Skip to main content
Log in

From neural crest cells to melanocytes: cellular plasticity during development and beyond

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Here, we review melanocyte development and how the embryonic melanoblast, although specified to become a melanocyte, is prone to cellular plasticity and is not fully committed to the melanocyte lineage. Even fully differentiated and pigment-producing melanocytes do not always have a stable phenotype. The gradual lineage restriction of neural crest cells toward the melanocyte lineage is determined by both cell-intrinsic and extracellular signals in which differentiation and pathfinding ability reciprocally influence each other. These signals are leveraged by subtle differences in timing and axial positioning. The most extensively studied migration route is the dorsolateral path between the dermomyotome and the prospective epidermis, restricted to melanoblasts. In addition, the embryonic origin of the skin dermis through which neural crest derivatives migrate may also affect the segregation between melanogenic and neurogenic cells in embryos. It is widely accepted that, irrespective of the model organism studied, the immediate precursor of both melanoblast and neurogenic populations is a glial-melanogenic bipotent progenitor. Upon exposure to different conditions, melanoblasts may differentiate into other neural crest-derived lineages such as neuronal cells and vice versa. Key factors that regulate melanoblast migration and patterning will regulate melanocyte homeostasis during different stages of hair cycling in postnatal hair follicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Bcl2:

B-cell lymphoma 2

BMP:

Bone morphognetic protein

BQ778:

Selective EDNRB antagonist

Col17a1:

Collagen type XVII alpha 1

CREB:

cAMP-responsive element binding protein

Dct:

Dopachrome tautomerase

Dhh:

Hedgehog

ECM:

Extracellular matrix

EDN1:

Endothelin 1

EDNRB:

Endothelin receptor type B

ET3:

Endothelin 3

FGF:

Fibroblast growth factor

FOXD3:

Forkhead box D3

hESC:

Human embryonic stem cells

JAMs:

Junctional adhesion molecules

KIT/KITL:

c-kit/Kit ligand

KIT:

Kit proto-oncogene

MC1R:

Melanocortin 1 receptor

Mitf:

Microphthalmia-associated transcription factor

MPNST:

Malignant peripheral nerve sheath tumor

MSA:

Migration staging area

MSX1/2:

Msh homeobox 1/2

Nf1B:

Neurofibromin 1b

NGFRp75:

Nerve growth factor receptor

PAX3:

Paired Box 3

PLP:

Proteolipid protein

SCP:

Schwann cell precursor

SLUG:

Snail family transcription factor 2

Smad:

Mother against decapentaplegic homolog

SNAIL:

Snail family transcription factor 1

SOX10:

(Sex determining region Y)-box 10

TGFβ:

Transforming growth factor beta

Tyr:

Tyrosinase

Tyrp1/2:

Tyrosinase-related protein 1/2

WNT:

Wingless-type MMTV integration site family

ZIC1/2:

Zinc finger of the cerebellum 1/2

ZEB1/2:

Zinc finger E-box binding homeobox 1/2

References

  1. Huang X, Saint-Jeannet JP (2004) Induction of the neural crest and the opportunities of life on the edge. Dev Biol 275(1):1–11

    Article  CAS  PubMed  Google Scholar 

  2. Le Douarin NM, Kalcheim C (1999) The neural crest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Knecht AK, Bronner-Fraser M (2002) Induction of the neural crest: a multigene process. Nat Rev Genet 3(6):453–461

    Article  CAS  PubMed  Google Scholar 

  4. Milet C, Monsoro-Burq AH (2012) Neural crest induction at the neural plate border in vertebrates. Dev Biol 366(1):22–33

    Article  CAS  PubMed  Google Scholar 

  5. Duband JL (2010) Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: insights from the neural crest. Cell Adh Migr 4(3):458–482

    Article  PubMed  PubMed Central  Google Scholar 

  6. Locascio A et al (2002) Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proc Natl Acad Sci USA 99(26):16841–16846

    Article  CAS  PubMed  Google Scholar 

  7. del Barrio MG, Nieto MA (2002) Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development 129(7):1583–1593

    PubMed  Google Scholar 

  8. Perez-Losada J et al (2002) Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 100(4):1274–1286

    CAS  PubMed  Google Scholar 

  9. Sanchez-Martin M et al (2002) SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 11(25):3231–3236

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez-Martin M et al (2003) Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A 122A(2):125–132

    Article  PubMed  Google Scholar 

  11. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110

    Article  CAS  PubMed  Google Scholar 

  12. Skrypek N et al (2018) ZEB2 stably represses RAB25 expression through epigenetic regulation by SIRT1 and DNMTs during epithelial-to-mesenchymal transition. Epigenet Chromatin 11(1):70

    Article  CAS  Google Scholar 

  13. Vandewalle C, Van Roy F, Berx G (2009) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66(5):773–787

    Article  CAS  PubMed  Google Scholar 

  14. Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366(1):34–54

    Article  CAS  PubMed  Google Scholar 

  15. Le Douarin N (1973) A biological cell labeling technique and its use in experimental embryology. Dev Biol 30(1):217–222

    Article  PubMed  Google Scholar 

  16. Creuzet S et al (2004) Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. Proc Natl Acad Sci USA 101(14):4843–4847

    Article  CAS  PubMed  Google Scholar 

  17. Klymkowsky MW, Rossi CC, Artinger KB (2010) Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. Cell Adh Migr 4(4):595–608

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sauka-Spengler T et al (2007) Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 13(3):405–420

    Article  CAS  PubMed  Google Scholar 

  19. Aybar MJ, Mayor R (2002) Early induction of neural crest cells: lessons learned from frog, fish and chick. Curr Opin Genet Dev 12(4):452–458

    Article  CAS  PubMed  Google Scholar 

  20. Sommer L (2011) Generation of melanocytes from neural crest cells. Pigment Cell Melanoma Res 24(3):411–421

    Article  CAS  PubMed  Google Scholar 

  21. Larue L, de Vuyst F, Delmas V (2013) Modeling melanoblast development. Cell Mol Life Sci 70(6):1067–1079

    Article  CAS  PubMed  Google Scholar 

  22. Mort RL, Jackson IJ, Patton EE (2015) The melanocyte lineage in development and disease. Development 142(7):1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wehrle-Haller B, Weston JA (1995) Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121(3):731–742

    CAS  PubMed  Google Scholar 

  24. Simoes-Costa M, Bronner ME (2015) Establishing neural crest identity: a gene regulatory recipe. Development 142(2):242–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ernfors P (2010) Cellular origin and developmental mechanisms during the formation of skin melanocytes. Exp Cell Res 316(8):1397–1407

    Article  CAS  PubMed  Google Scholar 

  26. Krispin S et al (2010) Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 137(4):585–595

    Article  CAS  PubMed  Google Scholar 

  27. Harris ML, Erickson CA (2007) Lineage specification in neural crest cell pathfinding. Dev Dyn 236(1):1–19

    Article  CAS  PubMed  Google Scholar 

  28. Beauvais-Jouneau A et al (1999) A novel model to study the dorsolateral migration of melanoblasts. Mech Dev 89(1–2):3–14

    Article  CAS  PubMed  Google Scholar 

  29. Adameyko I, Lallemend F (2010) Glial versus melanocyte cell fate choice: schwann cell precursors as a cellular origin of melanocytes. Cell Mol Life Sci 67(18):3037–3055

    Article  CAS  PubMed  Google Scholar 

  30. Adameyko I et al (2009) Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139(2):366–379

    Article  CAS  PubMed  Google Scholar 

  31. Rizvi TA et al (2002) A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J Neurosci 22(22):9831–9840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nataf V, Le Douarin NM (2000) Induction of melanogenesis by tetradecanoylphorbol-13 acetate and endothelin 3 in embryonic avian peripheral nerve cultures. Pigment Cell Res 13(3):172–178

    Article  CAS  PubMed  Google Scholar 

  33. Nichols DH, Weston JA (1977) Melanogenesis in cultures of peripheral nervous tissue. I. The origin and prospective fate of cells giving rise to melanocytes. Dev Biol 60(1):217–225

    Article  CAS  PubMed  Google Scholar 

  34. Nichols DH, Kaplan RA, Weston JA (1977) Melanogenesis in cultures of peripheral nervous tissue. II. Environmental factors determining the fate of pigment-forming cells. Dev Biol 60(1):226–237

    Article  CAS  PubMed  Google Scholar 

  35. Dupin E et al (2003) Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro. Proc Natl Acad Sci USA 100(9):5229–5233

    Article  CAS  PubMed  Google Scholar 

  36. Colombo S et al (2012) Transcriptomic analysis of mouse embryonic skin cells reveals previously unreported genes expressed in melanoblasts. J Invest Dermatol 132(1):170–178

    Article  CAS  PubMed  Google Scholar 

  37. Hari L et al (2012) Temporal control of neural crest lineage generation by Wnt/beta-catenin signaling. Development 139(12):2107–2117

    Article  CAS  PubMed  Google Scholar 

  38. Leone DP et al (2003) Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci 22(4):430–440

    Article  CAS  PubMed  Google Scholar 

  39. Nitzan E et al (2013) Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci USA 110(31):12709–12714

    Article  PubMed  Google Scholar 

  40. Candille SI et al (2004) Dorsoventral patterning of the mouse coat by Tbx15. PLoS Biol 2(1):E3

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lowe LA, Yamada S, Kuehn MR (2000) HoxB6-Cre transgenic mice express Cre recombinase in extra-embryonic mesoderm, in lateral plate and limb mesoderm and at the midbrain/hindbrain junction. Genesis 26(2):118–120

    Article  CAS  PubMed  Google Scholar 

  42. Schartl M et al (2016) What is a vertebrate pigment cell? Pigment Cell Melanoma Res 29(1):8–14

    Article  PubMed  Google Scholar 

  43. Kuo BR, Erickson CA (2010) Regional differences in neural crest morphogenesis. Cell Adh Migr 4(4):567–585

    Article  PubMed  PubMed Central  Google Scholar 

  44. Colombo S, Berlin I, Larue L (2011) Classical and nonclassical melanocytes in vertebrates. In: Boranovsky J, Riley PA (eds) Melanins and melanosomes. Wiley, Weinheim, p 407

    Google Scholar 

  45. Thomas AJ, Erickson CA (2009) FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136(11):1849–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shibahara S et al (2001) Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J Investig Dermatol Symp Proc 6(1):99–104

    Article  CAS  PubMed  Google Scholar 

  47. Moore KJ (1995) Insight into the microphthalmia gene. Trends Genet 11(11):442–448

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe A et al (1998) Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet 18(3):283–286

    Article  CAS  PubMed  Google Scholar 

  49. Verastegui C et al (2000) Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J Biol Chem 275(40):30757–30760

    Article  CAS  PubMed  Google Scholar 

  50. Kos R et al (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128(8):1467–1479

    CAS  PubMed  Google Scholar 

  51. Bertolotto C et al (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142(3):827–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kawakami A (2017) DE Fisher, The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Invest 97:649

    Article  CAS  PubMed  Google Scholar 

  53. Nishikawa-Torikai S, Osawa M, Nishikawa S (2011) Functional characterization of melanocyte stem cells in hair follicles. J Invest Dermatol 131(12):2358–2367

    Article  CAS  PubMed  Google Scholar 

  54. Nishimura EK (2011) Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res 24(3):401–410

    Article  CAS  PubMed  Google Scholar 

  55. Nishimura EK, Granter SR, Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307(5710):720–724

    Article  CAS  PubMed  Google Scholar 

  56. Nishimura EK et al (2010) Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6(2):130–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. King R, Busam K, Rosai J (1999) Metastatic malignant melanoma resembling malignant peripheral nerve sheath tumor: report of 16 cases. Am J Surg Pathol 23(12):1499–1505

    Article  CAS  PubMed  Google Scholar 

  58. Luo C et al (2015) Expression of oncogenic BRAFV600E in melanocytes induces Schwannian differentiation in vivo. Pigment Cell Melanoma Res 28(5):603–606

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marsh Durban V et al (2013) Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. J Clin Invest 123(12):5104–5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Damsky W et al (2015) mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation. Cancer Cell 27(1):41–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aoki H et al (2009) Two distinct types of mouse melanocyte: differential signaling requirement for the maintenance of non-cutaneous and dermal versus epidermal melanocytes. Development 136(15):2511–2521

    Article  CAS  PubMed  Google Scholar 

  62. Mackenzie MA et al (1997) Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev Biol 192(1):99–107

    Article  CAS  PubMed  Google Scholar 

  63. Jordan SA, Jackson IJ (2000) A late wave of melanoblast differentiation and rostrocaudal migration revealed in patch and rump-white embryos. Mech Dev 92(2):135–143

    Article  CAS  PubMed  Google Scholar 

  64. Alonso L, Fuchs E (2006) The hair cycle. J Cell Sci 119(Pt 3):391–393

    Article  CAS  PubMed  Google Scholar 

  65. Mayer TC (1973) The migratory pathway of neural crest cells into the skin of mouse embryos. Dev Biol 34(1):39–46

    Article  CAS  PubMed  Google Scholar 

  66. Cui R et al (2007) Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128(5):853–864

    Article  CAS  PubMed  Google Scholar 

  67. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337

    Article  CAS  PubMed  Google Scholar 

  68. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128(3):445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jaks V et al (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11):1291–1299

    Article  CAS  PubMed  Google Scholar 

  72. Nishimura EK et al (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416(6883):854–860

    Article  CAS  PubMed  Google Scholar 

  73. Osawa M et al (2005) Molecular characterization of melanocyte stem cells in their niche. Development 132(24):5589–5599

    Article  CAS  PubMed  Google Scholar 

  74. Rabbani P et al (2011) Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145(6):941–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lowry WE et al (2005) Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 19(13):1596–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bertolotto C (2013) Melanoma: from melanocyte to genetic alterations and clinical options. Scientifica (Cairo) 2013:635203

    Google Scholar 

  77. Latil M et al (2017) Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell 20(2):191 e5–204 e5

    Article  CAS  Google Scholar 

  78. Greco V et al (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4(2):155–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou L et al (2016) CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth. Biochem J 473(19):3291–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Botchkareva NV, Ahluwalia G, Shander D (2006) Apoptosis in the hair follicle. J Invest Dermatol 126(2):258–264

    Article  CAS  PubMed  Google Scholar 

  81. Botchkareva NV, Botchkarev VA, Gilchrest BA (2003) Fate of melanocytes during development of the hair follicle pigmentary unit. J Investig Dermatol Symp Proc 8(1):76–79

    Article  PubMed  Google Scholar 

  82. Mak SS et al (2006) Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev Biol 291(1):144–153

    Article  CAS  PubMed  Google Scholar 

  83. Tanimura S et al (2011) Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8(2):177–187

    Article  CAS  PubMed  Google Scholar 

  84. Chang CY et al (2013) NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature 495(7439):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schouwey K et al (2007) Notch1 and Notch2 receptors influence progressive hair graying in a dose-dependent manner. Dev Dyn 236(1):282–289

    Article  CAS  PubMed  Google Scholar 

  86. Kumano K et al (2008) Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res 21(1):70–78

    Article  CAS  PubMed  Google Scholar 

  87. Moriyama M et al (2006) Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173(3):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ito M et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354

    Article  CAS  PubMed  Google Scholar 

  89. Glover JD et al (2015) Maintenance of distinct melanocyte populations in the interfollicular epidermis. Pigment Cell Melanoma Res 28(4):476–480

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gilchrest BA (2011) Molecular aspects of tanning. J Invest Dermatol 131(E1):E14–E17

    Article  PubMed  Google Scholar 

  91. Li L et al (2010) Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci 123(Pt 6):853–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Falabella R (2009) Vitiligo and the melanocyte reservoir. Indian J Dermatol 54(4):313–318

    Article  PubMed  PubMed Central  Google Scholar 

  93. Falabella R, Barona MI (2009) Update on skin repigmentation therapies in vitiligo. Pigment Cell Melanoma Res 22(1):42–65

    Article  CAS  PubMed  Google Scholar 

  94. Rusfianti M, Wirohadidjodjo YW (2006) Dermatosurgical techniques for repigmentation of vitiligo. Int J Dermatol 45(4):411–417

    Article  PubMed  Google Scholar 

  95. Watt FM, Jensen KB (2009) Epidermal stem cell diversity and quiescence. EMBO Mol Med 1(5):260–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Topczewska JM et al (2006) Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12(8):925–932

    Article  CAS  PubMed  Google Scholar 

  97. Hendrix MJ et al (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3(6):411–421

    Article  CAS  PubMed  Google Scholar 

  98. Rambow F et al (2018) Toward minimal residual disease-directed therapy in melanoma. Cell 174(4):843 e19–855 e19

    Article  CAS  Google Scholar 

  99. Fleischman RA et al (1991) Deletion of the c-kit protooncogene in the human developmental defect piebald trait. Proc Natl Acad Sci USA 88(23):10885–10889

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.B.’s laboratory is supported by the Fonds Wetenschappelijk Onderzoek (3G050217W), the Geconcerteerde Onderzoeksacties Ghent University (GOA-01GB1013W), Vlaamse Liga tegen Kanker (365U8914U) and the Stichting tegen Kanker (FAF-F/2016/814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Berx.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandamme, N., Berx, G. From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell. Mol. Life Sci. 76, 1919–1934 (2019). https://doi.org/10.1007/s00018-019-03049-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03049-w

Keywords

Navigation