVN blockade of p44/42 MAPK pathway attenuates salt-induced hypertension through modulating neurotransmitters and attenuating oxidative stress. Sci Rep 7:43038. https://doi.org/10.1038/srep43038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2017R1A5A2015391, 2020M3E5D9079764).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made a substantial intellectual contribution to this work and approved submission of the manuscript. AB and MHR wrote the manuscript. KS edited the manuscript and was involved in all aspects of manuscript preparation.

Corresponding author

Correspondence to Kyoungho Suk.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

Not applicable.

Data availability

Not applicable.

Code availability

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhusal, A., Rahman, M.H. & Suk, K. Hypothalamic inflammation in metabolic disorders and aging. Cell. Mol. Life Sci. 79, 32 (2022). https://doi.org/10.1007/s00018-021-04019-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04019-x

Keywords

Navigation