Skip to main content

Advertisement

Log in

Targets for protection and mitigation of radiation injury

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lindegaard JC, Grau C (2000) Has the outlook improved for amifostine as a clinical radioprotector? Radiother Oncol 57(2):113–118

    CAS  PubMed  Google Scholar 

  2. Wasserman T (1999) Radioprotective effects of amifostine. Semin Oncol 20:20

    Google Scholar 

  3. Abt G, Vaghef H, Gebhart E, Dahlgren CV, Hellman B (1997) The role of N-acetylcysteine as a putative radioprotective agent on X-ray-induced DNA damage as evaluated by alkaline single-cell gel electrophoresis. Mutation Res DNA Rep 384(1):55–64

    CAS  Google Scholar 

  4. Rades D, Fehlauer F, Bajrovic A, Mahlmann B, Richter E, Alberti W (2004) Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother Oncol 70(3):261–264. https://doi.org/10.1016/j.radonc.2003.10.005

    Article  CAS  PubMed  Google Scholar 

  5. Brizel DM, Wasserman TH, Henke M, Strnad V, Rudat V, Monnier A et al (2000) Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 18(19):3339–3345

    CAS  PubMed  Google Scholar 

  6. Gudkov S, Popova N, Bruskov V (2015) Radioprotectors: history, trends and prospects. Biofizika 60(4):801–811

    CAS  PubMed  Google Scholar 

  7. Johnke RM, Sattler JA, Allison RR (2014) Radioprotective agents for radiation therapy: future trends. Future Oncol 10(15):2345–2357

    CAS  PubMed  Google Scholar 

  8. Gudkov AV, Komarova EA (2010) Radioprotection: smart games with death. J Clin Investig 120(7):2270–2273

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Deas SD, Huprikar N, Skabelund A (2017) Radiation exposure and lung disease in today's nuclear world. Curr Opin Pulmon Med 23(2):167–172

    Google Scholar 

  10. Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB (2010) Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15(4):360–371

    PubMed  PubMed Central  Google Scholar 

  11. Delanian S, Lefaix J-L (2007) Current management for late normal tissue injury: radiation-induced fibrosis and necrosis. Semin Radiat Oncol 20:20

    Google Scholar 

  12. Deeg HJ (1990) Delayed complications and long-term effects after bone marrow transplantation. Hematol Oncol Clin 4(3):641–657

    CAS  Google Scholar 

  13. Eriksson D, Stigbrand T (2010) Radiation-induced cell death mechanisms. Tumor Biol 31(4):363–372

    Google Scholar 

  14. Riklis E, Emerit I, Setlow R (1996) New approaches to biochemical radioprotection: antioxidants and DNA repair enhancement. Adv Sp Res 18(1–2):51–54

    CAS  Google Scholar 

  15. Golden E, Pellicciotta I, Demaria S, Barcellos-Hoff MH, Formenti SC (2012) The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol 2:88

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Kaviyani N, Tavakol S (2020) Monoterpenes modulating autophagy: a review study. Basic Clin Pharmacol Toxicol 126:9

    CAS  Google Scholar 

  17. Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A et al (2019) Nanoparticles targeting STATs in cancer therapy. Cells 8(10):1158

    CAS  PubMed Central  Google Scholar 

  18. Holley AK, Miao L, St Clair DK, St Clair WH (2014) Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 20(10):1567–1589. https://doi.org/10.1089/ars.2012.5000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D et al (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320(5873):226–230. https://doi.org/10.1126/science.1154986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahmadi Z, Roomiani S, Bemani N, Ashrafizadeh M (2019) The targeting of autophagy and endoplasmic reticulum stress mechanisms by honokiol therapy. Rev Clin Med 6(2):66–73

    Google Scholar 

  21. Rainaldi G, Ferrante A, Indovina PL, Santini MT (2003) Induction of apoptosis or necrosis by ionizing radiation is dose-dependent in MG-63 osteosarcoma multicellular spheroids. Anticancer Res 23(3b):2505–2518

    CAS  PubMed  Google Scholar 

  22. Chen Z, Cao K, Xia Y, Li Y, Hou Y, Wang L et al (2019) Cellular senescence in ionizing radiation (Review). Oncol Rep 42(3):883–894. https://doi.org/10.3892/or.2019.7209

    Article  CAS  PubMed  Google Scholar 

  23. Verheij M, Bartelink H (2000) Radiation-induced apoptosis. Cell Tissue Res 301(1):133–142

    CAS  PubMed  Google Scholar 

  24. Ashrafizadeh M, Ahmadi Z (2019) Effects of statins on gut microbiota (microbiome). Rev Clin Med 6(2):55–59

    Google Scholar 

  25. Zhou L, Yuan R, Serggio L (2003) Molecular mechanisms of irradiation-induced apoptosis. Front Biosci J Virtual Lib 8:d9–d19. https://doi.org/10.2741/927

    Article  CAS  Google Scholar 

  26. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta Mol Cell Res 1863(12):2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  CAS  Google Scholar 

  27. Jung M, Zhang Y, Dimtchev A, Dritschilo A (1998) Impaired regulation of nuclear factor-κB results in apoptosis induced by gamma radiation. Radiat Res 149(6):596–601

    CAS  PubMed  Google Scholar 

  28. Zhang H, Wang Y-A, Meng A, Yan H, Wang X, Niu J et al (2013) Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. J Radiat Res 54(4):630–636. https://doi.org/10.1093/jrr/rrs142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenberger JS, Zambetti GP et al (2008) PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2(6):576–583. https://doi.org/10.1016/j.stem.2008.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang F, Cheng J, Liu D, Sun H, Zhao J, Wang J et al (2014) P53-participated cellular and molecular responses to irradiation are cell differentiation-determined in murine intestinal epithelium. Arch Biochem Biophys 542:21–27. https://doi.org/10.1016/j.abb.2013.11.012

    Article  CAS  PubMed  Google Scholar 

  31. Najafi M, Motevaseli E, Shirazi A, Geraily G, Rezaeyan A, Norouzi F et al (2018) Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 94(4):335–356. https://doi.org/10.1080/09553002.2018.1440092

    Article  CAS  PubMed  Google Scholar 

  32. Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A et al (2017) Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med 15(1):232. https://doi.org/10.1186/s12967-017-1338-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Musa AE, Omyan G, Esmaely F, Shabeeb D (2019) Radioprotective effect of hesperidin: a systematic review. Medicina (Kaunas) 55:7. https://doi.org/10.3390/medicina55070370

    Article  Google Scholar 

  34. Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE (2019) NF-kappaB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 234(10):17187–17204. https://doi.org/10.1002/jcp.28504

    Article  CAS  PubMed  Google Scholar 

  35. Maier P, Hartmann L, Wenz F, Herskind C (2016) Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci 17(1):102. https://doi.org/10.3390/ijms17010102

    Article  CAS  PubMed Central  Google Scholar 

  36. Gioia U, Francia S, Cabrini M, Brambillasca S, Michelini F, Jones-Weinert CW et al (2019) Pharmacological boost of DNA damage response and repair by enhanced biogenesis of DNA damage response RNAs. Sci Rep 9(1):6460. https://doi.org/10.1038/s41598-019-42892-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nieto A, Hara MR, Quereda V, Grant W, Saunders V, Xiao K et al (2019) βarrestin-1 regulates DNA repair by acting as an E3-ubiquitin ligase adaptor for 53BP1. Cell Death Differ. https://doi.org/10.1038/s41418-019-0406-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ramdzan ZM, Ginjala V, Pinder JB, Chung D, Donovan CM, Kaur S et al (2017) The DNA repair function of CUX1 contributes to radioresistance. Oncotarget 8(12):19021–19038. https://doi.org/10.18632/oncotarget.14875

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cheng Y, Ren X, Gowda AS, Shan Y, Zhang L, Yuan YS et al (2013) Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis 4(7):e731-e. https://doi.org/10.1038/cddis.2013.254

    Article  CAS  Google Scholar 

  40. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285(5434):1733–1737. https://doi.org/10.1126/science.285.5434.1733

    Article  CAS  PubMed  Google Scholar 

  41. Komarova EA, Kondratov RV, Wang K, Christov K, Golovkina TV, Goldblum JR et al (2004) Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 23(19):3265–3271. https://doi.org/10.1038/sj.onc.1207494

    Article  CAS  PubMed  Google Scholar 

  42. Kirsch DG, Santiago PM, di Tomaso E, Sullivan JM, Hou WS, Dayton T et al (2010) p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 327(5965):593–596. https://doi.org/10.1126/science.1166202

    Article  CAS  PubMed  Google Scholar 

  43. Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I et al (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2(9):474–479. https://doi.org/10.1038/nchembio809

    Article  CAS  PubMed  Google Scholar 

  44. Morita A, Yamamoto S, Wang B, Tanaka K, Suzuki N, Aoki S et al (2010) Sodium orthovanadate inhibits p53-mediated apoptosis. Cancer Res 70(1):257–265. https://doi.org/10.1158/0008-5472.can-08-3771

    Article  CAS  PubMed  Google Scholar 

  45. Morita A, Zhu J, Suzuki N, Enomoto A, Matsumoto Y, Tomita M et al (2006) Sodium orthovanadate suppresses DNA damage-induced caspase activation and apoptosis by inactivating p53. Cell Death Differ 13(3):499–511. https://doi.org/10.1038/sj.cdd.4401768

    Article  CAS  PubMed  Google Scholar 

  46. Wang B, Tanaka K, Morita A, Ninomiya Y, Maruyama K, Fujita K et al (2013) Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice. J Radiat Res 54(4):620–629. https://doi.org/10.1093/jrr/rrs140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Guzman AE, Ahmed M, Li Y-Q, Wong CS, Nieman BJ (2019) p53 loss mitigates early volume deficits in the brains of irradiated young mice. Int J Radiat Oncol Biol Phys 103(2):511–520. https://doi.org/10.1016/j.ijrobp.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  48. Morita A, Ariyasu S, Ohya S, Takahashi I, Wang B, Tanaka K et al (2013) Evaluation of zinc (II) chelators for inhibiting p53-mediated apoptosis. Oncotarget 4(12):2439–2450. https://doi.org/10.18632/oncotarget.1535

    Article  PubMed  PubMed Central  Google Scholar 

  49. Muller PAJ, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8. https://doi.org/10.1038/ncb2641

    Article  CAS  PubMed  Google Scholar 

  50. Mantovani F, Collavin L, Del Sal G (2019) Mutant p53 as a guardian of the cancer cell. Cell Death Differ 26(2):199–212. https://doi.org/10.1038/s41418-018-0246-9

    Article  PubMed  Google Scholar 

  51. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373

    CAS  PubMed  Google Scholar 

  52. Shcheblyakov DV, Logunov DY, Tukhvatulin AI, Shmarov MM, Naroditsky BS, Gintsburg AL (2010) Toll-like receptors (TLRs): the role in tumor progression. Acta Nat 2(3):21–29

    CAS  Google Scholar 

  53. Kurkjian CJ, Guo H, Montgomery ND, Cheng N, Yuan H, Merrill JR et al (2017) The toll–like Receptor 2/6 agonist, FSL–1 lipopeptide, therapeutically mitigates acute radiation syndrome. Sci Rep 7(1):17355

    PubMed  PubMed Central  Google Scholar 

  54. Burdelya LG, Gleiberman AS, Toshkov I, Aygun-Sunar S, Bapardekar M, Manderscheid-Kern P et al (2012) Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys 83(1):228–234

    CAS  PubMed  Google Scholar 

  55. Guo J, Chen Y, Lei X, Xu Y, Liu Z, Cai J et al (2017) Monophosphoryl lipid a attenuates radiation injury through TLR4 activation. Oncotarget 8(49):86031

    PubMed  PubMed Central  Google Scholar 

  56. Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S (2019) Modulatory effects of statins on the autophagy: a therapeutic perspective. J Cell Physiol 20:20

    Google Scholar 

  57. Burdelya LG, Brackett CM, Kojouharov B, Gitlin II, Leonova KI, Gleiberman AS et al (2013) Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist. Proc Natl Acad Sci 110(20):E1857–E1866

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Roses RE, Xu M, Koski GK, Czerniecki BJ (2008) Radiation therapy and Toll-like receptor signaling: implications for the treatment of cancer. Oncogene 27(2):200

    CAS  PubMed  Google Scholar 

  59. Ashrafizadeh M, Ahmadi Z, Mohamamdinejad R, Farkhondeh T, Samarghandian S (2019) Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Curr Mol Med 20:20

    Google Scholar 

  60. Epperly M, Rhieu B, Cao S, Goff J, Shields D, Franicola D et al (2014) Reduced radiation pulmonary fibrosis in toll-like receptor-4 (TLR4) deletion recombinant negative mice. Int J Radiat Oncol Biol Phys 90(1):S150. https://doi.org/10.1016/j.ijrobp.2014.05.625

    Article  Google Scholar 

  61. Paun A, Fox J, Balloy V, Chignard M, Qureshi ST, Haston CK (2010) Combined Tlr2 and Tlr4 deficiency increases radiation-induced pulmonary fibrosis in mice. Int J Radiat Oncol Biol Phys 77(4):1198–1205. https://doi.org/10.1016/j.ijrobp.2009.12.065

    Article  CAS  PubMed  Google Scholar 

  62. Urban-Wojciuk Z, Khan MM, Oyler BL, Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A et al (2019) The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol 10:2388. https://doi.org/10.3389/fimmu.2019.02388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gu J, Liu Y, Xie B, Ye P, Huang J, Lu Z (2018) Roles of toll-like receptors: From inflammation to lung cancer progression. Biomed Rep 8(2):126–132. https://doi.org/10.3892/br.2017.1034

    Article  CAS  PubMed  Google Scholar 

  64. Huang L, Xu H, Peng G (2018) TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol 15(5):428–437. https://doi.org/10.1038/cmi.2018.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mason KA, Ariga H, Neal R, Valdecanas D, Hunter N, Krieg AM et al (2005) Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 11(1):361–369

    CAS  PubMed  Google Scholar 

  66. Dovedi SJ, Melis MH, Wilkinson RW, Adlard AL, Stratford IJ, Honeychurch J et al (2013) Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma. Blood 121(2):251–259. https://doi.org/10.1182/blood-2012-05-432393

    Article  CAS  PubMed  Google Scholar 

  67. Dewan MZ, Vanpouille-Box C, Kawashima N, DiNapoli S, Babb JS, Formenti SC et al (2012) Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 18(24):6668–6678. https://doi.org/10.1158/1078-0432.ccr-12-0984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Adlard AL, Dovedi SJ, Telfer BA, Koga-Yamakawa E, Pollard C, Honeychurch J et al (2014) A novel systemically administered Toll-like receptor 7 agonist potentiates the effect of ionizing radiation in murine solid tumor models. Int J Cancer 135(4):820–829. https://doi.org/10.1002/ijc.28711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nicolay NH, Schölch S, Rauber C, Lopez Perez R, Debus J, Huber PE (2016) The combination of ionizing radiation and toll-like receptor 7/8 agonists creates local and abscopal tumor immune responses in vivo. Int J Radiat Oncol Biol Phys 96(2):E561. https://doi.org/10.1016/j.ijrobp.2016.06.2033

    Article  Google Scholar 

  70. Liu Z, Lei X, Li X, Cai J, Gao F, Yang Y (2018) Toll-like receptors and radiation protection. Eur Rev Med Pharmacol Sci 22(1):31–39

    CAS  PubMed  Google Scholar 

  71. Saha S, Bhanja P, Liu L, Alfieri AA, Yu D, Kandimalla ER et al (2012) TLR9 agonist protects mice from radiation-induced gastrointestinal syndrome. PLoS ONE 7(1):e29357-e. https://doi.org/10.1371/journal.pone.0029357

    Article  CAS  Google Scholar 

  72. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83. https://doi.org/10.1128/MMBR.00031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shin YS, Hwang HS, Kang SU, Chang JW, Oh Y-T, Kim C-H (2014) Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines. NeuroToxicology 40:111–122. https://doi.org/10.1016/j.neuro.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  74. Sundaramoorthy P, Wang Q, Zheng Z, Jiao Y, Chen BJ, Doan PL et al (2017) Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice. Stem Cell Res Ther 8(1):263. https://doi.org/10.1186/s13287-017-0711-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li D, Wang Y, Wu H, Lu L, Wang X, Zhang J et al (2013) The effects of p38 MAPK inhibition combined with G-CSF administration on the hematoimmune system in mice with irradiation injury. PLoS ONE 8(4):e62921-e. https://doi.org/10.1371/journal.pone.0062921

    Article  CAS  Google Scholar 

  76. Wang Y, Liu L, Zhou D (2011) Inhibition of p38 MAPK attenuates ionizing radiation-induced hematopoietic cell senescence and residual bone marrow injury. Radiat Res 176(6):743–752. https://doi.org/10.1667/rr2727.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li D, Wang Y, Wu H, Lu L, Zhang H, Chang J et al (2011) Mitigation of ionizing radiation-induced bone marrow suppression by p38 inhibition and G-CSF administration. J Radiat Res 52(6):712–716. https://doi.org/10.1269/jrr.11007

    Article  CAS  PubMed  Google Scholar 

  78. Kang YH, Lee SJ (2008) Role of p38 MAPK and JNK in enhanced cervical cancer cell killing by the combination of arsenic trioxide and ionizing radiation. Oncol Rep 20(3):637–643

    CAS  PubMed  Google Scholar 

  79. Munshi A, Ramesh R (2013) Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 4(9–10):401–408. https://doi.org/10.1177/1947601913485414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lasry A, Ben-Neriah Y (2015) Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol 36(4):217–228

    CAS  PubMed  Google Scholar 

  81. He S, Sharpless NE (2017) Senescence in health and disease. Cell 169(6):1000–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nguyen HQ, To NH, Zadigue P, Kerbrat S, De La Taille A, Le Gouvello S et al (2018) Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Crit Rev Oncol Hematol 129:13–26. https://doi.org/10.1016/j.critrevonc.2018.06.012

    Article  PubMed  Google Scholar 

  84. Qian Y, Chen X (2013) Senescence regulation by the p53 protein family. Methods Mol Biol (Clifton, NJ) 965:37–61. https://doi.org/10.1007/978-1-62703-239-1_3

    Article  CAS  Google Scholar 

  85. Poleszczuk J, Krzywon A, Forys U, Widel M (2015) Connecting radiation-induced bystander effects and senescence to improve radiation response prediction. Radiat Res 183(5):571–577

    CAS  PubMed  Google Scholar 

  86. Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK (2017) Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol 37(8):1446–1452. https://doi.org/10.1161/ATVBAHA.117.309451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kortlever RM, Nijwening JH, Bernards R (2008) Transforming growth factor-beta requires its target plasminogen activator inhibitor-1 for cytostatic activity. J Biol Chem 283(36):24308–24313. https://doi.org/10.1074/jbc.M803341200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Milliat F, Sabourin J-C, Tarlet G, Holler V, Deutsch E, Buard V et al (2008) Essential role of plasminogen activator inhibitor type-1 in radiation enteropathy. Am J Pathol 172(3):691–701. https://doi.org/10.2353/ajpath.2008.070930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abderrahmani R, Francois A, Buard V, Tarlet G, Blirando K, Hneino M et al (2012) PAI-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury. PLoS ONE 7(4):e35740. https://doi.org/10.1371/journal.pone.0035740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abderrahmani R, Francois A, Buard V, Benderitter M, Sabourin JC, Crandall DL et al (2009) Effects of pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 in radiation-induced intestinal injury. Int J Radiat Oncol Biol Phys 74(3):942–948. https://doi.org/10.1016/j.ijrobp.2009.01.077

    Article  CAS  PubMed  Google Scholar 

  91. Chung EJ, McKay-Corkum G, Chung S, White A, Scroggins BT, Mitchell JB et al (2016) Truncated plasminogen activator inhibitor-1 protein protects from pulmonary fibrosis mediated by irradiation in a murine model. Int J Radiat Oncol Biol Phys 94(5):1163–1172. https://doi.org/10.1016/j.ijrobp.2015.11.044

    Article  CAS  PubMed  Google Scholar 

  92. Pan J, Li D, Xu Y, Zhang J, Wang Y, Chen M et al (2017) Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys 99(2):353–361. https://doi.org/10.1016/j.ijrobp.2017.02.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang Y, Boerma M, Zhou D (2016) Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases. Radiat Res 186(2):153–161

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Choi SH, Kim M, Lee HJ, Kim EH, Kim CH, Lee YJ (2016) Effects of NOX1 on fibroblastic changes of endothelial cells in radiationinduced pulmonary fibrosis. Mol Med Rep 13(5):4135–4142. https://doi.org/10.3892/mmr.2016.5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sivananthan A, Shields D, Fisher R, Hou W, Zhang X, Franicola D et al (2018) Continuous one year oral administration of the radiation mitigator, MMS350, after total-body irradiation, restores bone marrow stromal cell proliferative capacity and reduces senescence in fanconi anemia (Fanca/) mice. Radiat Res 191(2):139–153

    PubMed  PubMed Central  Google Scholar 

  96. Sabin RJ, Anderson RM (2011) Cellular senescence—its role in cancer and the response to ionizing radiation. Genome Integrity 2(1):7. https://doi.org/10.1186/2041-9414-2-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Placencio VR, DeClerck YA (2015) Plasminogen activator inhibitor-1 in cancer: rationale and insight for future therapeutic testing. Can Res 75(15):2969–2974. https://doi.org/10.1158/0008-5472.CAN-15-0876

    Article  CAS  Google Scholar 

  98. Fang H, Placencio VR, DeClerck YA (2012) Protumorigenic activity of plasminogen activator inhibitor-1 through an antiapoptotic function. J Natl Cancer Inst 104(19):1470–1484. https://doi.org/10.1093/jnci/djs377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mashiko S, Kitatani K, Toyoshima M, Ichimura A, Dan T, Usui T et al (2015) Inhibition of plasminogen activator inhibitor-1 is a potential therapeutic strategy in ovarian cancer. Cancer Biol Ther 16(2):253–260. https://doi.org/10.1080/15384047.2014.1001271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gomes-Giacoia E, Miyake M, Goodison S, Rosser CJ (2013) Targeting plasminogen activator inhibitor-1 inhibits angiogenesis and tumor growth in a human cancer xenograft model. Mol Cancer Ther 12(12):2697–2708. https://doi.org/10.1158/1535-7163.mct-13-0500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Isogai C, Laug WE, Shimada H, Declerck PJ, Stins MF, Durden DL et al (2001) Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res 61(14):5587–5594

    CAS  PubMed  Google Scholar 

  102. Bajou K, Peng H, Laug WE, Maillard C, Noel A, Foidart JM et al (2008) Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell 14(4):324–334. https://doi.org/10.1016/j.ccr.2008.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ashrafizadeh M, Ahmadi Z, Kotla N, Afshar E, Samarghandian S, Mandegary A et al (2019) Nanoparticles targeting STATs in cancer therapy. Cells 8:10

    Google Scholar 

  104. Galvano A, Novo G, Roselli M, Giordano A, Russo A (2019) Cardiovascular damage induced by radiotherapy. Cardiovascular complications in cancer therapy. Springer, Berlin, pp 21–31

    Google Scholar 

  105. Salem A, Mistry H, Backen A, Hodgson C, Koh P, Dean E et al (2018) Cell death, inflammation, tumor burden, and proliferation blood biomarkers predict lung cancer radiotherapy response and correlate with tumor volume and proliferation imaging. Clin Lung Cancer 19(3):239 e7–248 e7

    Google Scholar 

  106. Hager A, Meissner F, Riechardt AI, Bonaventura T, Löwen J, Heufelder J et al (2019) Breakdown of the blood-eye barrier in choroidal melanoma after proton beam radiotherapy. Graefe's Arch Clin Exp Ophthalmol 257(10):2323–2328

    CAS  Google Scholar 

  107. Schaue D, Micewicz ED, Ratikan JA, Xie MW, Cheng G, McBride WH (2015) Radiation and inflammation. Semin Radiat Oncol 20:20

    Google Scholar 

  108. Dörr H, Meineke V (2011) Acute radiation syndrome caused by accidental radiation exposure-therapeutic principles. BMC Med 9(1):126

    PubMed  PubMed Central  Google Scholar 

  109. Yarnold J, Brotons M-CV (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97(1):149–161

    CAS  PubMed  Google Scholar 

  110. Poulos MG, Ramalingam P, Gutkin MC, Kleppe M, Ginsberg M, Crowley MJP et al (2016) Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis. Nat Commun 7(1):13829. https://doi.org/10.1038/ncomms13829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Alexeev V, Lash E, Aguillard A, Corsini L, Bitterman A, Ward K et al (2014) Radiation protection of the gastrointestinal tract and growth inhibition of prostate cancer xenografts by a single compound. Mol Cancer Ther 13(12):2968–2977. https://doi.org/10.1158/1535-7163.mct-14-0354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Daroczi B, Kari G, Ren Q, Dicker AP, Rodeck U (2009) Nuclear factor kappaB inhibitors alleviate and the proteasome inhibitor PS-341 exacerbates radiation toxicity in zebrafish embryos. Mol Cancer Ther 8(9):2625–2634. https://doi.org/10.1158/1535-7163.mct-09-0198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Farhood B, Aliasgharzadeh A, Amini P, Rezaeyan A, Tavassoli A, Motevaseli E et al (2019) Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: a histopathological study. Medicina (Kaunas) 55:8. https://doi.org/10.3390/medicina55080417

    Article  Google Scholar 

  114. Azmoonfar R, Amini P, Yahyapour R, Rezaeyan A, Tavassoli A, Motevaseli E et al (2019) Mitigation of radiation-induced pneumonitis and lung fibrosis using alpha-lipoic acid and resveratrol. Antiinflamm Antiallergy Agents Med Chem. https://doi.org/10.2174/1871523018666190319144020

    Article  Google Scholar 

  115. Machado ND, Fernández MA, Díaz DD (2019) Recent strategies in resveratrol delivery systems. ChemPlusChem 84(7):951–973

    CAS  PubMed  Google Scholar 

  116. Ahmadi Z, Mohammadinejad R, Ashrafizadeh M (2019) Drug delivery systems for resveratrol, a non-flavonoid polyphenol: emerging evidence in last decades. J Drug Deliv Sci Technol 20:20

    Google Scholar 

  117. Ahmadi Z, Ashrafizadeh M (2019) Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol 20:20

    Google Scholar 

  118. Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8(1):33–40. https://doi.org/10.1038/nrd2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20(33):4519–4527. https://doi.org/10.1038/sj.onc.1204623

    Article  CAS  PubMed  Google Scholar 

  120. Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D et al (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101(6):2377–2380. https://doi.org/10.1182/blood-2002-06-1768

    Article  CAS  PubMed  Google Scholar 

  121. Fernandes JV, Cobucci RNO, Jatobá CAN, de Medeiros Fernandes TAA, de Azevedo JWV, de Araújo JMG (2015) The role of the mediators of inflammation in cancer development. Pathol Oncol Res 21(3):527–534

    CAS  PubMed  Google Scholar 

  122. Zhao Y, de Toledo SM, Hu G, Hei TK, Azzam EI (2014) Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects. Br J Cancer 111(1):125–131. https://doi.org/10.1038/bjc.2014.276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chai Y, Calaf GM, Zhou H, Ghandhi SA, Elliston CD, Wen G et al (2013) Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice. Br J Cancer 108(1):91–98. https://doi.org/10.1038/bjc.2012.498

    Article  CAS  PubMed  Google Scholar 

  124. Kobayashi A, Konishi T (2018) Radiation quality effects alteration in COX-2 pathway to trigger radiation-induced bystander response in A549 lung carcinoma cells. J Radiat Res 59(6):754–759. https://doi.org/10.1093/jrr/rry065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chai Y, Lam RK, Calaf GM, Zhou H, Amundson S, Hei TK (2013) Radiation-induced non-targeted response in vivo: role of the TGFbeta-TGFBR1-COX-2 signalling pathway. Br J Cancer 108(5):1106–1112. https://doi.org/10.1038/bjc.2013.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sonis ST, O'Donnell KE, Popat R, Bragdon C, Phelan S, Cocks D et al (2004) The relationship between mucosal cyclooxygenase-2 (COX-2) expression and experimental radiation-induced mucositis. Oral Oncol 40(2):170–176

    CAS  PubMed  Google Scholar 

  127. Yeoh AS, Gibson RJ, Yeoh EE, Bowen JM, Stringer AM, Giam KA et al (2007) A novel animal model to investigate fractionated radiotherapy-induced alimentary mucositis: the role of apoptosis, p53, nuclear factor-kappaB, COX-1, and COX-2. Mol Cancer Ther 6(8):2319–2327. https://doi.org/10.1158/1535-7163.mct-07-0113

    Article  CAS  PubMed  Google Scholar 

  128. Khayyal MT, El-Ghazaly MA, El-Hazek RM, Nada AS (2009) The effects of celecoxib, a COX-2 selective inhibitor, on acute inflammation induced in irradiated rats. Inflammopharmacology 17(5):255–266. https://doi.org/10.1007/s10787-009-0014-z

    Article  CAS  PubMed  Google Scholar 

  129. Pinheiro RM, Calixto JB (2002) Effect of the selective COX-2 inhibitors, celecoxib and rofecoxib in rat acute models of inflammation. Inflamm Res 51(12):603–610

    CAS  PubMed  Google Scholar 

  130. Liang L, Hu D, Liu W, Williams JP, Okunieff P, Ding I (2003) Celecoxib reduces skin damage after radiation: selective reduction of chemokine and receptor mRNA expression in irradiated skin but not in irradiated mammary tumor. Am J Clin Oncol 26(4):S114–S121. https://doi.org/10.1097/01.coc.0000074149.95710.40

    Article  PubMed  Google Scholar 

  131. Hoggatt J, Singh P, Stilger KN, Plett PA, Sampson CH, Chua HL et al (2013) Recovery from hematopoietic injury by modulating prostaglandin E(2) signaling post-irradiation. Blood Cells Mol Dis 50(3):147–153. https://doi.org/10.1016/j.bcmd.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  132. Hunter NR, Valdecanas D, Liao Z, Milas L, Thames HD, Mason KA (2013) Mitigation and treatment of radiation-induced thoracic injury with a cyclooxygenase-2 inhibitor, celecoxib. Int J Radiat Oncol Biol Phys 85(2):472–476. https://doi.org/10.1016/j.ijrobp.2012.04.025

    Article  CAS  PubMed  Google Scholar 

  133. Cho YJ, Yi CO, Jeon BT, Jeong YY, Kang GM, Lee JE et al (2013) Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs. Korean J Physiol Pharmacol 17(4):267–274. https://doi.org/10.4196/kjpp.2013.17.4.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hanson WR, Thomas C (1983) 16, 16-dimethyl prostaglandin E2 increases survival of murine intestinal stem cells when given before photon radiation. Radiat Res 96(2):393–398

    CAS  PubMed  Google Scholar 

  135. Hanson WR, Ainsworth EJ (1985) 16,16-Dimethyl prostaglandin E2 induces radioprotection in murine intestinal and hematopoietic stem cells. Radiat Res 103(2):196–203

    CAS  PubMed  Google Scholar 

  136. Toomey DP, Murphy JF, Conlon KC (2009) COX-2, VEGF and tumour angiogenesis. Surgeon 7(3):174–180. https://doi.org/10.1016/s1479-666x(09)80042-5

    Article  CAS  PubMed  Google Scholar 

  137. Singh B, Cook KR, Vincent L, Hall CS, Berry JA, Multani AS et al (2008) Cyclooxygenase-2 induces genomic instability, BCL2 expression, doxorubicin resistance, and altered cancer-initiating cell phenotype in MCF7 breast cancer cells. J Surg Res 147(2):240–246. https://doi.org/10.1016/j.jss.2008.02.026

    Article  CAS  PubMed  Google Scholar 

  138. Sminia P, Kuipers G, Geldof A, Lafleur V, Slotman B (2005) COX-2 inhibitors act as radiosensitizer in tumor treatment. Biomed Pharmacother 59:S272–S275. https://doi.org/10.1016/S0753-3322(05)80044-7

    Article  CAS  PubMed  Google Scholar 

  139. Choy H, Milas L (2003) Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 95(19):1440–1452

    CAS  PubMed  Google Scholar 

  140. West AP, Shadel GS (2017) Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 17(6):363

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Perrone MS, Missiroli S, Previati M, Fiorica F, Pinton P, Carlotta G (2017) Radiation induces IL-1b production and promotes activation of NLRP3 inflammasome. Int J Radiat Oncol Biol Phys 99(2):E613–E614. https://doi.org/10.1016/j.ijrobp.2017.06.2078

    Article  Google Scholar 

  142. Liu Y-G, Chen J-K, Zhang Z-T, Ma X-J, Chen Y-C, Du X-M et al (2017) NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis 8(2):e2579-e. https://doi.org/10.1038/cddis.2016.460

    Article  CAS  Google Scholar 

  143. Wei J, Wang H, Wang H, Wang B, Meng L, Xin Y et al (2019) The role of NLRP3 inflammasome activation in radiation damage. Biomed Pharmacother 118:109217. https://doi.org/10.1016/j.biopha.2019.109217

    Article  CAS  PubMed  Google Scholar 

  144. Sohn S-H, Lee JM, Park S, Yoo H, Kang JW, Shin D et al (2015) The inflammasome accelerates radiation-induced lung inflammation and fibrosis in mice. Environ Toxicol Pharmacol 39(2):917–926. https://doi.org/10.1016/j.etap.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  145. Chatterjee S, Pietrofesa RA, Park K, Tao J-Q, Carabe-Fernandez A, Berman AT et al (2019) LGM2605 reduces space radiation-induced NLRP3 inflammasome activation and damage in in vitro lung vascular networks. Int J Mol Sci 20(1):176. https://doi.org/10.3390/ijms20010176

    Article  CAS  PubMed Central  Google Scholar 

  146. Ortiz F, Acuña-Castroviejo D, Doerrier C, Dayoub JC, López LC, Venegas C et al (2015) Melatonin blunts the mitochondrial/NLRP 3 connection and protects against radiation-induced oral mucositis. J Pineal Res 58(1):34–49

    CAS  PubMed  Google Scholar 

  147. Fernández-Gil B, Moneim AEA, Ortiz F, Shen Y-Q, Soto-Mercado V, Mendivil-Perez M et al (2017) Melatonin protects rats from radiotherapy-induced small intestine toxicity. PLoS ONE 12(4):e0174474

    PubMed  PubMed Central  Google Scholar 

  148. Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A (2018) Role of the NLRP3 inflammasome in cancer. Mol Cancer 17(1):158. https://doi.org/10.1186/s12943-018-0900-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guo B, Fu S, Zhang J, Liu B, Li Z (2016) Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 6(1):36107. https://doi.org/10.1038/srep36107

    Article  PubMed  PubMed Central  Google Scholar 

  150. Xu S, Li X, Liu Y, Xia Y, Chang R, Zhang C (2019) Inflammasome inhibitors: promising therapeutic approaches against cancer. J Hematol Oncol 12(1):64. https://doi.org/10.1186/s13045-019-0755-0

    Article  PubMed  PubMed Central  Google Scholar 

  151. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254

    CAS  PubMed  Google Scholar 

  152. Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol Rev 265(1):6–21

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rathinam VA, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nat Immunol 13(4):333

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    CAS  PubMed  Google Scholar 

  155. Hu B, Jin C, Li H-B, Tong J, Ouyang X, Cetinbas NM et al (2016) The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354(6313):765–768. https://doi.org/10.1126/science.aaf7532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wu T, Liu W, Fan T, Zhong H, Zhou H, Guo W et al (2020) 5-Androstenediol prevents radiation injury in mice by promoting NF-κB signaling and inhibiting AIM2 inflammasome activation. Biomed Pharmacother 121:109597. https://doi.org/10.1016/j.biopha.2019.109597

    Article  CAS  PubMed  Google Scholar 

  157. Gao J, Peng S, Shan X, Deng G, Shen L, Sun J et al (2019) Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death Dis 10(12):957. https://doi.org/10.1038/s41419-019-2195-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61(4):310–318

    CAS  PubMed  Google Scholar 

  159. Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG (2005) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053(1):74–83

    CAS  PubMed  Google Scholar 

  160. Tsan M-F, Gao B (2004) Heat shock protein and innate immunity. Cell Mol Immunol 1(4):274–279

    CAS  PubMed  Google Scholar 

  161. Lee SJ, Choi SA, Lee KH, Chung HY, Kim TH, Cho CK et al (2001) Role of inducible heat shock protein 70 in radiation-induced cell death. Cell Stress Chaperones 6(3):273–281. https://doi.org/10.1379/1466-1268(2001)006%3c0273:roihsp%3e2.0.co;2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Salari S, Seibert T, Chen Y-X, Hu T, Shi C, Zhao X et al (2013) Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages. Cell Stress Chaperones 18(1):53–63

    CAS  PubMed  Google Scholar 

  163. Kim J-Y, An Y-M, Yoo BR, Kim J-M, Han SY, Na Y et al (2018) HSP27 inhibitor attenuates radiation-induced pulmonary inflammation. Sci Rep 8(1):4189. https://doi.org/10.1038/s41598-018-22635-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Multhoff G, Pockley AG, Schmid TE, Schilling D (2015) The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Lett 368(2):179–184. https://doi.org/10.1016/j.canlet.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  165. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5(22):2592–2601. https://doi.org/10.4161/cc.5.22.3448

    Article  CAS  PubMed  Google Scholar 

  166. Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int J Oncol 45(1):18–30. https://doi.org/10.3892/ijo.2014.2399

    Article  CAS  PubMed  Google Scholar 

  167. Elmallah MIY, Cordonnier M, Vautrot V, Chanteloup G, Garrido C, Gobbo J (2020) Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Lett 469:134–141. https://doi.org/10.1016/j.canlet.2019.10.037

    Article  CAS  PubMed  Google Scholar 

  168. Choi S-K, Kam H, Kim K-Y, Park SI, Lee Y-S (2019) Targeting heat shock protein 27 in cancer: a druggable target for cancer treatment? Cancers 11(8):1195. https://doi.org/10.3390/cancers11081195

    Article  CAS  PubMed Central  Google Scholar 

  169. Sheng B, Qi C, Liu B, Lin Y, Fu T, Zeng Q (2017) Increased HSP27 correlates with malignant biological behavior of non-small cell lung cancer and predicts patient’s survival. Sci Rep 7(1):13807. https://doi.org/10.1038/s41598-017-13956-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jin HO, Hong SE, Kim JY, Kim MR, Chang YH, Hong YJ et al (2019) Induction of HSP27 and HSP70 by constitutive overexpression of Redd1 confers resistance of lung cancer cells to ionizing radiation. Oncol Rep 41(5):3119–3126. https://doi.org/10.3892/or.2019.7036

    Article  CAS  PubMed  Google Scholar 

  171. Tsao MN, Li YQ, Lu G, Xu Y, Wong CS (1999) Upregulation of vascular endothelial growth factor is associated with radiation-induced blood-spinal cord barrier breakdown. J Neuropathol Exp Neurol 58(10):1051–1060. https://doi.org/10.1097/00005072-199910000-00003

    Article  CAS  PubMed  Google Scholar 

  172. Langley RE, Bump EA, Quartuccio SG, Medeiros D, Braunhut SJ (1997) Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer 75(5):666–672. https://doi.org/10.1038/bjc.1997.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lumniczky K, Szatmári T, Sáfrány G (2017) Ionizing radiation-induced immune and inflammatory reactions in the brain. Front Immunol 8:517. https://doi.org/10.3389/fimmu.2017.00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kim JM, Miller JA, Kotecha R, Xiao R, Juloori A, Ward MC et al (2017) The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J Neurooncol 133(2):357–368. https://doi.org/10.1007/s11060-017-2442-8

    Article  PubMed  Google Scholar 

  175. Klos J, van Laar PJ, Sinnige PF, Enting RH, Kramer MCA, van der Weide HL et al (2019) Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques. Radiother Oncol 140:41–53. https://doi.org/10.1016/j.radonc.2019.05.020

    Article  PubMed  Google Scholar 

  176. Vujaskovic Z, Anscher MS, Feng QF, Rabbani ZN, Amin K, Samulski TS et al (2001) Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 50(4):851–855. https://doi.org/10.1016/s0360-3016(01)01593-0

    Article  CAS  PubMed  Google Scholar 

  177. Li YQ, Ballinger JR, Nordal RA, Su ZF, Wong CS (2001) Hypoxia in radiation-induced blood-spinal cord barrier breakdown. Cancer Res 61(8):3348–3354

    CAS  PubMed  Google Scholar 

  178. Fleckenstein K, Zgonjanin L, Chen L, Rabbani Z, Jackson IL, Thrasher B et al (2007) Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int J Radiat Oncol Biol Phys 68(1):196–204. https://doi.org/10.1016/j.ijrobp.2006.12.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rabbani ZN, Mi J, Zhang Y, Delong M, Jackson IL, Fleckenstein K et al (2010) Hypoxia inducible factor 1alpha signaling in fractionated radiation-induced lung injury: role of oxidative stress and tissue hypoxia. Radiat Res 173(2):165–174. https://doi.org/10.1667/RR1816.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Toullec A, Buard V, Rannou E, Tarlet G, Guipaud O, Robine S et al (2018) HIF-1α deletion in the endothelium, but not in the epithelium, protects from radiation-induced enteritis. Cell Mol Gastroenterol Hepatol 5(1):15–30. https://doi.org/10.1016/j.jcmgh.2017.08.001

    Article  PubMed  Google Scholar 

  181. Taniguchi CM, Wu C, Atwood T, Maxim P, Giaccia A (2012) Intestinal HIF-2 to protect against radiation-induced gastrointestinal syndrome. J Clin Oncol 30(1(15_suppl)):10629. https://doi.org/10.1200/jco.2012.30.15_suppl.10629

    Article  Google Scholar 

  182. Graham K, Unger E (2018) Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomed 13:6049–6058. https://doi.org/10.2147/IJN.S140462

    Article  CAS  Google Scholar 

  183. Kaidi A, Qualtrough D, Williams AC, Paraskeva C (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66(13):6683–6691. https://doi.org/10.1158/0008-5472.can-06-0425

    Article  CAS  PubMed  Google Scholar 

  184. Dorr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol 61(3):223–231. https://doi.org/10.1016/s0167-8140(01)00429-7

    Article  CAS  PubMed  Google Scholar 

  185. Bourgeois JF, Gourgou S, Kramar A, Lagarde JM, Gall Y, Guillot B (2003) Radiation-induced skin fibrosis after treatment of breast cancer: profilometric analysis. Skin Res Technol 9(1):39–42

    CAS  PubMed  Google Scholar 

  186. Lombardo S, Spagnolo F, Calderazzo M, Fronda L, Gambardella P, Musolino T et al (2019) Fatal idiopathic pulmonary fibrosis exacerbation after radiotherapy. D40 non-inflammatory dplds case reports. American Thoracic Society, New York, p A6340A

    Google Scholar 

  187. Musa AE, Shabeeb D (2019) Radiation-induced heart diseases: protective effects of natural products. Medicina 55(5):126

    PubMed Central  Google Scholar 

  188. Najafi M, Farhood B, Mortezaee K (2019) Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem 120(3):2782–2790. https://doi.org/10.1002/jcb.27681

    Article  CAS  PubMed  Google Scholar 

  189. Hallett MA, Venmar KT, Fingleton B (2012) Cytokine stimulation of epithelial cancer cells: the similar and divergent functions of IL-4 and IL-13. Can Res 72(24):6338–6343

    CAS  Google Scholar 

  190. Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM (2015) Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol 141(11):1985–1994

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S et al (2009) TGF-β and fibrosis in different organs—molecular pathway imprints. Biochim Biophys Acta Mol Basis Dis 1792(8):746–756. https://doi.org/10.1016/j.bbadis.2009.06.004

    Article  CAS  Google Scholar 

  192. Nevens D, Duprez F, Daisne JF, Laenen A, De Neve W, Nuyts S (2017) Radiotherapy induced dermatitis is a strong predictor for late fibrosis in head and neck cancer. The development of a predictive model for late fibrosis. Radiother Oncol 122(2):212–216

    PubMed  Google Scholar 

  193. Rigo F (2017) Effects of radiotherapy on vessels and coronary arteries. Anti-cancer treatments and cardiotoxicity. Elsevier, New York, pp 87–89

    Google Scholar 

  194. Stansborough RL, Al-Dasooqi N, Bateman EH, Keefe DM, Gibson RJ (2016) Radiotherapy-induced gut toxicity: involvement of matrix metalloproteinases and the intestinal microvasculature. Int J Radiat Biol 92(5):241–248

    CAS  PubMed  Google Scholar 

  195. Vallee A, Lecarpentier Y, Guillevin R, Vallee JN (2017) Interactions between TGF-beta1, canonical WNT/beta-catenin pathway and PPAR gamma in radiation-induced fibrosis. Oncotarget 8(52):90579–90604. https://doi.org/10.18632/oncotarget.21234

    Article  PubMed  PubMed Central  Google Scholar 

  196. Martin M, Lefaix J, Delanian S (2000) TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47(2):277–290. https://doi.org/10.1016/s0360-3016(00)00435-1

    Article  CAS  PubMed  Google Scholar 

  197. Eldabaje R, Le DL, Huang W, Yang LX (2015) Radiation-associated cardiac injury. Anticancer Res 35(5):2487–2492

    PubMed  Google Scholar 

  198. Vozenin-Brotons M-C, Sivan V, Gault N, Renard C, Geffrotin C, Delanian S et al (2001) Antifibrotic action of Cu/Zn SOD is mediated by TGF-β1 repression and phenotypic reversion of myofibroblasts. Free Radical Biol Med 30(1):30–42

    CAS  Google Scholar 

  199. Kang SK, Rabbani ZN, Folz RJ, Golson ML, Huang H, Yu D et al (2003) Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys 57(4):1056–1066

    CAS  PubMed  Google Scholar 

  200. Amini P, Kolivand S, Saffar H, Rezapoor S, Motevaseli E, Najafi M et al (2018) Protective effect of Selenium-l-methionine on radiation-induced acute pneumonitis and lung fibrosis in rat. Curr Clin Pharmacol. https://doi.org/10.2174/1574884714666181214101917

    Article  Google Scholar 

  201. Aliasgharzadeh A, Farhood B, Amini P, Saffar H, Motevaseli E, Rezapoor S et al (2019) Melatonin attenuates upregulation of Duox1 and Duox2 and protects against lung injury following chest irradiation in rats. Cell J 21(3):236–242. https://doi.org/10.22074/cellj.2019.6207

    Article  PubMed  PubMed Central  Google Scholar 

  202. Jang SS, Kim HG, Lee JS, Han JM, Park HJ, Huh GJ et al (2013) Melatonin reduces X-ray radiation-induced lung injury in mice by modulating oxidative stress and cytokine expression. Int J Radiat Biol 89(2):97–105

    CAS  PubMed  Google Scholar 

  203. Lee JC, Kinniry PA, Arguiri E, Serota M, Kanterakis S, Chatterjee S et al (2010) Dietary curcumin increases antioxidant defenses in lung, ameliorates radiation-induced pulmonary fibrosis, and improves survival in mice. Radiat Res 173(5):590–601

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Rebouças JS, Batinic-Haberle I et al (2010) Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radical Biol Med 48(8):1034–1043

    CAS  Google Scholar 

  205. Calveley VL, Jelveh S, Langan A, Mahmood J, Yeung IW, Van Dyk J et al (2010) Genistein can mitigate the effect of radiation on rat lung tissue. Radiat Res 173(5):602–611

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Mahmood J, Jelveh S, Zaidi A, Doctrow S, Hill R (2012) Mitigation of radiation-induced lung injury with EUK-207 and genistein: effects in adolescent rats. Radiat Res 179(2):125–134

    PubMed  PubMed Central  Google Scholar 

  207. Rabender C, Mezzaroma E, Mauro AG, Mullangi R, Abbate A, Anscher M et al (2016) IPW-5371 proves effective as a radiation countermeasure by mitigating radiation-induced late effects. Radiat Res 186(5):478–488

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Ahmadi A, Najafi M, Farhood B, Mortezaee K (2019) Transforming growth factor-β signaling: tumorigenesis and targeting for cancer therapy. J Cell Physiol 234(8):12173–12187. https://doi.org/10.1002/jcp.27955

    Article  CAS  PubMed  Google Scholar 

  209. Young KH, Gough MJ, Crittenden M (2015) Tumor immune remodeling by TGFβ inhibition improves the efficacy of radiation therapy. Oncoimmunology 4(3):e955696

    PubMed  Google Scholar 

  210. Andarawewa KL, Paupert J, Pal A, Barcellos-Hoff MH (2007) New rationales for using TGF beta inhibitors in radiotherapy. Int J Radiat Biol 83(11–12):803–811

    CAS  PubMed  Google Scholar 

  211. Groves AM, Johnston CJ, Misra RS, Williams JP, Finkelstein JN (2016) Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol 92(12):754–765. https://doi.org/10.1080/09553002.2016.1222094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Suzuki A, Leland P, Joshi BH, Puri RK (2015) Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 75(1):79–88. https://doi.org/10.1016/j.cyto.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  213. Li Z, Chen L, Qin Z (2009) Paradoxical roles of IL-4 in tumor immunity. Cell Mol Immunol 6(6):415–422

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Nappo G, Handle F, Santer FR, McNeill RV, Seed RI, Collins AT et al (2017) The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis 6(5):e342-e. https://doi.org/10.1038/oncsis.2017.23

    Article  CAS  Google Scholar 

  215. Kim ES, Choi YE, Hwang SJ, Han Y-H, Park M-J, Bae IH (2016) IL-4, a direct target of miR-340/429, is involved in radiation-induced aggressive tumor behavior in human carcinoma cells. Oncotarget 7(52):86836–86856. https://doi.org/10.18632/oncotarget.13561

    Article  PubMed  PubMed Central  Google Scholar 

  216. Chung SI, Horton JA, Ramalingam TR, White AO, Chung EJ, Hudak KE et al (2016) IL-13 is a therapeutic target in radiation lung injury. Sci Rep 6:39714. https://doi.org/10.1038/srep39714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Horton J, Hudak K, Scroggins B, Chung E, White A, Citrin D (2014) Il-13 is a critical mediator of radiation-induced pulmonary fibrosis. Int J Radiat Oncol Biol Phys 90(1):S150. https://doi.org/10.1016/j.ijrobp.2014.05.626

    Article  Google Scholar 

  218. Nakashima H, Fujisawa T, Husain SR, Puri RK (2010) Interleukin-13 receptor α2 DNA prime boost vaccine induces tumor immunity in murine tumor models. J Transl Med 8(1):116. https://doi.org/10.1186/1479-5876-8-116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Shimato S, Natsume A, Wakabayashi T, Tsujimura K, Nakahara N, Ishii J et al (2008) Identification of a human leukocyte antigen-A24–restricted T-cell epitope derived from interleukin-13 receptor α2 chain, a glioma-associated antigen. J Neurosurg 109(1):117–122

    CAS  PubMed  Google Scholar 

  220. Iwami K, Shimato S, Ohno M, Okada H, Nakahara N, Sato Y et al (2012) Peptide-pulsed dendritic cell vaccination targeting interleukin-13 receptor α2 chain in recurrent malignant glioma patients with HLA-A* 24/A* 02 allele. Cytotherapy 14(6):733–742

    CAS  PubMed  Google Scholar 

  221. Terabe M, Park JM, Berzofsky JA (2004) Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol Immunother 53(2):79–85. https://doi.org/10.1007/s00262-003-0445-0

    Article  CAS  PubMed  Google Scholar 

  222. Kawakami K, Kawakami M, Liu Q, Puri RK (2005) Combined effects of radiation and interleukin-13 receptor-targeted cytotoxin on glioblastoma cell lines. Int J Radiat Oncol Biol Phys 63(1):230–237. https://doi.org/10.1016/j.ijrobp.2005.05.017

    Article  CAS  PubMed  Google Scholar 

  223. Vogelbaum MA, Sampson JH, Kunwar S, Chang SM, Shaffrey M, Asher AL et al (2007) Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 61(5):1031–1038

    PubMed  Google Scholar 

  224. Robbins ME, Diz DI (2006) Pathogenic role of the renin–angiotensin system in modulating radiation-induced late effects. Int J Radiat Oncol Biol Phys 64(1):6–12. https://doi.org/10.1016/j.ijrobp.2005.08.033

    Article  CAS  PubMed  Google Scholar 

  225. Cohen EP, Fish BL, Moulder JE (1999) Angiotensin II infusion exacerbates radiation nephropathy. J Lab Clin Med 134(3):283–291. https://doi.org/10.1016/S0022-2143(99)90209-3

    Article  CAS  PubMed  Google Scholar 

  226. Moulder JE, Fish BL, Cohen EP, Bonsib SM (1996) Angiotensin II receptor antagonists in the prevention of radiation nephropathy. Radiat Res 146(1):106–110. https://doi.org/10.2307/3579403

    Article  CAS  PubMed  Google Scholar 

  227. Moulder JE, Fish BL, Regner KR, Cohen EP (2002) Angiotensin II blockade reduces radiation-induced proliferation in experimental radiation nephropathy. Radiat Res 157(4):393–401. https://doi.org/10.1667/0033-7587(2002)157[0393:AIBRRI]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  228. Cohen EP, Fish BL, Moulder JE (2002) The renin–angiotensin system in experimental radiation nephropathy. J Lab Clin Med 139(4):251–257. https://doi.org/10.1067/mlc.2002.122279

    Article  CAS  PubMed  Google Scholar 

  229. Robbins ME, Zhao W, Garcia-Espinosa MA, Diz DI (2010) Renin–angiotensin system blockers and modulation of radiation-induced brain injury. Curr Drug Targets 11(11):1413–1422. https://doi.org/10.2174/1389450111009011413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Medhora M, Gao F, Jacobs ER, Moulder JE (2012) Radiation damage to the lung: mitigation by angiotensin-converting enzyme (ACE) inhibitors. Respirology (Carlton, Vic) 17(1):66–71. https://doi.org/10.1111/j.1440-1843.2011.02092.x

    Article  Google Scholar 

  231. Danilczyk U, Penninger JM (2006) Angiotensin-converting enzyme II in the heart and the kidney. Circ Res 98(4):463–471

    CAS  PubMed  Google Scholar 

  232. Moulder JE, Fish BL, Cohen EP (2004) Impact of angiotensin II type 2 receptor blockade on experimental radiation nephropathy. Radiat Res 161(3):312–317. https://doi.org/10.1667/rr3129

    Article  CAS  PubMed  Google Scholar 

  233. Moulder JE, Fish BL, Cohen EP (1998) Radiation nephropathy is treatable with an angiotensin converting enzyme inhibitor or an angiotensin II type-1 (AT1) receptor antagonist. Radiother Oncol 46(3):307–315. https://doi.org/10.1016/S0167-8140(97)00175-8

    Article  CAS  PubMed  Google Scholar 

  234. Cohen EP, Hussain S, Moulder JE (2003) Successful treatment of radiation nephropathy with angiotensin II blockade. Int J Radiat Oncol Biol Phys 55(1):190–193. https://doi.org/10.1016/s0360-3016(02)03793-8

    Article  PubMed  Google Scholar 

  235. Moulder JE, Cohen EP, Fish BL (2014) Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int J Radiat Biol 90(9):762–768. https://doi.org/10.3109/09553002.2014.938375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Moulder JE, Cohen EP, Fish BL (2010) Captopril and losartan for mitigation of renal injury caused by single-dose total-body irradiation. Radiat Res 175(1):29–36. https://doi.org/10.1667/RR2400.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Cohen EP, Bedi M, Irving AA, Jacobs E, Tomic R, Klein J et al (2012) Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int J Radiat Oncol Biol Phys 83(1):292–296. https://doi.org/10.1016/j.ijrobp.2011.05.081

    Article  PubMed  Google Scholar 

  238. Cohen EP, Irving AA, Drobyski WR, Klein JP, Passweg J, Talano JA et al (2008) Captopril to mitigate chronic renal failure after hematopoietic stem cell transplantation: a randomized controlled trial. Int J Radiat Oncol Biol Phys 70(5):1546–1551. https://doi.org/10.1016/j.ijrobp.2007.08.041

    Article  PubMed  Google Scholar 

  239. Datta PK, Moulder JE, Fish BL, Cohen EP, Lianos EA (2001) Induction of heme oxygenase 1 in radiation nephropathy: role of angiotensin II. Radiat Res 155(5):734–739

    CAS  PubMed  Google Scholar 

  240. Ghosh SN, Zhang R, Fish BL, Semenenko VA, Li XA, Moulder JE et al (2009) Renin–angiotensin system suppression mitigates experimental radiation pneumonitis. Int J Radiat Oncol Biol Phys 75(5):1528–1536. https://doi.org/10.1016/j.ijrobp.2009.07.1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kma L, Gao F, Fish BL, Moulder JE, Jacobs ER, Medhora M (2012) Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax. J Radiat Res 53(1):10–17

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Medhora M, Hill RP (2014) Targeting the renin–angiotensin system combined with an antioxidant is highly effective in mitigating radiation-induced lung damage. Int J Radiat Oncol Biol Phys 89(4):722–728. https://doi.org/10.1016/j.ijrobp.2014.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Molthen RC, Wu Q, Fish BL, Moulder JE, Jacobs ER, Medhora MM (2012) Mitigation of radiation induced pulmonary vascular injury by delayed treatment with captopril. Respirology 17(8):1261–1268. https://doi.org/10.1111/j.1440-1843.2012.02247.x

    Article  PubMed  Google Scholar 

  244. Sun F, Sun H, Zheng X, Yang G, Gong N, Zhou H et al (2018) Angiotensin-converting enzyme inhibitors decrease the incidence of radiation-induced pneumonitis among lung cancer patients: a systematic review and meta-analysis. J Cancer 9(12):2123–2131. https://doi.org/10.7150/jca.24665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Kharofa J, Cohen EP, Tomic R, Xiang Q, Gore E (2012) Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Radiat Oncol Biol Phys 84(1):238–243. https://doi.org/10.1016/j.ijrobp.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  246. Wang H, Liao Z, Zhuang Y, Xu T, Nguyen QN, Levy LB et al (2013) Do angiotensin-converting enzyme inhibitors reduce the risk of symptomatic radiation pneumonitis in patients with non-small cell lung cancer after definitive radiation therapy? Analysis of a single-institution database. Int J Radiat Oncol Biol Phys 87(5):1071–1077. https://doi.org/10.1016/j.ijrobp.2013.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Bracci S, Valeriani M, Agolli L, De Sanctis V, Maurizi Enrici R, Osti MF (2016) Renin–angiotensin system inhibitors might help to reduce the development of symptomatic radiation pneumonitis after stereotactic body radiotherapy for lung cancer. Clin Lung Cancer 17(3):189–197. https://doi.org/10.1016/j.cllc.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  248. Molteni A, Wolfe LF, Ward WF, Ts'ao CH, Molteni LB, Veno P et al (2007) Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-beta (TGF-beta) and alpha-actomyosin (alpha SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Des 13(13):1307–1316. https://doi.org/10.2174/138161207780618777

    Article  CAS  PubMed  Google Scholar 

  249. Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME (2013) Angiotensin-(1–7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radical Biol Med 65:1060–1068. https://doi.org/10.1016/j.freeradbiomed.2013.08.183

    Article  CAS  Google Scholar 

  250. Oikawa T, Freeman M, Lo W, Vaughan DE, Fogo A (1997) Modulation of plasminogen activator inhibitor-1 in vivo: a new mechanism for the anti-fibrotic effect of renin–angiotensin inhibition. Kidney Int 51(1):164–172. https://doi.org/10.1038/ki.1997.20

    Article  CAS  PubMed  Google Scholar 

  251. Davis TA, Landauer MR, Mog SR, Barshishat-Kupper M, Zins SR, Amare MF et al (2010) Timing of captopril administration determines radiation protection or radiation sensitization in a murine model of total body irradiation. Exp Hematol 38(4):270–281. https://doi.org/10.1016/j.exphem.2010.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. McCart EA, Lee YH, Jha J, Mungunsukh O, Rittase WB, Summers TA et al (2019) Delayed captopril administration mitigates hematopoietic injury in a murine model of total body irradiation. Sci Rep 9(1):2198. https://doi.org/10.1038/s41598-019-38651-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Rodgers KE, Espinoza T, Roda N, Meeks CJ, Hill C, Louie SG et al (2012) Accelerated hematopoietic recovery with angiotensin-(1–7) after total body radiation. Int J Radiat Biol 88(6):466–476. https://doi.org/10.3109/09553002.2012.676228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Pinter M, Jain RK (2017) Targeting the renin–angiotensin system to improve cancer treatment: implications for immunotherapy. Sci Transl Med 9(410):eaan5616. https://doi.org/10.1126/scitranslmed.aan5616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Gallagher PE, Cook K, Soto-Pantoja D, Menon J, Tallant EA (2011) Angiotensin peptides and lung cancer. Curr Cancer Drug Targets 11(4):394–404. https://doi.org/10.2174/156800911795538048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Chundury A, Rehman S, Roach M, Mullen D, DeWeese T, Bradley J et al (2015) PD-0428: radiation pneumonitis with stereotactic body radiotherapy: effects of angiotensin converting enzyme inhibitors. Radiother Oncol 115:S208–S209. https://doi.org/10.1016/S0167-8140(15)40424-4

    Article  Google Scholar 

  257. Wei J, Wang B, Wang H, Meng L, Zhao Q, Li X et al (2019) Radiation-induced normal tissue damage: oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev 2019:11. https://doi.org/10.1155/2019/3010342

    Article  CAS  Google Scholar 

  258. Shrishrimal S, Kosmacek EA, Oberley-Deegan RE (2019) Reactive oxygen species drive epigenetic changes in radiation-induced fibrosis. Oxid Med Cell Longev 2019:27. https://doi.org/10.1155/2019/4278658

    Article  CAS  Google Scholar 

  259. Weigel C, Schmezer P, Plass C, Popanda O (2015) Epigenetics in radiation-induced fibrosis. Oncogene 34(17):2145–2155. https://doi.org/10.1038/onc.2014.145

    Article  CAS  PubMed  Google Scholar 

  260. Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153(2):320–334

    PubMed  PubMed Central  Google Scholar 

  261. Stock CJW, Michaeloudes C, Leoni P, Durham AL, Mumby S, Wells AU et al (2019) Bromodomain and extraterminal (BET) protein inhibition restores redox balance and inhibits myofibroblast activation. Biomed Res Int 2019:11. https://doi.org/10.1155/2019/1484736

    Article  CAS  Google Scholar 

  262. Ding N, Hah N, Yu RT, Sherman MH, Benner C, Leblanc M et al (2015) BRD4 is a novel therapeutic target for liver fibrosis. Proc Natl Acad Sci USA 112(51):15713–15718. https://doi.org/10.1073/pnas.1522163112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Burke MA, Wakimoto H, Jiao Z, Gorham JM, DePalma SR, Conner DA et al (2018) Epigenomic control of cardiac fibrosis by bet bromodomain proteins in dilated cardiomyopathy. J Cardiac Fail 24(8):S2. https://doi.org/10.1016/j.cardfail.2018.07.011

    Article  Google Scholar 

  264. Wang J, Zhou F, Li Z, Mei H, Wang Y, Ma H et al (2018) Pharmacological targeting of BET proteins attenuates radiation-induced lung fibrosis. Sci Rep 8(1):998. https://doi.org/10.1038/s41598-018-19343-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Valinciute G, Weigel C, Veldwijk MR, Oakes CC, Herskind C, Wenz F et al (2017) BET-bromodomain inhibitors modulate epigenetic patterns at the diacylglycerol kinase alpha enhancer associated with radiation-induced fibrosis. Radiother Oncol 125(1):168–174. https://doi.org/10.1016/j.radonc.2017.08.028

    Article  CAS  PubMed  Google Scholar 

  266. Alqahtani A, Choucair K, Ashraf M, Hammouda DM, Alloghbi A, Khan T et al (2019) Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA 5(3):FSO372-FSO. https://doi.org/10.4155/fsoa-2018-0115

    Article  CAS  Google Scholar 

  267. Mao W, Ghasemzadeh A, Freeman ZT, Obradovic A, Chaimowitz MG, Nirschl TR et al (2019) Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. J ImmunoTher Cancer 7(1):277. https://doi.org/10.1186/s40425-019-0758-y

    Article  PubMed  PubMed Central  Google Scholar 

  268. Stathis A, Bertoni F (2018) BET Proteins as targets for anticancer treatment. Cancer Discov 8(1):24–36. https://doi.org/10.1158/2159-8290.cd-17-0605

    Article  CAS  PubMed  Google Scholar 

  269. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ et al (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597. https://doi.org/10.1084/jem.20100035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ly D, Savage JE, Shankavaram UT, Saleh AD, Mitchell JB, Soule BP et al (2009) Interactions between mir-21 and its targets in radiation-induced fibrosis. Int J Radiat Oncol Biol Phys 75(3):S537–S538. https://doi.org/10.1016/j.ijrobp.2009.07.1228

    Article  Google Scholar 

  271. Liu Z, Liang X, Li X, Liu X, Zhu M, Gu Y et al (2019) MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Toxicol Res (Camb) 8(3):328–340. https://doi.org/10.1039/c9tx00019d

    Article  CAS  Google Scholar 

  272. Choi SH, Hong ZY, Nam JK, Lee HJ, Jang J, Yoo RJ et al (2015) A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin Cancer Res 21(16):3716–3726. https://doi.org/10.1158/1078-0432.ccr-14-3193

    Article  CAS  PubMed  Google Scholar 

  273. Kwon OS, Kim KT, Lee E, Kim M, Choi SH, Li H et al (2016) Induction of MiR-21 by stereotactic body radiotherapy contributes to the pulmonary fibrotic response. PLoS ONE 11(5):e0154942. https://doi.org/10.1371/journal.pone.0154942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Bu H, Wedel S, Cavinato M, Jansen-Dürr P (2017) MicroRNA regulation of oxidative stress-induced cellular senescence. Oxid Med Cell Longev 2017:2398696. https://doi.org/10.1155/2017/2398696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. He Y, Thummuri D, Zheng G, Okunieff P, Citrin DE, Vujaskovic Z et al (2019) Cellular senescence and radiation-induced pulmonary fibrosis. Transl Res 209:14–21. https://doi.org/10.1016/j.trsl.2019.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  276. Tian W, Yin X, Wang L, Wang J, Zhu W, Cao J et al (2015) The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by alpha-irradiated keratinocytes. Mutat Res 780:77–85. https://doi.org/10.1016/j.mrfmmm.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  277. Kura B, Kalocayova B, LeBaron TW, Frimmel K, Buday J, Surovy J et al (2019) Regulation of microRNAs by molecular hydrogen contributes to the prevention of radiation-induced damage in the rat myocardium. Mol Cell Biochem 457(1–2):61–72

    CAS  PubMed  Google Scholar 

  278. Anastasov N, Höfig I, Vasconcellos IG, Rappl K, Braselmann H, Ludyga N et al (2012) Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells. Radiat Oncol (London, England) 7:206. https://doi.org/10.1186/1748-717X-7-206

    Article  Google Scholar 

  279. Liu J, Zhu H, Yang X, Ge Y, Zhang C, Qin Q et al (2014) MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumour Biol 35(5):3975–3979. https://doi.org/10.1007/s13277-014-1623-8

    Article  CAS  PubMed  Google Scholar 

  280. Lin S-C, Chang I-W, Hsieh P-L, Lin C-Y, Sun D-P, Sheu M-J et al (2017) High immunoreactivity of DUOX2 is associated with poor response to preoperative chemoradiation therapy and worse prognosis in rectal cancers. J Cancer 8(14):2756

    PubMed  PubMed Central  Google Scholar 

  281. Mortezaee K, Goradel NH, Amini P, Shabeeb D, Musa AE, Najafi M et al (2019) NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr Mol Pharmacol 12(1):50–60. https://doi.org/10.2174/1874467211666181010154709

    Article  CAS  PubMed  Google Scholar 

  282. Mangoni M, Sottili M, Gerini C, Desideri I, Bastida C, Pallotta S et al (2017) A PPAR-gamma agonist protects from radiation-induced intestinal toxicity. United Eur Gastroenterol J 5(2):218–226. https://doi.org/10.1177/2050640616640443

    Article  CAS  Google Scholar 

  283. Fan P, Abderrahman B, Chai TS, Yerrum S, Jordan VC (2018) Targeting peroxisome proliferator-activated receptor γ to increase estrogen-induced apoptosis in estrogen-deprived breast cancer cells. Mol Cancer Ther 17(12):2732–2745. https://doi.org/10.1158/1535-7163.mct-18-0088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Atkinson J, Kapralov AA, Yanamala N, Tyurina YY, Amoscato AA, Pearce L et al (2011) A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nat Commun 2:497

    PubMed  Google Scholar 

  285. Sharlow ER, Leimgruber S, Lira A, McConnell MJ, As N, Bloom GS et al (2016) A small molecule screen exposes mTOR signaling pathway involvement in radiation-induced apoptosis. ACS Chem Biol 11(5):1428–1437

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Zhang S, Wang W, Gu Q, Xue J, Cao H, Tang Y et al (2014) Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation. Free Radical Biol Med 69:96–107. https://doi.org/10.1016/j.freeradbiomed.2014.01.019

    Article  CAS  Google Scholar 

  287. Bhanja P, Norris A, Gupta-Saraf P, Hoover A, Saha S (2018) BCN057 induces intestinal stem cell repair and mitigates radiation-induced intestinal injury. Stem Cell Res Ther 9(1):26

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104(2):618–623. https://doi.org/10.1073/pnas.0606599104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Romesser PB, Kim AS, Jeong J, Mayle A, Dow LE, Lowe SW (2019) Preclinical murine platform to evaluate therapeutic countermeasures against radiation-induced gastrointestinal syndrome. Proc Natl Acad Sci 116(41):20672–20678

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Baranov A, Gale RP, Guskova A, Piatkin E, Selidovkin G, Muravyova L et al (1989) Bone marrow transplantation after the Chernobyl nuclear accident. N Engl J Med 321(4):205–212. https://doi.org/10.1056/nejm198907273210401

    Article  CAS  PubMed  Google Scholar 

  291. Kulkarni S, Wang TC, Guha C (2016) Stromal progenitor cells in mitigation of non-hematopoietic radiation injuries. Curr Pathobiol Rep 4(4):221–230

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Kiang JG (2016) Adult mesenchymal stem cells and radiation injury. Health Phys 111(2):198–203. https://doi.org/10.1097/HP.0000000000000459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Gong W, Guo M, Han Z, Wang Y, Yang P, Xu C et al (2016) Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis 7(9):e2387. https://doi.org/10.1038/cddis.2016.276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Chang PY, Qu YQ, Wang J, Dong LH (2015) The potential of mesenchymal stem cells in the management of radiation enteropathy. Cell Death Dis 6:e1840. https://doi.org/10.1038/cddis.2015.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M et al (2014) Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal 21(2):338–355. https://doi.org/10.1089/ars.2013.5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Rasmusson I (2006) Immune modulation by mesenchymal stem cells. Exp Cell Res 312(12):2169–2179. https://doi.org/10.1016/j.yexcr.2006.03.019

    Article  CAS  PubMed  Google Scholar 

  297. Zachman DK, Leon RP, Das P, Goldman DC, Hamlin KL, Guha C et al (2013) Endothelial cells mitigate DNA damage and promote the regeneration of hematopoietic stem cells after radiation injury. Stem Cell Res 11(3):1013–1021. https://doi.org/10.1016/j.scr.2013.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Piryani SO, Jiao Y, Kam AYF, Liu Y, Vo-Dinh T, Chen BJ et al (2019) Endothelial cell-derived extracellular vesicles mitigate radiation-induced hematopoietic injury. Int J Radiat Oncol Biol Phys 104(2):291–301. https://doi.org/10.1016/j.ijrobp.2019.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Kim A, Shim S, Kim M-J, Myung JK, Park S (2018) Mesenchymal stem cell-mediated Notch2 activation overcomes radiation-induced injury of the hematopoietic system. Sci Rep 8(1):9277. https://doi.org/10.1038/s41598-018-27666-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Tao X, Sun M, Chen M, Ying R, Su W, Zhang J et al (2019) HMGB1-modified mesenchymal stem cells attenuate radiation-induced vascular injury possibly via their high motility and facilitation of endothelial differentiation. Stem Cell Res Ther 10(1):92. https://doi.org/10.1186/s13287-019-1197-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Weyemi U, Redon CE, Aziz T, Choudhuri R, Maeda D, Parekh PR et al (2015) Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat Res 183(3):262–270. https://doi.org/10.1667/rr13799.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Deng W, Abdel-Mageed A, Connors R, Pietryga D, Senagore A (2015) Successful mitigation of radiation injuries in mice using mesenchymal stem cells genetically modified to secrete extracellular superoxide dismutase. J Stem Cell Res Ther 5(288):2

    Google Scholar 

  303. Gan J, Meng F, Zhou X, Li C, He Y, Zeng X et al (2015) Hematopoietic recovery of acute radiation syndrome by human superoxide dismutase-expressing umbilical cord mesenchymal stromal cells. Cytotherapy 17(4):403–417. https://doi.org/10.1016/j.jcyt.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  304. Patwardhan RS, Sharma D, Checker R, Sandur SK (2014) Mitigation of radiation-induced hematopoietic injury via regulation of cellular MAPK/phosphatase levels and increasing hematopoietic stem cells. Free Radical Biol Med 68:52–64. https://doi.org/10.1016/j.freeradbiomed.2013.11.004

    Article  CAS  Google Scholar 

  305. Cline JM, Dugan G, Bourland JD, Perry DL, Stitzel JD, Weaver AA et al (2018) Post-irradiation treatment with a superoxide dismutase mimic, MnTnHex-2-PyP(5+), mitigates radiation injury in the lungs of non-human primates after whole-thorax exposure to ionizing radiation. Antioxidants (Basel, Switzerland) 7(3):40. https://doi.org/10.3390/antiox7030040

    Article  CAS  Google Scholar 

  306. Long W, Zhang G, Dong Y, Li D (2018) Dark tea extract mitigates hematopoietic radiation injury with antioxidative activity. J Radiat Res 59(4):387–394. https://doi.org/10.1093/jrr/rrx072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Zanoni M, Cortesi M, Zamagni A, Tesei A (2019) The role of mesenchymal stem cells in radiation-induced lung fibrosis. Int J Mol Sci 20(16):3876. https://doi.org/10.3390/ijms20163876

    Article  CAS  PubMed Central  Google Scholar 

  308. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100(14):8407–8411. https://doi.org/10.1073/pnas.1432929100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Klein D, Steens J, Wiesemann A, Schulz F, Kaschani F, Rock K et al (2017) Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid Redox Signal 26(11):563–582. https://doi.org/10.1089/ars.2016.6748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Wei L, Zhang J, Yang ZL, You H (2017) Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis. Cytotherapy 19(5):586–602. https://doi.org/10.1016/j.jcyt.2017.02.359

    Article  CAS  PubMed  Google Scholar 

  311. Li B, Li C, Zhu M, Zhang Y, Du J, Xu Y et al (2017) Hypoxia-induced mesenchymal stromal cells exhibit an enhanced therapeutic effect on radiation-induced lung injury in mice due to an increased proliferation potential and enhanced antioxidant ability. Cell Physiol Biochem 44(4):1295–1310. https://doi.org/10.1159/000485490

    Article  CAS  PubMed  Google Scholar 

  312. Yao Y, Zheng Z, Song Q (2018) Mesenchymal stem cells: a double-edged sword in radiation-induced lung injury. Thorac Cancer 9(2):208–217. https://doi.org/10.1111/1759-7714.12573

    Article  PubMed  Google Scholar 

  313. Cohen EP, Pais P, Moulder JE (2010) Chronic kidney disease after hematopoietic stem cell transplantation. Semin Nephrol 30(6):627–634. https://doi.org/10.1016/j.semnephrol.2010.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  314. Medhora M, Gao F, Wu Q, Molthen RC, Jacobs ER, Moulder JE et al (2014) Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat Res 182(5):545–555. https://doi.org/10.1667/RR13425.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Heylmann D, Rödel F, Kindler T, Kaina B (2014) Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim Biophys Acta Rev Cancer 1846(1):121–129

    CAS  Google Scholar 

  316. Chen JJ, Gao Y, Tian Q, Liang YM, Yang L (2014) Platelet factor 4 protects bone marrow mesenchymal stem cells from acute radiation injury. Br J Radiol 87(1040):20140184. https://doi.org/10.1259/bjr.20140184

    Article  PubMed  PubMed Central  Google Scholar 

  317. Lemon JA, Taylor K, Verdecchia K, Phan N, Boreham DR (2014) The influence of Trp53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells. Dose Response Publ Int Hormesis Soc 12(3):365–385. https://doi.org/10.2203/dose-response.14-008.Lemon

    Article  CAS  Google Scholar 

  318. Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS et al (2019) Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J Cell Commun Signal 13(1):3–16. https://doi.org/10.1007/s12079-018-0473-3

    Article  PubMed  Google Scholar 

  319. Azzam EI, Jay-Gerin J-P, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327(1–2):48–60. https://doi.org/10.1016/j.canlet.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  320. Brown SL, Kolozsvary A, Liu J, Jenrow KA, Ryu S, Kim JH (2010) Antioxidant diet supplementation starting 24 hours after exposure reduces radiation lethality. Radiat Res 173(4):462–468. https://doi.org/10.1667/RR1716.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Cohen EP, Fish BL, Moulder JE (2015) Late-onset effects of radiation and chronic kidney disease. Lancet 386(10005):1737–1738

    PubMed  PubMed Central  Google Scholar 

  322. Tsoutsou PG, Koukourakis MI (2006) Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 66(5):1281–1293

    PubMed  Google Scholar 

  323. Chen Y, Chou C, Shun C, Wei M, Kuo S (2016) The expression of CXCL16 during lung irradiation may lead to radiation pneumonitis and fibrosis through inducing neutrophil and macrophage infiltration in lung tissue. Int J Radiat Oncol Biol Phys 96(2):S65–S66

    Google Scholar 

  324. Sieber F, Muir SA, Cohen EP, North PE, Fish BL, Irving AA et al (2009) High-dose selenium for the mitigation of radiation injury: a pilot study in a rat model. Radiat Res 171(3):368–373. https://doi.org/10.1667/0033-7587-171.3.368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Christofidou-Solomidou M, Tyagi S, Tan KS, Hagan S, Pietrofesa R, Dukes F et al (2011) Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice. BMC Cancer 11:269. https://doi.org/10.1186/1471-2407-11-269

    Article  PubMed  PubMed Central  Google Scholar 

  326. Pietrofesa R, Turowski J, Tyagi S, Dukes F, Arguiri E, Busch TM (2013) Radiation mitigating properties of the lignan component in flaxseed. BMC Cancer. https://doi.org/10.1186/1471-2407-13-179

    Article  PubMed  PubMed Central  Google Scholar 

  327. Lee JC, Krochak R, Blouin A, Kanterakis S, Chatterjee S, Arguiri E et al (2009) Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. Cancer Biol Ther 8(1):47–53

    CAS  PubMed  Google Scholar 

  328. Williams JP, Brown SL, Georges GE, Hauer-Jensen M, Hill RP, Huser AK et al (2010) Animal models for medical countermeasures to radiation exposure. Radiat Res 173(4):557–578

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Naeeji A, Mozdarani H, Monfared AS, Faeghi F, Ahmadi A, Gholami M et al (2017) Oral administration of vitamin C, cimetidine and famotidine on micronuclei induced by low dose radiation in mouse bone marrow cells. J Biomed Phys Eng 7(2):117

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Haydont V, Gilliot O, Rivera S, Bourgier C, François A, Aigueperse J et al (2007) Successful mitigation of delayed intestinal radiation injury using pravastatin is not associated with acute injury improvement or tumor protection. Int J Radiat Oncol Biol Phys 68(5):1471–1482

    CAS  PubMed  Google Scholar 

  331. Gedon NKY, Mueller RS (2018) Atopic dermatitis in cats and dogs: a difficult disease for animals and owners. Clin Transl Allergy 8(1):41

    PubMed  PubMed Central  Google Scholar 

  332. Moulder JE, Fish BL (1989) Late toxicity of total body irradiation with bone marrow transplantation in a rat model. Int J Radiat Oncol Biol Phys 16(6):1501–1509. https://doi.org/10.1016/0360-3016(89)90955-3

    Article  CAS  PubMed  Google Scholar 

  333. Stewart FA, Luts A, Lebesque JV (1989) The lack of long-term recovery and reirradiation tolerance in the mouse kidney. Int J Radiat Biol 56(4):449–462. https://doi.org/10.1080/09553008914551601

    Article  CAS  PubMed  Google Scholar 

  334. van Rongen E, Kuijpers WC, Madhuizen HT, van der Kogel AJ (1988) Effects of multifraction irradiation on the rat kidney. Int J Radiat Oncol Biol Phys 15(5):1161–1170. https://doi.org/10.1016/0360-3016(88)90199-x

    Article  PubMed  Google Scholar 

  335. Molteni JM, Cohen EF, Ward WF, Fish BL, Taylor JM, Wolfe LF, Brizio-Molteni L, Veno PA (2000) Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int J Radiat Biol 76(4):523–532

    CAS  PubMed  Google Scholar 

  336. van der Veen SJ, Ghobadi G, de Boer RA, Faber H, Cannon MV, Nagle PW et al (2015) ACE inhibition attenuates radiation-induced cardiopulmonary damage. Radiother Oncol 114(1):96–103

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masoud Najafi or Bagher Farhood.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

khodamoradi, E., Hoseini-Ghahfarokhi, M., Amini, P. et al. Targets for protection and mitigation of radiation injury. Cell. Mol. Life Sci. 77, 3129–3159 (2020). https://doi.org/10.1007/s00018-020-03479-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03479-x

Keywords

Navigation