Skip to main content

Advertisement

Log in

Intrinsically disordered features of carbonic anhydrase IX proteoglycan-like domain

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

hCA IX is a multi-domain protein belonging to the family of hCAs which are ubiquitous zinc enzymes that catalyze the reversible hydration of CO2 to HCO3 and H+. hCA IX is a tumor-associated enzyme with a limited distribution in normal tissues, but over-expressed in many tumors, and is a promising drug target. Although many studies concerning the CA IX catalytic domain were performed, little is known about the proteoglycan-like (PG-like) domain of hCA IX which has been poorly investigated so far. Here we attempt to fill this gap by providing an overview on the functional, structural and therapeutic studies of the PG-like domain of hCA IX which represents a unique feature within the CA family. The main studies and recent advances concerning PG role in modulating hCA IX catalytic activity as well as in tumor spreading and migration are here reported. Special attention has been paid to the newly discovered disordered features of the PG domain which open new perspectives about its molecular mechanisms of action under physiological and pathological conditions, since disorder is likely involved in mediating interactions with partner proteins. The emerged disordered features of PG domain will be explored for putative diagnostic and therapeutic applications involving CA IX targeting in tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Romero P, Obradovic Z, Kissinger CR et al (1998) Thousands of proteins likely to have long disordered regions. Pac Symp Biocomput 1:437–448

    Google Scholar 

  2. Uversky VN, Oldfield CJ, Midic U et al (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10:S7. https://doi.org/10.1186/1471-2164-10-S1-S7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764. https://doi.org/10.1016/j.sbi.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  4. Oldfield CJ, Cheng Y, Cortese MS et al (2005) Comparing and combining predictors of mostly disordered proteins †. Biochemistry 44:1989–2000. https://doi.org/10.1021/bi047993o

    Article  CAS  PubMed  Google Scholar 

  5. Peng Z, Yan J, Fan X et al (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72:137–151. https://doi.org/10.1007/s00018-014-1661-9

    Article  CAS  PubMed  Google Scholar 

  6. Garg N, Kumar P, Gadhave K, Giri R (2019) The dark proteome of cancer: Intrinsic disorderedness and functionality of HIF-1α along with its interacting proteins. Prog Mol Biol Transl Sci 166:371–403. https://doi.org/10.1016/bs.pmbts.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  7. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta Proteins Proteomics 1804:1231–1264. https://doi.org/10.1016/j.bbapap.2010.01.017

    Article  CAS  Google Scholar 

  8. Dunker AK, Obradovic Z, Romero P et al (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171. https://doi.org/10.11234/gi1990.11.161

    Article  CAS  PubMed  Google Scholar 

  9. Ward JJ, Sodhi JS, McGuffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645. https://doi.org/10.1016/j.jmb.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  10. Buonanno M, Coppola M, Di Lelio I et al (2018) Prosystemin, a prohormone that modulates plant defense barriers, is an intrinsically disordered protein. Protein Sci 27:620–632. https://doi.org/10.1002/pro.3348

    Article  CAS  PubMed  Google Scholar 

  11. Vn U, Cj O, AK D, (2008) Intrinsically disordered proteins in human diseases: introducing the D 2 concept. Annu Rev Biophys 37:215–246

    Article  Google Scholar 

  12. Dunker AK, Cortese MS, Romero P et al (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148. https://doi.org/10.1111/j.1742-4658.2005.04948.x

    Article  CAS  PubMed  Google Scholar 

  13. Vucetic S, Xie H, Iakoucheva LM et al (2007) Functional anthology of intrinsic disorder. 2. cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6:1899–1916. https://doi.org/10.1021/pr060393m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radivojac P, Iakoucheva LM, Oldfield CJ et al (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456. https://doi.org/10.1529/biophysj.106.094045

    Article  CAS  PubMed  Google Scholar 

  15. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208. https://doi.org/10.1038/nrm1589

    Article  CAS  PubMed  Google Scholar 

  16. Xie H, Vucetic S, Iakoucheva LM et al (2007a) Functional anthology of intrinsic disorder. 1. biological processes and functions of proteins with long disordered regions. J Proteome Res 6:1882–1898. https://doi.org/10.1021/pr060392u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie H, Vucetic S, Iakoucheva LM et al (2007b) Functional anthology of intrinsic disorder. 3. ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6:1917–1932. https://doi.org/10.1021/pr060394e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384. https://doi.org/10.1002/jmr.747

    Article  CAS  PubMed  Google Scholar 

  19. Romero PR, Zaidi S, Fang YY et al (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci 103:8390–8395. https://doi.org/10.1073/pnas.0507916103

    Article  CAS  PubMed  Google Scholar 

  20. Dunker AK, Obradovic Z (2001) The protein trinity—linking function and disorder. Nat Biotechnol 19:805–806. https://doi.org/10.1038/nbt0901-805

    Article  CAS  PubMed  Google Scholar 

  21. Oldfield CJ, Meng J, Yang JY et al (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14–3-3 with their partners. BMC Genomics 9:S1. https://doi.org/10.1186/1471-2164-9-S1-S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dawson R, Müller L, Dehner A et al (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol 332:1131–1141. https://doi.org/10.1016/j.jmb.2003.08.008

    Article  CAS  PubMed  Google Scholar 

  23. Lee H, Mok KH, Muhandiram R et al (2000) Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 275:29426–29432. https://doi.org/10.1074/jbc.M003107200

    Article  CAS  PubMed  Google Scholar 

  24. Iakoucheva LM, Brown CJ, Lawson JD et al (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584. https://doi.org/10.1016/S0022-2836(02)00969-5

    Article  CAS  PubMed  Google Scholar 

  25. Mark W-Y, Liao JCC, Lu Y et al (2005) Characterization of segments from the central region of BRCA1: an intrinsically disordered scaffold for multiple protein-protein and protein–DNA interactions? J Mol Biol 345:275–287. https://doi.org/10.1016/j.jmb.2004.10.045

    Article  CAS  PubMed  Google Scholar 

  26. Langella E, Buonanno M, Vullo D et al (2018) Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cell Mol Life Sci 75:3283–3296. https://doi.org/10.1007/s00018-018-2798-8

    Article  CAS  PubMed  Google Scholar 

  27. Alterio V, Di Fiore A, D’Ambrosio K et al (2012) Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 112:4421–4468. https://doi.org/10.1021/cr200176r

    Article  CAS  PubMed  Google Scholar 

  28. Hilvo M, Baranauskiene L, Salzano AM et al (2008) Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 283:27799–27809. https://doi.org/10.1074/jbc.M800938200

    Article  CAS  PubMed  Google Scholar 

  29. Liao S-Y, Aurelio ON, Jan K et al (1998) Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney. J Urol 159:1784–1785. https://doi.org/10.1097/00005392-199805000-00146

    Article  Google Scholar 

  30. Liao SY, Brewer C, Závada J et al (1994) Identification of the MN antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas. Am J Pathol 145:598–609

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Buanne P, Renzone G, Monteleone F et al (2013) Characterization of carbonic anhydrase IX interactome reveals proteins assisting its nuclear localization in hypoxic cells. J Proteome Res 12:282–292. https://doi.org/10.1021/pr300565w

    Article  CAS  PubMed  Google Scholar 

  32. Jonathan RA, Wijffels KIEM, Peeters W et al (2006) The prognostic value of endogenous hypoxia-related markers for head and neck squamous cell carcinomas treated with ARCON. Radiother Oncol 79:288–297. https://doi.org/10.1016/j.radonc.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  33. Vermylen P, Roufosse C, Burny A et al (1999) Carbonic anhydrase IX antigen differentiates between preneoplastic malignant lesions in non-small cell lung carcinoma. Eur Respir J 14:806–811. https://doi.org/10.1034/j.1399-3003.1999.14d14.x

    Article  CAS  PubMed  Google Scholar 

  34. Saarnio J, Parkkila S, Parkkila A-K et al (1998) Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell proliferation. Am J Pathol 153:279–285. https://doi.org/10.1016/S0002-9440(10)65569-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turner J, Odze R, Crum C, Resnick M (1997) MN antigen expression in normal, preneoplastic, and neoplastic esophagus: a clinicopathological study of a new cancer-associated biomarker. Hum Pathol 28:740–744. https://doi.org/10.1016/S0046-8177(97)90185-4

    Article  CAS  PubMed  Google Scholar 

  36. Hynninen P, Vaskivuo L, Saarnio J et al (2006) Expression of transmembrane carbonic anhydrases IX and XII in ovarian tumours. Histopathology 49:594–602. https://doi.org/10.1111/j.1365-2559.2006.02523.x

    Article  CAS  PubMed  Google Scholar 

  37. Kivelä AJ, Knuuttila A, Räsänen J et al (2013) Carbonic anhydrase IX in malignant pleural mesotheliomas: a potential target for anti-cancer therapy. Bioorg Med Chem 21:1483–1488. https://doi.org/10.1016/j.bmc.2012.09.018

    Article  CAS  PubMed  Google Scholar 

  38. Proescholdt MA, Mayer C, Kubitza M et al (2005) Expression of hypoxia-inducible carbonic anhydrases in brain tumors. Neuro Oncol 7:465–475. https://doi.org/10.1215/S1152851705000025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ilardi G, Zambrano N, Merolla F et al (2014) Histopathological determinants of tumor resistance: a special look to the immunohistochemical expression of carbonic anhydrase IX in human cancers. Curr Med Chem 21:1569–1582. https://doi.org/10.2174/09298673113209990227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brockton NT, Klimowicz AC, Bose P et al (2012) High stromal carbonic anhydrase IX expression is associated with nodal metastasis and decreased survival in patients with surgically-treated oral cavity squamous cell carcinoma. Oral Oncol 48:615–622. https://doi.org/10.1016/j.oraloncology.2012.01.018

    Article  CAS  PubMed  Google Scholar 

  41. Fiaschi T, Giannoni E, Taddei L et al (2013) Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle 12:1791–1801. https://doi.org/10.4161/cc.24902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu G, Song X, Liu J et al (2020) Expression of CD44 and the survival in glioma: a meta-analysis. Biosci Rep. https://doi.org/10.1042/BSR20200520

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chovanec M, Cierna Z, Miskovska V et al (2017) Prognostic role of programmed-death ligand 1 (PD-L1) expressing tumor infiltrating lymphocytes in testicular germ cell tumors. Oncotarget 8:21794–21805. https://doi.org/10.18632/oncotarget.15585

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sáenz-de-Santa-María I, Bernardo-Castiñeira C, Secades P et al (2017) Clinically relevant HIF-1α-dependent metabolic reprogramming in oropharyngeal squamous cell carcinomas includes coordinated activation of CAIX and the miR-210/ISCU signaling axis, but not MCT1 and MCT4 upregulation. Oncotarget 8:13730–13746. https://doi.org/10.18632/oncotarget.14629

    Article  PubMed  PubMed Central  Google Scholar 

  45. Potter C, Harris AL (2004) Hypoxia inducible carbonic anhydrase IX, marker of tumor hypoxia, survival pathway and therapy target. Cell Cycle 3:164–167

    Article  CAS  Google Scholar 

  46. Supuran CT (2012) Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 27:759–772. https://doi.org/10.3109/14756366.2012.672983

    Article  CAS  PubMed  Google Scholar 

  47. Pacchiano F, Carta F, McDonald PC et al (2011) Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem 54:1896–1902. https://doi.org/10.1021/jm101541x

    Article  CAS  PubMed  Google Scholar 

  48. Lou Y, McDonald PC, Oloumi A et al (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71:3364–3376. https://doi.org/10.1158/0008-5472.CAN-10-4261

    Article  CAS  PubMed  Google Scholar 

  49. Langella E, Alterio V, D’Ambrosio K et al (2019) Exploring benzoxaborole derivatives as carbonic anhydrase inhibitors: a structural and computational analysis reveals their conformational variability as a tool to increase enzyme selectivity. J Enzyme Inhib Med Chem 1:1498–1505. https://doi.org/10.1080/14756366.2019.1653291

    Article  CAS  Google Scholar 

  50. Buonanno M, Di Fiore A, Langella E et al (2018) The crystal structure of a hCA VII variant provides insights into the molecular determinants responsible for its catalytic behavior. Int J Mol Sci 19:1571. https://doi.org/10.3390/ijms19061571

    Article  CAS  PubMed Central  Google Scholar 

  51. De Simone G, Di Fiore A, Truppo E et al (2019) Exploration of the residues modulating the catalytic features of human carbonic anhydrase XIII by a site-specific mutagenesis approach. J Enzyme Inhib Med Chem 34:1506–1510. https://doi.org/10.1080/14756366.2019.1653290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181. https://doi.org/10.1038/nrd2467

    Article  CAS  PubMed  Google Scholar 

  53. Alterio V, Langella E, Viparelli F et al (2012) Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii. Biochimie 94:1232–1241. https://doi.org/10.1016/j.biochi.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  54. Akocak S, Supuran CT (2019) Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: a review. J Enzyme Inhib Med Chem 34:1652–1659. https://doi.org/10.1080/14756366.2019.1664501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Supuran CT, Alterio V, Di Fiore A et al (2018) Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med Res Rev 38:1799–1836. https://doi.org/10.1002/med.21497

    Article  PubMed  Google Scholar 

  56. Monti DM, De Simone G, Langella E et al (2017) Insights into the role of reactive sulfhydryl groups of carbonic anhydrase III and VII during oxidative damage. J Enzyme Inhib Med Chem 32:5–12

    Article  CAS  Google Scholar 

  57. Pastorek J, Pastorekova S, Zatovicova M (2008) Cancer-associated carbonic anhydrases and their inhibition. Curr Pharm Des 14:685–698. https://doi.org/10.2174/138161208783877893

    Article  PubMed  Google Scholar 

  58. Christianson HC, Menard JA, Chandran VI et al (2017) Tumor antigen glycosaminoglycan modification regulates antibody-drug conjugate delivery and cytotoxicity. Oncotarget 8:66960–66974. https://doi.org/10.18632/oncotarget.16921

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ditte P, Dequiedt F, Svastova E et al (2011) Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors. Cancer Res 71:7558–7567. https://doi.org/10.1158/0008-5472.CAN-11-2520

    Article  CAS  PubMed  Google Scholar 

  60. Dorai T, Sawczuk IS, Pastorek J et al (2005) The role of carbonic anhydrase IX overexpression in kidney cancer. Eur J Cancer 41:2935–2947. https://doi.org/10.1016/j.ejca.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  61. Buonanno M, Langella E, Zambrano N et al (2017) Disclosing the interaction of carbonic anhydrase IX with cullin-associated NEDD8-dissociated protein 1 by molecular modeling and integrated binding measurements. ACS Chem Biol 12:1460–1465. https://doi.org/10.1021/acschembio.7b00055

    Article  CAS  PubMed  Google Scholar 

  62. Alterio V, Hilvo M, Di Fiore A et al (2009) Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci U S A 106:16233–16238. https://doi.org/10.1073/pnas.0908301106

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee S-H, McIntyre D, Honess D et al (2018) Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br J Cancer 119:622–630. https://doi.org/10.1038/s41416-018-0216-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Opavský R, Pastoreková S et al (1996) HumanMN/CA9Gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 33:480–487. https://doi.org/10.1006/geno.1996.0223

    Article  PubMed  Google Scholar 

  65. Ames S, Pastorekova S, Becker HM (2018) The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells. Oncotarget 9:27940–27957

    Article  Google Scholar 

  66. Innocenti A, Pastorekova S, Pastorek J et al (2009) The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as anintrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorg Med Chem Lett 19:5825–5828. https://doi.org/10.1016/j.bmcl.2009.08.088

    Article  CAS  PubMed  Google Scholar 

  67. Švastova E, Hulikova A, Rafajova M et al (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577:439–445. https://doi.org/10.1016/j.febslet.2004.10.043

    Article  CAS  PubMed  Google Scholar 

  68. Chiche J, Ilc K, Laferriere J et al (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368. https://doi.org/10.1158/0008-5472.CAN-08-2470

    Article  CAS  PubMed  Google Scholar 

  69. Delucchi M, Schaper E, Sachenkova O et al (2020) A new census of protein tandem repeats and their relationship with intrinsic disorder. Genes (Basel) 11:407. https://doi.org/10.3390/genes11040407

    Article  CAS  Google Scholar 

  70. Jorda J, Xue B, Uversky VN, Kajava AV (2010) Protein tandem repeats - the more perfect, the less structured. FEBS J 277:2673–2682. https://doi.org/10.1111/j.1742-4658.2010.07684.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Uversky VN, Gillespie JR, Fink AL (2000) Why are ?natively unfolded? proteins unstructured under physiologic conditions? Proteins Struct Funct Genet 41:415–427. https://doi.org/10.1002/1097-0134(20001115)41:3%3c415::AID-PROT130%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  72. Xue B, Dunbrack RL, Williams RW et al (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta Proteins Proteomics 1804:996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011

    Article  CAS  Google Scholar 

  73. Huang YJ, Acton TB, Montelione GT (2014) DisMeta: a meta server for construct design and optimization. Methods Mol Biol 1091:3–16. https://doi.org/10.1007/978-1-62703-691-7_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uversky VN (2013) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta Proteins Proteomics 1834:932–951. https://doi.org/10.1016/j.bbapap.2012.12.008

    Article  CAS  Google Scholar 

  75. Singh GP, Ganapathi M, Sandhu KS, Dash D (2005) Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes. Proteins Struct Funct Bioinforma 62:309–315. https://doi.org/10.1002/prot.20746

    Article  CAS  Google Scholar 

  76. Takahashi K, Stamenkovic I, Cutler M et al (1996) Keratan sulfate modification of CD44 modulates adhesion to hyaluronate. J Biol Chem 271:9490–9496. https://doi.org/10.1074/jbc.271.16.9490

    Article  CAS  PubMed  Google Scholar 

  77. Nishimura M, Yan W, Mukudai Y et al (1998) Role of chondroitin sulfate–hyaluronan interactions in the viscoelastic properties of extracellular matrices and fluids. Biochim Biophys Acta Gen Subj 1380:1–9. https://doi.org/10.1016/S0304-4165(97)00119-0

    Article  CAS  Google Scholar 

  78. Tuhkanen A-L, Tammi M, Tammi R (1997) CD44 substituted with heparan sulfate and endo-β-galactosidase-sensitive oligosaccharides: a major proteoglycan in adult human epidermis. J Invest Dermatol 109:213–218. https://doi.org/10.1111/1523-1747.ep12319402

    Article  CAS  PubMed  Google Scholar 

  79. Lai C-J, Lin C-Y, Liao W-Y et al (2019) CD44 promotes migration and invasion of docetaxel-resistant prostate cancer cells likely via induction of hippo-yap signaling. Cells 8:295. https://doi.org/10.3390/cells8040295

    Article  CAS  PubMed Central  Google Scholar 

  80. Yin J, Zhang H, Wu X et al (2020) CD44 inhibition attenuates EGFR signaling and enhances cisplatin sensitivity in human EGFR wild-type non-small-cell lung cancer cells. Int J Mol Med 45:1783–1792. https://doi.org/10.3892/ijmm.2020.4562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu Y, Yu C, Wu Y et al (2017) CD44 + fibroblasts increases breast cancer cell survival and drug resistance via IGF2BP3-CD44-IGF2 signalling. J Cell Mol Med 21:1979–1988. https://doi.org/10.1111/jcmm.13118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Závada J, Závadová Z, Pastorek J et al (2000) Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br J Cancer 82:1808–1813. https://doi.org/10.1054/bjoc.2000.1111

    Article  PubMed  PubMed Central  Google Scholar 

  83. Csaderova L, Debreova M, Radvak P et al (2013) The effect of carbonic anhydrase IX on focal contacts during cell spreading and migration. Front Physiol. https://doi.org/10.3389/fphys.2013.00271

    Article  PubMed  PubMed Central  Google Scholar 

  84. Debreova M, Csaderova L, Burikova M et al (2019) CAIX regulates invadopodia formation through both a pH-dependent mechanism and interplay with actin regulatory proteins. Int J Mol Sci 20:2745. https://doi.org/10.3390/ijms20112745

    Article  CAS  PubMed Central  Google Scholar 

  85. Pastorek J, Pastorekova S (2015) Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Semin Cancer Biol 31:52–64. https://doi.org/10.1016/j.semcancer.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  86. Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Meta Rev 26:299–310. https://doi.org/10.1007/s10555-007-9064-0

    Article  CAS  Google Scholar 

  87. Wykoff CC, Beasley NJP, Watson PH et al (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083

    CAS  PubMed  Google Scholar 

  88. Miles AL, Burr SP, Grice GL, Nathan JA (2017) The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels. Elife. https://doi.org/10.7554/eLife.22693

    Article  PubMed  PubMed Central  Google Scholar 

  89. Payen VL, Mina E, Van Hée VF et al (2020) Monocarboxylate transporters in cancer. Mol Metab 33:48–66. https://doi.org/10.1016/j.molmet.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  90. Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ (1993) Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol Physiol 265:C1015–C1029. https://doi.org/10.1152/ajpcell.1993.265.4.C1015

    Article  CAS  Google Scholar 

  91. Voss NCS, Kold-Petersen H, Henningsen MB et al (2019) Upregulated Na + /H + -exchange protects human colon cancer tissue against intracellular acidification. Biomed Res Int 19:1–5. https://doi.org/10.1155/2019/3702783

    Article  CAS  Google Scholar 

  92. Parks SK, Cormerais Y, Pouysségur J (2017) Hypoxia and cellular metabolism in tumour pathophysiology. J Physiol 595:2439–2450. https://doi.org/10.1113/JP273309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Swietach P, Hulikova A, Vaughan-Jones RD, Harris AL (2010) New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene 29:6509–6521. https://doi.org/10.1038/onc.2010.455

    Article  CAS  PubMed  Google Scholar 

  94. Chiche J, Brahimi-Horn MC, Pouysségur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–794. https://doi.org/10.1111/j.1582-4934.2009.00994.x

    Article  CAS  PubMed  Google Scholar 

  95. Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308. https://doi.org/10.1002/jcp.22400

    Article  CAS  PubMed  Google Scholar 

  96. Morgan PE, Pastoreková S, Stuart-Tilley AK et al (2007) Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters. Am J Physiol Physiol 293:C738–C748. https://doi.org/10.1152/ajpcell.00157.2007

    Article  CAS  Google Scholar 

  97. Becker HM (2020) Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 122(2):157–167

    Article  CAS  Google Scholar 

  98. Mboge M, Mahon B, McKenna R, Frost S (2018) Carbonic anhydrases: role in pH control and cancer. Metabolites 8:19. https://doi.org/10.3390/metabo8010019

    Article  CAS  PubMed Central  Google Scholar 

  99. Sedlakova O (2014) Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol. https://doi.org/10.3389/fphys.2013.00400

    Article  PubMed  PubMed Central  Google Scholar 

  100. Supuran CT (2017) Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 7:48. https://doi.org/10.3390/metabo7030048

    Article  CAS  PubMed Central  Google Scholar 

  101. Monaco S, Gioia M, Rodriguez J et al (2007) Modulation of the proteolytic activity of matrix metalloproteinase-2 (gelatinase A) on fibrinogen. Biochem J 402:503–513. https://doi.org/10.1042/BJ20061064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ (2011) Drug Resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm 8:2032–2038. https://doi.org/10.1021/mp200292c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ohtsubo T, Igawa H, Saito T et al (2001) Acidic environment modifies heat- or radiation-induced apoptosis in human maxillary cancer cells. Int J Radiat Oncol 49:1391–1398. https://doi.org/10.1016/S0360-3016(00)01590-X

    Article  CAS  Google Scholar 

  104. Supuran TC, Fiore A, Alterio V et al (2010) Recent advances in structural studies of the carbonic anhydrase family: the crystal structure of human CA IX and CA XIII. Curr Pharm Des 16:3246–3254. https://doi.org/10.2174/138161210793429841

    Article  CAS  PubMed  Google Scholar 

  105. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–777. https://doi.org/10.1038/nrd3554

    Article  CAS  PubMed  Google Scholar 

  106. Monti SM, Supuran CT, De Simone G (2013) Anticancer carbonic anhydrase inhibitors: a patent review (2008–2013). Expert Opin Ther Pat 23:737–749. https://doi.org/10.1517/13543776.2013.798648

    Article  CAS  PubMed  Google Scholar 

  107. Pastoreková S, Závadová Z, Košťál M et al (1992) A novel quasi-viral agent, MaTu, is a two-component system. Virology 187:620–626. https://doi.org/10.1016/0042-6822(92)90464-Z

    Article  PubMed  Google Scholar 

  108. Klatte T, Seligson DB, Rao JY et al (2009) Carbonic anhydrase IX in bladder cancer. Cancer 115:1448–1458. https://doi.org/10.1002/cncr.24163

    Article  PubMed  Google Scholar 

  109. Jensen HK, Nordsmark M, Donskov F et al (2008) Immunohistochemical expression of carbonic anhydrase IX assessed over time and during treatment in renal cell carcinoma. BJU Int Suppl. https://doi.org/10.1111/j.1464-410x.2008.07649.x

    Article  Google Scholar 

  110. Král V, Mader P, Collard R et al (2007) Stabilization of antibody structure upon association to a human carbonic anhydrase IX epitope studied by X-ray crystallography, microcalorimetry, and molecular dynamics simulations. Proteins Struct Funct Bioinforma 71:1275–1287. https://doi.org/10.1002/prot.21821

    Article  CAS  Google Scholar 

  111. Stravinskiene D, Imbrasaite A, Petrikaite V et al (2019) New Monoclonal antibodies for a selective detection of membrane-associated and soluble forms of carbonic anhydrase IX in human cell lines and biological samples. Biomolecules 9:304. https://doi.org/10.3390/biom9080304

    Article  CAS  PubMed Central  Google Scholar 

  112. John A, Sivashanmugam M, Natarajan SK, Umashankar V (2020) Computational modeling of novel inhibitory peptides targeting proteoglycan like region of carbonic anhydrase IX and in vitro validation in HeLa cells. J Biomol Struct Dyn 38:1995–2006. https://doi.org/10.1080/07391102.2019.1623075

    Article  CAS  PubMed  Google Scholar 

  113. John A, Vetrivel U, Sivashanmugam M, Natarajan SK (2020) Microsecond simulation of the proteoglycan-like region of carbonic anhydrase IX and design of chemical inhibitors targeting pH homeostasis in cancer cells. ACS Omega. https://doi.org/10.1021/acsomega.9b04203

    Article  PubMed  PubMed Central  Google Scholar 

  114. Metallo SJ (2010) Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol 14:481–488. https://doi.org/10.1016/j.cbpa.2010.06.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Uversky VN (2012) Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin Drug Discov 7:475–488. https://doi.org/10.1517/17460441.2012.686489

    Article  CAS  PubMed  Google Scholar 

  116. Dunker AK, Uversky VN (2010) Drugs for ‘protein clouds’: targeting intrinsically disordered transcription factors. Curr Opin Pharmacol 10:782–788. https://doi.org/10.1016/j.coph.2010.09.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the PGR00963 financed by the Italian Ministry of Foreign Affairs and International Cooperation.

Funding

This work was partially supported by the PGR00963 financed by the Italian Ministry of Foreign Affairs and International Cooperation.

Author information

Authors and Affiliations

Authors

Contributions

EL, MB, and SMM conceived and wrote the manuscript; EL and SMM prepared the figures. GDS conceived and participated in revision of the paper. All authors commented on the manuscript.

Corresponding authors

Correspondence to Emma Langella or Simona Maria Monti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Availability of data and material

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langella, E., Buonanno, M., De Simone, G. et al. Intrinsically disordered features of carbonic anhydrase IX proteoglycan-like domain. Cell. Mol. Life Sci. 78, 2059–2067 (2021). https://doi.org/10.1007/s00018-020-03697-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03697-3

Keywords

Navigation