Skip to main content

Advertisement

Log in

Epidermal resident γδ T cell development and function in skin

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Epidermal resident γδ T cells, or dendritic epidermal T cells (DETCs) in mice, are a unique and conserved population of γδ T cells enriched in the epidermis, where they serve as the regulators of immune responses and sense skin injury. Despite the great advances in the understanding of the development, homeostasis, and function of DETCs in the past decades, the origin and the underlying molecular mechanisms remain elusive. Here, we reviewed the recent research progress on DETCs, including their origin and homeostasis in the skin, especially at transcriptional and epigenetic levels, and discuss the involvement of DETCs in skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brenner MB et al (1986) Identification of a putative second T-cell receptor. Nature 322(6075):145–149

    CAS  PubMed  Google Scholar 

  2. Schmolka N et al (2015) Epigenetic and transcriptional regulation of gammadelta T cell differentiation: programming cells for responses in time and space. Semin Immunol 27(1):19–25

    CAS  PubMed  Google Scholar 

  3. Raulet DH (1989) The structure, function, and molecular genetics of the gamma/delta T cell receptor. Annu Rev Immunol 7:175–207

    CAS  PubMed  Google Scholar 

  4. Vantourout P, Hayday A (2013) Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol 13(2):88–100

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiest DL (2016) Development of gammadelta T Cells, the special-force soldiers of the immune system. Methods Mol Biol 1323:23–32

    CAS  PubMed  Google Scholar 

  6. Van Kaer L, Olivares-Villagomez D (2018) Development, homeostasis, and functions of intestinal intraepithelial lymphocytes. J Immunol 200(7):2235–2244

    PubMed  Google Scholar 

  7. Nielsen MM, Witherden DA, Havran WL (2017) Gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. J Immunol 17(12):733–745

    CAS  Google Scholar 

  8. Garman RD, Doherty PJ, Raulet DH (1986) Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 45(5):733–742

    CAS  PubMed  Google Scholar 

  9. Heilig JS, Tonegawa S (1986) Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322(6082):836–840

    CAS  PubMed  Google Scholar 

  10. Nielsen MM et al (2014) IL-1beta-dependent activation of dendritic epidermal T cells in contact hypersensitivity. J Immunol 192(7):2975–2983

    CAS  PubMed  Google Scholar 

  11. Floudas A et al (2017) IL-17 receptor A maintains and protects the skin barrier to prevent allergic skin inflammation. J Immunol 199(2):707–717

    CAS  PubMed  Google Scholar 

  12. Toulon A et al (2009) A role for human skin-resident T cells in wound healing. J Exp Med 206(4):743–750

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Havran WL, Allison JP (1990) Origin of Thy-1+ dendritic epidermal cells of adult mice from fetal thymic precursors. Nature 344(6261):68–70

    CAS  PubMed  Google Scholar 

  14. McVay LD, Carding SR (1996) Extrathymic origin of human gamma delta T cells during fetal development. J Immunol 157(7):2873–2882

    CAS  PubMed  Google Scholar 

  15. McVay LD et al (1998) The generation of human gammadelta T cell repertoires during fetal development. J Immunol 160(12):5851–5860

    CAS  PubMed  Google Scholar 

  16. Gentek R et al (2018) Epidermal gammadelta T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J Exp Med 215(12):2994–3005

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chodaczek G et al (2012) Body-barrier surveillance by epidermal gammadelta TCRs. Nat Immunol 13(3):272–282

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng M, Hu S (2017) Lung-resident gammadelta T cells and their roles in lung diseases. Immunology 151(4):375–384

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vantourout P, Hayday A (2013) Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 13(2):88–100

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nielsen MM, Witherden DA, Havran WL (2017) Gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol 17(12):733–745

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferrero I et al (2001) T cell receptor specificity is critical for the development of epidermal gammadelta T cells. J Exp Med 194(10):1473–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hara H et al (2000) Development of dendritic epidermal T cells with a skewed diversity of gamma delta TCRs in V delta 1-deficient mice. J Immunol 165(7):3695–3705

    CAS  PubMed  Google Scholar 

  23. Mallick-Wood CA et al (1998) Conservation of T cell receptor conformation in epidermal gammadelta cells with disrupted primary Vgamma gene usage. Science 279(5357):1729–1733

    CAS  PubMed  Google Scholar 

  24. Xiong N, Kang C, Raulet DH (2004) Positive selection of dendritic epidermal gammadelta T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 21(1):121–131

    CAS  PubMed  Google Scholar 

  25. Narayan K et al (2012) Intrathymic programming of effector fates in three molecularly distinct gammadelta T cell subtypes. Nat Immunol 13(5):511–518

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawai K et al (1995) Impaired development of V gamma 3 dendritic epidermal T cells in p56lck protein tyrosine kinase-deficient and CD45 protein tyrosine phosphatase-deficient mice. J Exp Med 181(1):345–349

    CAS  PubMed  Google Scholar 

  27. Kadlecek TA et al (1998) Differential requirements for ZAP-70 in TCR signaling and T cell development. J Immunol 161(9):4688–4694

    CAS  PubMed  Google Scholar 

  28. Mallick-Wood CA et al (1996) Disruption of epithelial gamma delta T cell repertoires by mutation of the Syk tyrosine kinase. Proc Natl Acad Sci USA 93(18):9704–9709

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lauritsen JP et al (2009) Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation Notch independent. Immunity 31(4):565–575

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Turchinovich G, Hayday AC (2011) Skint-1 identifies a common molecular mechanism for the development of interferon-gamma-secreting versus interleukin-17-secreting gammadelta T cells. Immunity 35(1):59–68

    CAS  PubMed  Google Scholar 

  31. Briseno CG et al (2017) Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proc Natl Acad Sci USA 114(15):3957–3962

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Riemann M et al (2017) Central immune tolerance depends on crosstalk between the classical and alternative NF-kappaB pathways in medullary thymic epithelial cells. J Autoimmun 81:56–67

    CAS  PubMed  Google Scholar 

  33. Roberts NA et al (2012) Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity 36(3):427–437

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mair F et al (2015) The NFkappaB-inducing kinase is essential for the developmental programming of skin-resident and IL-17-producing gammadelta T cells. Elife 4:e10087

    PubMed  PubMed Central  Google Scholar 

  35. Park SY et al (1995) Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3(6):771–782

    CAS  PubMed  Google Scholar 

  36. Witherden DA, Havran WL (2011) Molecular aspects of epithelial gammadelta T cell regulation. Trends Immunol 32(6):265–271

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Moore TA et al (1996) Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7−/− mice. J Immunol 157(6):2366–2373

    CAS  PubMed  Google Scholar 

  38. Kang J et al (2004) STAT5 is required for thymopoiesis in a development stage-specific manner. J Immunol 173(4):2307–2314

    CAS  PubMed  Google Scholar 

  39. Woolf E et al (2007) Runx3 regulates dendritic epidermal T cell development. Dev Biol 303(2):703–714

    CAS  PubMed  Google Scholar 

  40. Yao Y et al (2018) Embryonic fate mapping uncovers the critical role of microRNAs in the development of epidermal gammadelta T cells. J Invest Dermatol 138(1):236–239

    CAS  PubMed  Google Scholar 

  41. Andreotti AH et al (2010) T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2(7):a002287

    PubMed  PubMed Central  Google Scholar 

  42. Xia M et al (2010) Differential roles of IL-2-inducible T cell kinase-mediated TCR signals in tissue-specific localization and maintenance of skin intraepithelial T cells. J Immunol 184(12):6807–6814

    CAS  PubMed  Google Scholar 

  43. Schon MP et al (2002) Dendritic epidermal T cells (DETC) are diminished in integrin alphaE(CD103)-deficient mice. J Invest Dermatol 119(1):190–193

    PubMed  Google Scholar 

  44. Grueter B et al (2005) Runx3 regulates integrin alpha E/CD103 and CD4 expression during development of CD4-/CD8+ T cells. J Immunol 175(3):1694–1705

    CAS  PubMed  Google Scholar 

  45. Girardi M et al (2002) Resident skin-specific gammadelta T cells provide local, nonredundant regulation of cutaneous inflammation. J Exp Med 195(7):855–867

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ley K, Kansas GS (2004) Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat Rev Immunol 4(5):325–335

    CAS  PubMed  Google Scholar 

  47. Jiang X, Campbell JJ, Kupper TS (2010) Embryonic trafficking of gammadelta T cells to skin is dependent on E/P selectin ligands and CCR4. Proc Natl Acad Sci USA 107(16):7443–7448

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin Y et al (2010) CCR10 is important for the development of skin-specific gammadeltaT cells by regulating their migration and location. J Immunol 185(10):5723–5731

    CAS  PubMed  Google Scholar 

  49. Li Y et al (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147(3):629–640

    CAS  PubMed  Google Scholar 

  50. Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561

    CAS  PubMed  Google Scholar 

  51. Jux B, Kadow S, Esser C (2009) Langerhans cell maturation and contact hypersensitivity are impaired in aryl hydrocarbon receptor-null mice. J Immunol 182(11):6709–6717

    CAS  PubMed  Google Scholar 

  52. Kadow S et al (2011) Aryl hydrocarbon receptor is critical for homeostasis of invariant gammadelta T cells in the murine epidermis. J Immunol 187(6):3104–3110

    CAS  PubMed  Google Scholar 

  53. Prell RA, Oughton JA, Kerkvliet NI (1995) Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on anti-CD3-induced changes in T-cell subsets and cytokine production. Int J Immunopharmacol 17(11):951–961

    CAS  PubMed  Google Scholar 

  54. Myers DR, Zikherman J, Roose JP (2017) Tonic signals: why do lymphocytes bother? Trends Immunol 38(11):844–857

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang W et al (1999) Essential role of LAT in T cell development. Immunity 10(3):323–332

    CAS  PubMed  Google Scholar 

  56. Zhang B et al (2015) Differential requirements of TCR signaling in homeostatic maintenance and function of dendritic epidermal T cells. J Immunol 195(9):4282–4291

    CAS  PubMed  Google Scholar 

  57. Barros-Martins J et al (2016) Effector gammadelta T cell differentiation relies on master but not auxiliary Th cell transcription factors. J Immunol 196(9):3642–3652

    CAS  PubMed  Google Scholar 

  58. Girardi M et al (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294(5542):605–609

    CAS  PubMed  Google Scholar 

  59. Szabo SJ et al (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    CAS  PubMed  Google Scholar 

  60. Buus TB et al (2017) Three distinct developmental pathways for adaptive and two IFN-gamma-producing gammadelta T subsets in adult thymus. Nat Commun 8(1):1911

    PubMed  PubMed Central  Google Scholar 

  61. Salim M et al (2016) Characterization of a putative receptor binding surface on Skint-1, a critical determinant of dendritic epidermal T cell selection. J Biol Chem 291(17):9310–9321

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lewis JM et al (2006) Selection of the cutaneous intraepithelial gammadelta+ T cell repertoire by a thymic stromal determinant. Nat Immunol 7(8):843–850

    CAS  PubMed  Google Scholar 

  63. Lu Y et al (2015) PLZF controls the development of fetal-derived IL-17+Vgamma6+ gammadelta T Cells. J Immunol 195(9):4273–4281

    CAS  PubMed  Google Scholar 

  64. Champsaur M, Lanier LL (2010) Effect of NKG2D ligand expression on host immune responses. Immunol Rev 235(1):267–285

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Diefenbach A et al (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3(12):1142–1149

    CAS  PubMed  Google Scholar 

  66. Nielsen MM et al (2015) NKG2D-dependent activation of dendritic epidermal T cells in contact hypersensitivity. J Invest Dermatol 135(5):1311–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Havran WL, Jameson JM (2010) Epidermal T cells and wound healing. J Immunol 184(10):5423–5428

    CAS  PubMed  Google Scholar 

  68. Girardi M et al (2003) The distinct contributions of murine T cell receptor (TCR)gammadelta+ and TCRalphabeta+ T cells to different stages of chemically induced skin cancer. J Exp Med 198(5):747–755

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yoshida S et al (2012) Involvement of an NKG2D ligand H60c in epidermal dendritic T cell-mediated wound repair. J Immunol 188(8):3972–3979

    CAS  PubMed  Google Scholar 

  70. Strid J et al (2011) The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Science 334(6060):1293–1297

    CAS  PubMed  Google Scholar 

  71. Ibusuki A et al (2014) NKG2D triggers cytotoxicity in murine epidermal gammadelta T cells via PI3K-dependent, Syk/ZAP70-independent signaling pathway. J Invest Dermatol 134(2):396–404

    CAS  PubMed  Google Scholar 

  72. Van Beneden K et al (2002) Expression of inhibitory receptors Ly49E and CD94/NKG2 on fetal thymic and adult epidermal TCR V gamma 3 lymphocytes. J Immunol 168(7):3295–3302

    PubMed  Google Scholar 

  73. Dadi S et al (2016) Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164(3):365–377

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Witherden DA et al (2010) The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation. Science 329(5996):1205–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kumanogoh A, Kikutani H (2004) Biological functions and signaling of a transmembrane semaphorin, CD100/Sema4D. Cell Mol Life Sci 61(3):292–300

    CAS  PubMed  Google Scholar 

  76. Witherden DA et al (2012) The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal gammadelta T cell function. Immunity 37(2):314–325

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Macleod AS, Havran WL (2011) Functions of skin-resident gammadelta T cells. Cell Mol Life Sci 68(14):2399–2408

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gupta RK, Gupta K, Dwivedi PD (2017) Pathophysiology of IL-33 and IL-17 in allergic disorders. Cytokine Growth Factor Rev 38:22–36

    CAS  PubMed  Google Scholar 

  79. Abuabara K et al (2018) The prevalence of atopic dermatitis beyond childhood: a systematic review and meta-analysis of longitudinal studies. Allergy 73(3):696–704

    CAS  PubMed  Google Scholar 

  80. Sulcova J et al (2015) Accumulation and activation of epidermal gammadelta T cells in a mouse model of chronic dermatitis is not required for the inflammatory phenotype. Eur J Immunol 45(9):2517–2528

    CAS  PubMed  Google Scholar 

  81. Jameson J et al (2002) A role for skin gammadelta T cells in wound repair. Science 296(5568):747–749

    CAS  PubMed  Google Scholar 

  82. MacLeod AS et al (2013) Dendritic epidermal T cells regulate skin antimicrobial barrier function. J Clin Invest 123(10):4364–4374

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodrigues M et al (2019) Wound healing: a cellular perspective. Physiol Rev 99(1):665–706

    CAS  PubMed  Google Scholar 

  84. Wang Y et al (2017) IL-15 enhances activation and IGF-1 production of dendritic epidermal T cells to promote wound healing in diabetic mice. Front Immunol. 8:1557

    PubMed  PubMed Central  Google Scholar 

  85. Li Y et al (2018) Functions of Vgamma4 T cells and dendritic epidermal T cells on skin wound healing. Front Immunol 9:1099

    PubMed  PubMed Central  Google Scholar 

  86. Li Y et al (2018) Vgamma4 T cells inhibit the pro-healing functions of dendritic epidermal T cells to delay skin wound closure through IL-17A. Front Immunol 9:240

    PubMed  PubMed Central  Google Scholar 

  87. Girardi M (2006) Immunosurveillance and immunoregulation by gammadelta T cells. J Invest Dermatol 126(1):25–31

    CAS  PubMed  Google Scholar 

  88. Antsiferova M et al (2011) Activin enhances skin tumourigenesis and malignant progression by inducing a pro-tumourigenic immune cell response. Nat Commun 2:576

    PubMed  Google Scholar 

  89. Cho JS et al (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120(5):1762–1773

    PubMed  PubMed Central  Google Scholar 

  90. Leclercq G, Plum J (1995) Stimulation of TCR V gamma 3 cells by gram-negative bacteria. J Immunol 154(10):5313–5319

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the Henry Ford Immunology Program Grants (T71016, QS Mi; T71017, L Zhou).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhou or Qing-Sheng Mi.

Ethics declarations

Conflict of interest

No conflicts of interest for each author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Dimitrion, P., Cvetkovski, S. et al. Epidermal resident γδ T cell development and function in skin. Cell. Mol. Life Sci. 78, 573–580 (2021). https://doi.org/10.1007/s00018-020-03613-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03613-9

Keywords

Navigation