Skip to main content
Log in

Epigenetic control of embryo–uterine crosstalk at peri-implantation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dickmann Z, Noyes RW (1961) The zona pellucida at the time of implantation. Fertil Steril 12:310–318

    CAS  PubMed  Google Scholar 

  2. Wang H, Dey SK (2006) Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 7:185–199

    PubMed  Google Scholar 

  3. Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR (2013) Physiological and molecular determinants of embryo implantation. Mol Aspects Med 34:939–980

    PubMed  PubMed Central  Google Scholar 

  4. Paria BC, Huet-Hudson YM, Dey SK (1993) Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci USA 90:10159–10162

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cha J, Sun X, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18:1754–1767

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lim HJ, Wang H (2010) Uterine disorders and pregnancy complications: insights from mouse models. J Clin Invest 120:1004–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gellersen B, Brosens JJ (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 35:851–905

    CAS  PubMed  Google Scholar 

  8. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL (2011) Epigenetics and the placenta. Hum Reprod Update 17:397–417

    CAS  PubMed  Google Scholar 

  10. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    CAS  PubMed  Google Scholar 

  11. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    CAS  PubMed  Google Scholar 

  12. Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Veland N, Lu Y, Hardikar S, Gaddis S, Zeng Y, Liu B, Estecio MR, Takata Y, Lin K, Tomida MW, Shen J, Saha D, Gowher H, Zhao H, Chen T (2018) DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Res 47(1):152–167

    PubMed Central  Google Scholar 

  14. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    CAS  PubMed  Google Scholar 

  15. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436:876–880

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Weber M, Schubeler D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19:273–280

    CAS  PubMed  Google Scholar 

  17. Branco MR, Ficz G, Reik W (2011) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    PubMed  Google Scholar 

  18. Kouzarides T (2007) SnapShot: histone-modifying enzymes. Cell 131:822

    CAS  PubMed  Google Scholar 

  19. Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    CAS  PubMed  Google Scholar 

  20. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  21. Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14:R546–R551

    CAS  PubMed  Google Scholar 

  22. Sims RJ 3rd, Reinberg D (2006) Histone H3 Lys 4 methylation: caught in a bind? Genes Dev 20:2779–2786

    CAS  PubMed  Google Scholar 

  23. Patel DJ, Wang Z (2013) Readout of epigenetic modifications. Annu Rev Biochem 82:81–118

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    CAS  PubMed  Google Scholar 

  25. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    CAS  PubMed  Google Scholar 

  27. Boon RA, Dimmeler S (2015) MicroRNAs in myocardial infarction. Nat Rev Cardiol 12:135–142

    CAS  PubMed  Google Scholar 

  28. Ransohoff JD, Wei Y, Khavari PA (2018) The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19:143–157

    CAS  PubMed  Google Scholar 

  29. Ernst C, Odom DT, Kutter C (2017) The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun 8:1411

    PubMed  PubMed Central  Google Scholar 

  30. Ferlita A, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M, Pietro CD (2018) Non-coding RNAs in endometrial physiopathology. Int J Mol Sci 19(7):2120

    PubMed Central  Google Scholar 

  31. Koerner MV, Pauler FM, Huang R, Barlow DP (2009) The function of non-coding RNAs in genomic imprinting. Development 136:1771–1783

    CAS  PubMed  Google Scholar 

  32. Gendrel AV, Heard E (2014) Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu Rev Cell Dev Biol 30:561–580

    CAS  PubMed  Google Scholar 

  33. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    CAS  PubMed  Google Scholar 

  34. Folco HD, Pidoux AL, Urano T, Allshire RC (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun Q, Hao Q, Prasanth KV (2018) Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet 34:142–157

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  40. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    CAS  PubMed  Google Scholar 

  41. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    CAS  PubMed  Google Scholar 

  42. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Altmae S, Martinez-Conejero JA, Esteban FJ, Ruiz-Alonso M, Stavreus-Evers A, Horcajadas JA, Salumets A (2013) MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci 20:308–317

    PubMed  PubMed Central  Google Scholar 

  44. Gebert LFR, MacRae IJ (2018) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 431:350

    Google Scholar 

  45. Bartel DP (2018) Metazoan MicroRNAs. Cell 173:20–51

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen YG, Satpathy AT, Chang HY (2017) Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 18:962–972

    CAS  PubMed  Google Scholar 

  47. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    CAS  PubMed  Google Scholar 

  48. Yan P, Luo S, Lu JY, Shen X (2017) Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Curr Opin Genet Dev 46:170–178

    CAS  PubMed  Google Scholar 

  49. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    CAS  PubMed  Google Scholar 

  50. Tatomer DC, Wilusz JE (2017) An unchartered journey for ribosomes: circumnavigating circular RNAs to produce proteins. Mol Cell 66:1–2

    CAS  PubMed  Google Scholar 

  51. Lee HJ, Hore TA, Reik W (2014) Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14:710–719

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lepikhov K, Zakhartchenko V, Hao R, Yang F, Wrenzycki C, Niemann H, Wolf E, Walter J (2008) Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 1:8

    PubMed  PubMed Central  Google Scholar 

  53. Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4:12

    PubMed  PubMed Central  Google Scholar 

  54. Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, Ming J, Wu X, Zhang Y, Xu Q, Liu W, Kou X, Zhao Y, He W, Li C, Chen B, Li Y, Wang Q, Ma J, Yin Q, Kee K, Meng A, Gao S, Xu F, Na J, Xie W (2016) Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537:553–557

    CAS  PubMed  Google Scholar 

  55. Liu X, Wang C, Liu W, Li J, Li C, Kou X, Chen J, Zhao Y, Gao H, Wang H, Zhang Y, Gao Y, Gao S (2016) Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537:558–562

    CAS  PubMed  Google Scholar 

  56. Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y, Zhang B, Liu B, Wang Q, Xia W, Li W, Li Y, Ma J, Peng X, Zheng H, Ming J, Zhang W, Zhang J, Tian G, Xu F, Chang Z, Na J, Yang X, Xie W (2016) The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534:652–657

    CAS  PubMed  Google Scholar 

  57. Xu Q, Xie W (2018) Epigenome in early mammalian development: inheritance, reprogramming and establishment. Trends Cell Biol 28:237–253

    CAS  PubMed  Google Scholar 

  58. Ladstatter S, Tachibana K (2018) Genomic insights into chromatin reprogramming to totipotency in embryos. J Cell Biol 218:70–82

    PubMed  Google Scholar 

  59. Fenelon JC, Banerjee A, Murphy BD (2014) Embryonic diapause: development on hold. Int J Dev Biol 58:163–174

    PubMed  Google Scholar 

  60. Fu Z, Wang B, Wang S, Wu W, Wang Q, Chen Y, Kong S, Lu J, Tang Z, Ran H, Tu Z, He B, Zhang S, Chen Q, Jin W, Duan E, Wang H, Wang YL, Li L, Wang F, Gao S, Wang H (2014) Integral proteomic analysis of blastocysts reveals key molecular machinery governing embryonic diapause and reactivation for implantation in mice. Biol Reprod 90:52

    PubMed  Google Scholar 

  61. Bulut-Karslioglu A, Biechele S, Jin H, Macrae TA, Hejna M, Gertsenstein M, Song JS, Ramalho-Santos M (2016) Inhibition of mTOR induces a paused pluripotent state. Nature 540:119–123

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast AM, Baumgartner D, Carnevalli LS, Atzberger A, Haas S, von Paleske L, Boroviak T, Worsdorfer P, Essers MA, Kloz U, Eisenman RN, Edenhofer F, Bertone P, Huber W, van der Hoeven F, Smith A, Trumpp A (2016) Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164:668–680

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheong AW, Pang RT, Liu WM, Kottawatta KS, Lee KF, Yeung WS (2014) MicroRNA Let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos. Hum Reprod 29:750–762

    CAS  PubMed  Google Scholar 

  64. Liu WM, Pang RT, Cheong AW, Ng EH, Lao K, Lee KF, Yeung WS (2012) Involvement of microRNA lethal-7a in the regulation of embryo implantation in mice. PLoS One 7:e37039

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Capalbo A, Ubaldi FM, Cimadomo D, Noli L, Khalaf Y, Farcomeni A, Ilic D, Rienzi L (2016) MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril 105(225–235):e221–e223

    Google Scholar 

  66. Gao L, Wu K, Liu Z, Yao X, Yuan S, Tao W, Yi L, Yu G, Hou Z, Fan D, Tian Y, Liu J, Chen ZJ, Liu J (2018) Chromatin accessibility landscape in human early embryos and its association with evolution. Cell 173(248–259):e215

    Google Scholar 

  67. Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP (2010) Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod 16:297–310

    CAS  PubMed  Google Scholar 

  68. Sasaki M, Kotcherguina L, Dharia A, Fujimoto S, Dahiya R (2001) Cytosine-phosphoguanine methylation of estrogen receptors in endometrial cancer. Cancer Res 61:3262–3266

    CAS  PubMed  Google Scholar 

  69. Hori M, Iwasaki M, Shimazaki J, Inagawa S, Itabashi M (2000) Assessment of hypermethylated DNA in two promoter regions of the estrogen receptor alpha gene in human endometrial diseases. Gynecol Oncol 76:89–96

    CAS  PubMed  Google Scholar 

  70. Sasaki M, Dharia A, Oh BR, Tanaka Y, Fujimoto S, Dahiya R (2001) Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer. Cancer Res 61:97–102

    CAS  PubMed  Google Scholar 

  71. Ghabreau L, Roux JP, Niveleau A, Fontaniere B, Mahe C, Mokni M, Frappart L (2004) Correlation between the DNA global methylation status and progesterone receptor expression in normal endometrium, endometrioid adenocarcinoma and precursors. Virchow Arch Int J Pathol 445:129–134

    CAS  Google Scholar 

  72. Su RW, Strug MR, Jeong JW, Miele L, Fazleabas AT (2016) Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility. Proc Natl Acad Sci USA 113:2300–2305

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gao R, Ding Y, Liu X, Chen X, Wang Y, Long C, Li S, Guo L, He J (2012) Effect of folate deficiency on promoter methylation and gene expression of Esr1, Cdh1 and Pgr, and its influence on endometrial receptivity and embryo implantation. Hum Reprod 27:2756–2765

    CAS  PubMed  Google Scholar 

  74. Milesi MM, Varayoud J, Ramos JG, Luque EH (2017) Uterine ERalpha epigenetic modifications are induced by the endocrine disruptor endosulfan in female rats with impaired fertility. Mol Cell Endocrinol 454:1–11

    CAS  PubMed  Google Scholar 

  75. Taylor HS, Arici A, Olive D, Igarashi P (1998) HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest 101:1379–1384

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gui Y, Zhang J, Yuan L, Lessey BA (1999) Regulation of HOXA-10 and its expression in normal and abnormal endometrium. Mol Hum Reprod 5:866–873

    CAS  PubMed  Google Scholar 

  77. Satokata I, Benson G, Maas R (1995) Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature 374:460–463

    CAS  PubMed  Google Scholar 

  78. Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL (1996) Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 122:2687–2696

    CAS  PubMed  Google Scholar 

  79. Yoshida H, Broaddus R, Cheng W, Xie S, Naora H (2006) Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: role in epithelial-mesenchymal transition. Cancer Res 66:889–897

    CAS  PubMed  Google Scholar 

  80. Wu Y, Halverson G, Basir Z, Strawn E, Yan P, Guo SW (2005) Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am J Obstet Gynecol 193:371–380

    CAS  PubMed  Google Scholar 

  81. Leu YW, Yan PS, Fan M, Jin VX, Liu JC, Curran EM, Welshons WV, Wei SH, Davuluri RV, Plass C, Nephew KP, Huang TH (2004) Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res 64:8184–8192

    CAS  PubMed  Google Scholar 

  82. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50

    CAS  PubMed  Google Scholar 

  83. Houshdaran S, Zelenko Z, Irwin JC, Giudice LC (2014) Human endometrial DNA methylome is cycle-dependent and is associated with gene expression regulation. Mol Endocrinol 28:1118–1135

    PubMed  PubMed Central  Google Scholar 

  84. Horne AW, Lalani EN, Margara RA, White JO (2006) The effects of sex steroid hormones and interleukin-1-beta on MUC1 expression in endometrial epithelial cell lines. Reproduction 131:733–742

    CAS  PubMed  Google Scholar 

  85. Meseguer M, Aplin JD, Caballero-Campo P, O’Connor JE, Martin JC, Remohi J, Pellicer A, Simon C (2001) Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol Reprod 64:590–601

    CAS  PubMed  Google Scholar 

  86. Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD (2009) Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology 150:1466–1472

    CAS  PubMed  Google Scholar 

  87. Vincent ZL, Farquhar CM, Mitchell MD, Ponnampalam AP (2011) Expression and regulation of DNA methyltransferases in human endometrium. Fertil Steril 95(1522–1525):e1521

    Google Scholar 

  88. Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R, Taniguchi K, Taketani T, Matsuoka A, Tamura H, Sugino N (2009) DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum Reprod 24:1126–1132

    CAS  PubMed  Google Scholar 

  89. van Kaam KJ, Delvoux B, Romano A, D’Hooghe T, Dunselman GA, Groothuis PG (2011) Deoxyribonucleic acid methyltransferases and methyl-CpG-binding domain proteins in human endometrium and endometriosis. Fertil Steril 95:1421–1427

    PubMed  Google Scholar 

  90. Kukushkina V, Modhukur V, Suhorutsenko M, Peters M, Magi R, Rahmioglu N, Velthut-Meikas A, Altmae S, Esteban FJ, Vilo J, Zondervan K, Salumets A, Laisk-Podar T (2017) DNA methylation changes in endometrium and correlation with gene expression during the transition from pre-receptive to receptive phase. Sci Rep 7:3916

    PubMed  PubMed Central  Google Scholar 

  91. Maekawa R, Tamura I, Shinagawa M, Mihara Y, Sato S, Okada M, Taketani T, Tamura H, Sugino N (2019) Genome-wide DNA methylation analysis revealed stable DNA methylation status during decidualization in human endometrial stromal cells. BMC Genomics 20:324

    PubMed  PubMed Central  Google Scholar 

  92. Serra MJ, Ledford BE, Baggett B (1979) Synthesis and modification of the histones during the decidual cell reaction in the mouse uterus. Biol Reprod 20:214–220

    CAS  PubMed  Google Scholar 

  93. Libby PR (1972) Histone acetylation and hormone action. Early effects of oestradiol-17beta on histone acetylation in rat uterus. Biochem J 130:663–669

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Guo JZ, Gorski J (1989) Estrogen effects on modifications of chromatin proteins in the rat uterus. J Steroid Biochem 32:13–20

    CAS  PubMed  Google Scholar 

  95. Sakai N, Maruyama T, Sakurai R, Masuda H, Yamamoto Y, Shimizu A, Kishi I, Asada H, Yamagoe S, Yoshimura Y (2003) Involvement of histone acetylation in ovarian steroid-induced decidualization of human endometrial stromal cells. J Biol Chem 278:16675–16682

    CAS  PubMed  Google Scholar 

  96. Gunin AG, Kapitova IN, Suslonova NV (2005) Effects of histone deacetylase inhibitors on estradiol-induced proliferation and hyperplasia formation in the mouse uterus. J Endocrinol 185:539–549

    CAS  PubMed  Google Scholar 

  97. Uchida H, Maruyama T, Nagashima T, Asada H, Yoshimura Y (2005) Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycodelin. Endocrinology 146:5365–5373

    CAS  PubMed  Google Scholar 

  98. Grimaldi G, Christian M, Quenby S, Brosens JJ (2012) Expression of epigenetic effectors in decidualizing human endometrial stromal cells. Mol Hum Reprod 18:451–458

    CAS  PubMed  Google Scholar 

  99. Uchida H, Maruyama T, Ohta K, Ono M, Arase T, Kagami M, Oda H, Kajitani T, Asada H, Yoshimura Y (2007) Histone deacetylase inhibitor-induced glycodelin enhances the initial step of implantation. Hum Reprod 22:2615–2622

    CAS  PubMed  Google Scholar 

  100. Zhu LH, Sun LH, Hu YL, Jiang Y, Liu HY, Shen XY, Jin XY, Zhen X, Sun HX, Yan GJ (2013) PCAF impairs endometrial receptivity and embryo implantation by down-regulating beta3-integrin expression via HOXA10 acetylation. J Clin Endocrinol Metab 98:4417–4428

    CAS  PubMed  Google Scholar 

  101. Xin Q, Kong S, Yan J, Qiu J, He B, Zhou C, Ni Z, Bao H, Huang L, Lu J, Xia G, Liu X, Chen ZJ, Wang C, Wang H (2018) Polycomb subunit BMI1 determines uterine progesterone responsiveness essential for normal embryo implantation. J Clin Invest 128:175–189

    PubMed  Google Scholar 

  102. Filant J, Spencer TE (2014) Uterine glands: biological roles in conceptus implantation, uterine receptivity and decidualization. Int J Dev Biol 58:107–116

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kelleher AM, Milano-Foster J, Behura SK, Spencer TE (2018) Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success. Nat Commun 9:2435

    PubMed Central  PubMed  Google Scholar 

  104. Cui T, He B, Kong S, Zhou C, Zhang H, Ni Z, Bao H, Qiu J, Xin Q, Reinberg D, Lydon JP, Lu J, Wang H (2017) PR-Set7 deficiency limits uterine epithelial population growth hampering postnatal gland formation in mice. Cell Death Differ 24:2013–2021

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Li Q, Kannan A, DeMayo FJ, Lydon JP, Cooke PS, Yamagishi H, Srivastava D, Bagchi MK, Bagchi IC (2011) The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science 331:912–916

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Barron F, Woods C, Kuhn K, Bishop J, Howard MJ, Clouthier DE (2011) Downregulation of Dlx5 and Dlx6 expression by Hand2 is essential for initiation of tongue morphogenesis. Development 138:2249–2259

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Daikoku T, Cha J, Sun X, Tranguch S, Xie H, Fujita T, Hirota Y, Lydon J, DeMayo F, Maxson R, Dey SK (2011) Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell 21:1014–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang J, Kumar RM, Biggs VJ, Lee H, Chen Y, Kagey MH, Young RA, Abate-Shen C (2011) The Msx1 homeoprotein recruits polycomb to the nuclear periphery during development. Dev Cell 21:575–588

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Creighton CJ, Benham AL, Zhu H, Khan MF, Reid JG, Nagaraja AK, Fountain MD, Dziadek O, Han D, Ma L, Kim J, Hawkins SM, Anderson ML, Matzuk MM, Gunaratne PH (2010) Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One 5:e9637

    PubMed  PubMed Central  Google Scholar 

  110. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW (2010) Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 82:791–801

    CAS  PubMed  Google Scholar 

  111. Hu SJ, Ren G, Liu JL, Zhao ZA, Yu YS, Su RW, Ma XH, Ni H, Lei W, Yang ZM (2008) MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem 283:23473–23484

    CAS  PubMed  Google Scholar 

  112. Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK (2007) MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci USA 104:15144–15149

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Revel A, Achache H, Stevens J, Smith Y, Reich R (2011) MicroRNAs are associated with human embryo implantation defects. Hum Reprod 26:2830–2840

    CAS  PubMed  Google Scholar 

  114. Moreno-Moya JM, Vilella F, Martinez S, Pellicer A, Simon C (2014) The transcriptomic and proteomic effects of ectopic overexpression of miR-30d in human endometrial epithelial cells. Mol Hum Reprod 20:550–566

    CAS  PubMed  Google Scholar 

  115. Ponsuksili S, Tesfaye D, Schellander K, Hoelker M, Hadlich F, Schwerin M, Wimmers K (2014) Differential expression of miRNAs and their target mRNAs in endometria prior to maternal recognition of pregnancy associates with endometrial receptivity for in vivo- and in vitro-produced bovine embryos. Biol Reprod 91:135

    PubMed  Google Scholar 

  116. Kresowik JD, Devor EJ, Van Voorhis BJ, Leslie KK (2014) MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation: a potential biomarker for optimum receptivity. Biol Reprod 91:17

    PubMed  PubMed Central  Google Scholar 

  117. Liu JL, Liang XH, Su RW, Lei W, Jia B, Feng XH, Li ZX, Yang ZM (2012) Combined analysis of microRNome and 3′-UTRome reveals a species-specific regulation of progesterone receptor expression in the endometrium of rhesus monkey. J Biol Chem 287:13899–13910

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martinez S, Marcilla A, Simon C (2015) Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development 142:3210–3221

    CAS  PubMed  Google Scholar 

  119. Desrochers LM, Bordeleau F, Reinhart-King CA, Cerione RA, Antonyak MA (2016) Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun 7:11958

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Galliano D, Pellicer A (2014) MicroRNA and implantation. Fertil Steril 101:1531–1544

    CAS  PubMed  Google Scholar 

  121. Liu W, Niu Z, Li Q, Pang RT, Chiu PC, Yeung WS (2016) MicroRNA and Embryo Implantation. Am J Reprod Immunol 75:263–271

    CAS  PubMed  Google Scholar 

  122. Liang J, Wang S, Wang Z (2017) Role of microRNAs in embryo implantation. Reprod Biol Endocrinol 15:90

    PubMed  PubMed Central  Google Scholar 

  123. Haraguchi H, Saito-Fujita T, Hirota Y, Egashira M, Matsumoto L, Matsuo M, Hiraoka T, Koga K, Yamauchi N, Fukayama M, Bartos A, Cha J, Dey SK, Fujii T, Osuga Y (2014) MicroRNA-200a locally attenuates progesterone signaling in the cervix, preventing embryo implantation. Mol Endocrinol 28:1108–1117

    PubMed  PubMed Central  Google Scholar 

  124. Chau YM, Pando S, Taylor HS (2002) HOXA11 silencing and endogenous HOXA11 antisense ribonucleic acid in the uterine endometrium. J Clin Endocrinol Metab 87:2674–2680

    CAS  PubMed  Google Scholar 

  125. Arao Y, Carpenter K, Hewitt S, Korach KS (2010) Estrogen down-regulation of the Scx gene is mediated by the opposing strand-overlapping gene Bop1. J Biol Chem 285:4806–4814

    CAS  PubMed  Google Scholar 

  126. Mihalich A, Reina M, Mangioni S, Ponti E, Alberti L, Vigano P, Vignali M, Di Blasio AM (2003) Different basic fibroblast growth factor and fibroblast growth factor-antisense expression in eutopic endometrial stromal cells derived from women with and without endometriosis. J Clin Endocrinol Metab 88:2853–2859

    CAS  PubMed  Google Scholar 

  127. Noonan FC, Goodfellow PJ, Staloch LJ, Mutch DG, Simon TC (2003) Antisense transcripts at the EMX2 locus in human and mouse. Genomics 81:58–66

    CAS  PubMed  Google Scholar 

  128. Lanz RB, Chua SS, Barron N, Soder BM, DeMayo F, O’Malley BW (2003) Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol Cell Biol 23:7163–7176

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sigurgeirsson B, Amark H, Jemt A, Ujvari D, Westgren M, Lundeberg J, Gidlof S (2017) Comprehensive RNA sequencing of healthy human endometrium at two time points of the menstrual cycle. Biol Reprod 96:24–33

    PubMed  Google Scholar 

  130. Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, Zhu Q, Chen Z, Sun Y (2014) Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab 99:E2744–E2753

    CAS  PubMed  Google Scholar 

  131. Wang Q, Wang N, Cai R, Zhao F, Xiong Y, Li X, Wang A, Lin P, Jin Y (2017) Genome-wide analysis and functional prediction of long non-coding RNAs in mouse uterus during the implantation window. Oncotarget 8:84360–84372

    PubMed  PubMed Central  Google Scholar 

  132. Wang Y, Hu T, Wu L, Liu X, Xue S, Lei M (2017) Identification of non-coding and coding RNAs in porcine endometrium. Genomics 109:43–50

    CAS  PubMed  Google Scholar 

  133. Zeng H, Fan X, Liu N (2017) Expression of H19 imprinted gene in patients with repeated implantation failure during the window of implantation. Arch Gynecol Obstet 296:835–839

    CAS  PubMed  Google Scholar 

  134. Feng C, Shen JM, Lv PP, Jin M, Wang LQ, Rao JP, Feng L (2018) Construction of implantation failure related lncRNA-mRNA network and identification of lncRNA biomarkers for predicting endometrial receptivity. Int J Biol Sci 14:1361–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang L, Liu X, Che S, Cui J, Liu Y, An X, Cao B, Song Y (2018) CircRNA-9119 regulates the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) by sponging miR-26a in the endometrial epithelial cells of dairy goat. Reprod Fertil Dev 30(12):1759–1769

    CAS  PubMed  Google Scholar 

  136. Liu L, Li L, Ma X, Yue F, Wang Y, Wang L, Jin P, Zhang X (2017) Altered circular RNA expression in patients with repeated implantation failure. Cell Physiol Biochem 44:303–313

    CAS  PubMed  Google Scholar 

  137. Logan PC, Ponnampalam AP, Rahnama F, Lobie PE, Mitchell MD (2010) The effect of DNA methylation inhibitor 5-Aza-2′-deoxycytidine on human endometrial stromal cells. Hum Reprod 25:2859–2869

    CAS  PubMed  Google Scholar 

  138. Gao F, Ma X, Rusie A, Hemingway J, Ostmann AB, Chung D, Das SK (2012) Epigenetic changes through DNA methylation contribute to uterine stromal cell decidualization. Endocrinology 153:6078–6090

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ding YB, Long CL, Liu XQ, Chen XM, Guo LR, Xia YY, He JL, Wang YX (2012) 5-aza-2′-deoxycytidine leads to reduced embryo implantation and reduced expression of DNA methyltransferases and essential endometrial genes. PLoS One 7:e45364

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Logan PC, Ponnampalam AP, Steiner M, Mitchell MD (2013) Effect of cyclic AMP and estrogen/progesterone on the transcription of DNA methyltransferases during the decidualization of human endometrial stromal cells. Mol Hum Reprod 19:302–312

    CAS  PubMed  Google Scholar 

  141. Brown LY, Bonney EA, Raj RS, Nielsen B, Brown S (2013) Generalized disturbance of DNA methylation in the uterine decidua in the CBA/J x DBA/2 mouse model of pregnancy failure. Biol Reprod 89:120

    PubMed  PubMed Central  Google Scholar 

  142. Yu M, Du G, Xu Q, Huang Z, Huang X, Qin Y, Han L, Fan Y, Zhang Y, Han X, Jiang Z, Xia Y, Wang X, Lu C (2018) Integrated analysis of DNA methylome and transcriptome identified CREB5 as a novel risk gene contributing to recurrent pregnancy loss. EBioMedicine 35:334–344

    PubMed  PubMed Central  Google Scholar 

  143. Hou W, Li Z, Li Y, Fang L, Li J, Huang J, Li X, You Z (2016) Correlation between protein expression of FOXP3 and level of FOXP3 promoter methylation in recurrent spontaneous abortion. J Obstet Gynaecol Res 42:1439–1444

    CAS  PubMed  Google Scholar 

  144. Jones A, Teschendorff AE, Li Q, Hayward JD, Kannan A, Mould T, West J, Zikan M, Cibula D, Fiegl H, Lee SH, Wik E, Hadwin R, Arora R, Lemech C, Turunen H, Pakarinen P, Jacobs IJ, Salvesen HB, Bagchi MK, Bagchi IC, Widschwendter M (2013) Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development. PLoS Med 10:e1001551

    PubMed Central  PubMed  Google Scholar 

  145. Estella C, Herrer I, Atkinson SP, Quinonero A, Martinez S, Pellicer A, Simon C (2012) Inhibition of histone deacetylase activity in human endometrial stromal cells promotes extracellular matrix remodelling and limits embryo invasion. PLoS One 7:e30508

    CAS  PubMed  PubMed Central  Google Scholar 

  146. He H, Kong S, Liu F, Zhang S, Jiang Y, Liao Y, Jiang Y, Li Q, Wang B, Zhou Z, Wang H, Huo R (2015) Rbbp7 Is required for uterine stromal decidualization in mice. Biol Reprod 93:13

    PubMed  Google Scholar 

  147. Tamura I, Sato S, Okada M, Tanabe M, Lee L, Maekawa R, Asada H, Yamagata Y, Tamura H, Sugino N (2014) Importance of C/EBPbeta binding and histone acetylation status in the promoter regions for induction of IGFBP-1, PRL, and Mn-SOD by cAMP in human endometrial stromal cells. Endocrinology 155:275–286

    PubMed  Google Scholar 

  148. Tamura I, Ohkawa Y, Sato T, Suyama M, Jozaki K, Okada M, Lee L, Maekawa R, Asada H, Sato S, Yamagata Y, Tamura H, Sugino N (2014) Genome-wide analysis of histone modifications in human endometrial stromal cells. Mol Endocrinol 28:1656–1669

    PubMed  PubMed Central  Google Scholar 

  149. Tamura I, Jozaki K, Sato S, Shirafuta Y, Shinagawa M, Maekawa R, Taketani T, Asada H, Tamura H, Sugino N (2018) The distal upstream region of insulin-like growth factor-binding protein-1 enhances its expression in endometrial stromal cells during decidualization. J Biol Chem 293:5270–5280

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Grimaldi G, Christian M, Steel JH, Henriet P, Poutanen M, Brosens JJ (2011) Down-regulation of the histone methyltransferase EZH2 contributes to the epigenetic programming of decidualizing human endometrial stromal cells. Mol Endocrinol 25:1892–1903

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Nancy P, Tagliani E, Tay CS, Asp P, Levy DE, Erlebacher A (2012) Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science 336:1317–1321

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Nancy P, Siewiera J, Rizzuto G, Tagliani E, Osokine I, Manandhar P, Dolgalev I, Clementi C, Tsirigos A, Erlebacher A (2018) H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition. J Clin Invest 128:233–247

    PubMed  Google Scholar 

  153. Fang X, Ni N, Lydon JP, Ivanov I, Bayless KJ, Rijnkels M, Li Q (2019) Enhancer of Zeste 2 polycomb repressive complex 2 subunit is required for uterine epithelial integrity. Am J Pathol 189:1212–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bian F, Gao F, Kartashov AV, Jegga AG, Barski A, Das SK (2016) Polycomb repressive complex 1 controls uterine decidualization. Sci Rep 6:26061

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Estella C, Herrer I, Moreno-Moya JM, Quinonero A, Martinez S, Pellicer A, Simon C (2012) miRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro. PLoS One 7:e41080

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Shah KM, Webber J, Carzaniga R, Taylor DM, Fusi L, Clayton A, Brosens JJ, Hartshorne G, Christian M (2013) Induction of microRNA resistance and secretion in differentiating human endometrial stromal cells. J Mol Cell Biol 5:67–70

    PubMed  Google Scholar 

  157. Zhang Q, Zhang H, Jiang Y, Xue B, Diao Z, Ding L, Zhen X, Sun H, Yan G, Hu Y (2015) MicroRNA-181a is involved in the regulation of human endometrial stromal cell decidualization by inhibiting Kruppel-like factor 12. Reprod Biol Endocrinol 13:23

    PubMed  PubMed Central  Google Scholar 

  158. Tochigi H, Kajihara T, Mizuno Y, Mizuno Y, Tamaru S, Kamei Y, Okazaki Y, Brosens JJ, Ishihara O (2017) Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci Rep 7:40001

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    CAS  PubMed  Google Scholar 

  160. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    CAS  PubMed  Google Scholar 

  161. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39 h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13:1192–1200

    CAS  PubMed  Google Scholar 

  162. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    CAS  PubMed  Google Scholar 

  163. Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219:243–250

    CAS  PubMed  Google Scholar 

  164. Januchowski R, Dabrowski M, Ofori H, Jagodzinski PP (2007) Trichostatin A down-regulate DNA methyltransferase 1 in Jurkat T cells. Cancer Lett 246:313–317

    CAS  PubMed  Google Scholar 

  165. Barnhart K, Dunsmoor-Su R, Coutifaris C (2002) Effect of endometriosis on in vitro fertilization. Fertil Steril 77:1148–1155

    PubMed  Google Scholar 

  166. Olive DL, Schwartz LB (1993) Endometriosis. N Engl J Med 328:1759–1769

    CAS  PubMed  Google Scholar 

  167. Matsuzaki S, Canis M, Darcha C, Pouly JL, Mage G (2009) HOXA-10 expression in the mid-secretory endometrium of infertile patients with either endometriosis, uterine fibromas or unexplained infertility. Hum Reprod 24:3180–3187

    CAS  PubMed  Google Scholar 

  168. Taylor HS, Bagot C, Kardana A, Olive D, Arici A (1999) HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod 14:1328–1331

    CAS  PubMed  Google Scholar 

  169. Lee B, Du H, Taylor HS (2009) Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol Reprod 80:79–85

    PubMed  PubMed Central  Google Scholar 

  170. Kim JJ, Taylor HS, Lu Z, Ladhani O, Hastings JM, Jackson KS, Wu Y, Guo SW, Fazleabas AT (2007) Altered expression of HOXA10 in endometriosis: potential role in decidualization. Mol Hum Reprod 13:323–332

    CAS  PubMed  Google Scholar 

  171. Szczepanska M, Wirstlein P, Luczak M, Jagodzinski PP, Skrzypczak J (2010) Reduced expression of HOXA10 in the midluteal endometrium from infertile women with minimal endometriosis. Biomed Pharmacother 64:697–705

    CAS  PubMed  Google Scholar 

  172. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW (2007) Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril 87:24–32

    CAS  PubMed  Google Scholar 

  173. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW (2006) Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics 1:106–111

    PubMed  Google Scholar 

  174. Izawa M, Harada T, Taniguchi F, Ohama Y, Takenaka Y, Terakawa N (2008) An epigenetic disorder may cause aberrant expression of aromatase gene in endometriotic stromal cells. Fertil Steril 89:1390–1396

    CAS  PubMed  Google Scholar 

  175. Xue Q, Lin Z, Cheng YH, Huang CC, Marsh E, Yin P, Milad MP, Confino E, Reierstad S, Innes J, Bulun SE (2007) Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod 77:681–687

    CAS  PubMed  Google Scholar 

  176. Colon-Diaz M, Baez-Vega P, Garcia M, Ruiz A, Monteiro JB, Fourquet J, Bayona M, Alvarez-Garriga C, Achille A, Seto E, Flores I (2012) HDAC1 and HDAC2 are differentially expressed in endometriosis. Reprod Sci 19:483–492

    PubMed  PubMed Central  Google Scholar 

  177. Monteiro JB, Colon-Diaz M, Garcia M, Gutierrez S, Colon M, Seto E, Laboy J, Flores I (2014) Endometriosis is characterized by a distinct pattern of histone 3 and histone 4 lysine modifications. Reprod Sci 21:305–318

    PubMed  PubMed Central  Google Scholar 

  178. Colon-Caraballo M, Monteiro JB, Flores I (2015) H3K27me3 is an epigenetic mark of relevance in endometriosis. Reprod Sci 22:1134–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Rackow BW, Jorgensen E, Taylor HS (2011) Endometrial polyps affect uterine receptivity. Fertil Steril 95:2690–2692

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kulp JL, Mamillapalli R, Taylor HS (2016) Aberrant HOXA10 methylation in patients with common gynecologic disorders: implications for reproductive outcomes. Reprod Sci 23:455–463

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Daftary GS, Taylor HS (2002) Hydrosalpinx fluid diminishes endometrial cell HOXA10 expression. Fertil Steril 78:577–580

    PubMed  Google Scholar 

  182. Saito T, Nishimura M, Yamasaki H, Kudo R (2003) Hypermethylation in promoter region of E-cadherin gene is associated with tumor dedifferention and myometrial invasion in endometrial carcinoma. Cancer 97:1002–1009

    CAS  PubMed  Google Scholar 

  183. Memczak S, Papavasileiou P, Peters O, Rajewsky N (2015) Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 10:e0141214

    PubMed  PubMed Central  Google Scholar 

  184. Li MQ, Yao MN, Yan JQ, Li ZL, Gu XW, Lin S, Hu W, Yang ZM (2017) The decline of pregnancy rate and abnormal uterine responsiveness of steroid hormones in aging mice. Reprod Biol 17:305–311

    PubMed  Google Scholar 

  185. Woods L, Perez-Garcia V, Kieckbusch J, Wang X, DeMayo F, Colucci F, Hemberger M (2017) Decidualisation and placentation defects are a major cause of age-related reproductive decline. Nat Commun 8:352

    PubMed  PubMed Central  Google Scholar 

  186. Jefferson WN, Chevalier DM, Phelps JY, Cantor AM, Padilla-Banks E, Newbold RR, Archer TK, Kinyamu HK, Williams CJ (2013) Persistently altered epigenetic marks in the mouse uterus after neonatal estrogen exposure. Mol Endocrinol 27:1666–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Franczak A, Zglejc K, Waszkiewicz E, Wojciechowicz B, Martyniak M, Sobotka W, Okrasa S, Kotwica G (2017) Periconceptional undernutrition affects in utero methyltransferase expression and steroid hormone concentrations in uterine flushings and blood plasma during the peri-implantation period in domestic pigs. Reprod Fertil Dev 29:1499–1508

    CAS  PubMed  Google Scholar 

  188. Zglejc K, Franczak A (2017) Peri-conceptional under-nutrition alters the expression of TRIM28 and ZFP57 in the endometrium and embryos during peri-implantation period in domestic pigs. Reprod Domest Anim 52:542–550

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review article was supported in parts by National Key R&D program of China (2017YFC1001402 to H.W.), and the National Natural Science Foundation (81601285 to S.K., 81830045 and 81490744 to H. W. and 31600945 to J.L.) and Fundamental Research Funds for the Central Universities (20720180039 to S.K., 20720180041 to J.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibin Wang or Jinhua Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, S., Zhou, C., Bao, H. et al. Epigenetic control of embryo–uterine crosstalk at peri-implantation. Cell. Mol. Life Sci. 76, 4813–4828 (2019). https://doi.org/10.1007/s00018-019-03245-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03245-8

Keywords

Navigation