Skip to main content
Log in

An emerging link between LIM domain proteins and nuclear receptors

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Nuclear receptors are ligand-activated transcription factors that partake in several biological processes including development, reproduction and metabolism. Over the last decade, evidence has accumulated that group 2, 3 and 4 LIM domain proteins, primarily known for their roles in actin cytoskeleton organization, also partake in gene transcription regulation. They shuttle between the cytoplasm and the nucleus, amongst other as a consequence of triggering cells with ligands of nuclear receptors. LIM domain proteins act as important coregulators of nuclear receptor-mediated gene transcription, in which they can either function as coactivators or corepressors. In establishing interactions with nuclear receptors, the LIM domains are important, yet pleiotropy of LIM domain proteins and nuclear receptors frequently occurs. LIM domain protein-nuclear receptor complexes function in diverse physiological processes. Their association is, however, often linked to diseases including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee JS, Kim KI, Baek SH (2008) Nuclear receptors and coregulators in inflammation and cancer. Cancer Lett 267(2):189–196

    Article  CAS  PubMed  Google Scholar 

  2. Skerrett R, Malm T, Landreth G (2014) Nuclear receptors in neurodegenerative diseases. Neurobiol Dis 72(Part A):104–116

    Article  CAS  PubMed  Google Scholar 

  3. Schulman IG (2010) Nuclear receptors as drug targets for metabolic disease. Adv Drug Deliv Rev 62(13):1307–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robinson-Rechavi M, Garcia HE, Laudet V (2003) The nuclear receptor superfamily. J Cell Sci 116(4):585–586

    Article  PubMed  Google Scholar 

  5. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT (2007) Nuclear receptor structure: implications for function. Annu Rev Physiol 69(1):201–220

    Article  CAS  PubMed  Google Scholar 

  6. Heitzer MD, Wolf IM, Sanchez ER, Witchel SF, DeFranco DB (2007) Glucocorticoid receptor physiology. Rev Endocr Metab Disord 8(4):321–330

    Article  CAS  PubMed  Google Scholar 

  7. Tabur S, Oztuzcu S, Oguz E, Demiryu S, Dagli H, Alasehirli B et al (2016) Evidence for elevated (LIMK2 and CFL1) and suppressed (ICAM1, EZR, MAP2K2, and NOS3) gene expressions in metabolic syndrome. Endocrine 53(2):465–470

    Article  CAS  PubMed  Google Scholar 

  8. Ni C, Qiu H, Rezvan A, Kwon K, Nam D, Son DJ et al (2010) Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 116(15):E66–E73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mullen RD, Colvin SC, Hunter CS, Savage JJ, Walvoord EC, Bhangoo APS et al (2007) Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. Mol Cell Endocrinol 265:190–195

    Article  PubMed  Google Scholar 

  10. Ono R, Kaisho T, Tanaka T (2015) PDLIM1 inhibits NF-κB-mediated inflammatory signaling by sequestering the p65 subunit of NF-κB in the cytoplasm. Sci Rep 5:18327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alnajar A, Nordhoff C, Schied T, Chiquet-ehrismann R, Loser K, Vogl T et al (2013) The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis. PLoS One 8(11):e81356

    Article  PubMed  PubMed Central  Google Scholar 

  12. Muller JM, Metzger E, Greschik H (2002) The transcriptional coactivator FHL2 transmits Rho signals from the cell membrane into the nucleus. EMBO J 21(4):736–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caltagarone J, Hamilton RL, Murdoch G, Jing Z, DeFranco DB, Bowser R (2010) Paxillin and hydrogen peroxide-inducible clone 5 expression and distribution in control and Alzheimer disease hippocampi. J Neuropathol Exp Neurol 69(4):356–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ehaideb SN, Wignall EA, Kasuya J, Evans WH, Iyengar A, Koerselman HL et al (2016) Mutation of orthologous prickle genes causes a similar epilepsy syndrome in flies and humans. Ann Clin Transl Neurol 3(9):695–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lanni C, Necchi D, Pinto A, Buoso E, Buizza L, Memo M et al (2013) Zyxin is a novel target for beta-amyloid peptide: characterization of its role in Alzheimer’s pathogenesis. J Neurochem 125(5):790–799

    Article  CAS  PubMed  Google Scholar 

  16. Matthews JM, Lester K, Joseph S, Curtis DJ (2013) LIM-domain-only proteins in cancer. Nat Rev Cancer 13(2):111–122

    Article  CAS  PubMed  Google Scholar 

  17. Li A, Ponten F, dos Remedios CG (2012) The interactome of LIM domain proteins: the contributions of LIM domain proteins to heart failure and heart development. Proteomics 12(2):203–225

    Article  CAS  PubMed  Google Scholar 

  18. Zheng Q, Zhao Y (2007) The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 99(9):489–502

    Article  CAS  PubMed  Google Scholar 

  19. Kadrmas JL, Beckerle MC (2004) The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5(11):920–931

    Article  CAS  PubMed  Google Scholar 

  20. Stournaras C, Gravanis A, Margioris AN, Lang F (2014) The actin cytoskeleton in rapid steroid hormone actions. Cytoskeleton 71(5):285–293

    Article  CAS  PubMed  Google Scholar 

  21. Sever R, Glass CK (2013) Signaling by nuclear receptors. Cold Spring Harb Perspect Biol 5(3):1–4

    Article  Google Scholar 

  22. Mullican SE, DiSpirito JR, Lazar MA (2013) The orphan nuclear receptors at their 25-year reunion. J Mol Endocrinol 51(3):T115–T140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schock SC, Xu J, Duquette PM, Qin Z, Lewandowski AJ, Rai PS et al (2008) Rescue of neurons from ischemic injury by peroxisome proliferator-activated-receptor requires a novel essential cofactor LMO4. J Neurosci 28(47):12433–12444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gu H, Liu T, Cai X, Tong Y, Li Y, Wang C et al (2015) Upregulated LMO1 in prostate cancer acts as a novel coactivator of the androgen receptor. Int J Oncol 47(6):2181–2187

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Gilmore TD (2003) Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochim Biophys Acta 1593(2–3):115–120

    Article  CAS  PubMed  Google Scholar 

  26. Rath N, Wang Z, Lu MM, Morrisey EE (2005) LMCD1/Dyxin is a novel transcriptional cofactor that restricts GATA6 function by inhibiting DNA binding. Mol Cell Biol 25(20):8864–8873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang C, Lin S, Su W, Ho C, Jou Y (2012) Somatic LMCD1 mutations promoted cell migration and tumor metastasis in hepatocellular carcinoma. Oncogene 31:2640–2652

    Article  CAS  PubMed  Google Scholar 

  28. Garvalov BK, Higgins TE, Sutherland JD, Zettl M, Scaplehorn N, Köcher T et al (2003) The conformational state of Tes regulates its zyxin-dependent recruitment to focal adhesions. J Cell Biol 161(1):33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coutts AS, MacKenzie E, Griffith E, Black DM (2003) TES is a novel focal adhesion protein with a role in cell spreading. J Cell Sci 116(Pt 5):897–906

    Article  CAS  PubMed  Google Scholar 

  30. Nix DA, Beckerle MC (1997) Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J Cell Biol 138(5):1139–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Gilmore TD (2001) LIM domain protein Trip6 has a conserved nuclear export signal, nuclear targeting sequences, and multiple transactivation domains. Biochim Biophys Acta 1538(2–3):260–272

    Article  CAS  PubMed  Google Scholar 

  32. Kanungo J, Pratt SJ, Marie H, Longmore GD (2000) Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonal cell proliferation and fate decisions. Mol Biol Cell 11(10):3299–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petit MM, Fradelizi J, Golsteyn RM, Ayoubi TA, Menichi B, Louvard D et al (2000) LPP, an actin cytoskeleton protein related to zyxin, harbors a nuclear export signal and transcriptional activation capacity. Mol Biol Cell 11(1):117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishiya N, Sabe H, Nose K, Shibanuma M (1998) The LIM domains of hic-5 protein recognize specific DNA fragments in a zinc-dependent manner in vitro. Nucleic Acids Res 26(18):4267–4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Campana WM, Myers RR, Rearden A (2003) Identification of PINCH in Schwann cells and DRG neurons: shuttling and signaling after nerve injury. Glia 41(3):213–223

    Article  PubMed  Google Scholar 

  36. Mihlan S, Reiß C, Thalheimer P, Herterich S, Gaetzner S, Kremerskothen J et al (2013) Nuclear import of LASP-1 is regulated by phosphorylation and dynamic protein–protein interactions. Oncogene 32(16):2107–2113

    Article  CAS  PubMed  Google Scholar 

  37. Yang N, Mizuno K (1999) Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear export signals within the PDZ domain. Biochem J 338(Pt 3):793–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heitzer MD, DeFranco DB (2006) Hic-5, an adaptor-like nuclear receptor coactivator. Nucl Recept Signal 4:e019

    PubMed  PubMed Central  Google Scholar 

  39. Dong JM, Lau LS, Ng YW, Lim L, Manser E (2009) Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation. Biochem J 418(1):173–184

    Article  CAS  PubMed  Google Scholar 

  40. Kaulfuss S, Herr AM, Büchner A, Hemmerlein B, Günthert AR, Burfeind P (2015) Leupaxin is expressed in mammary carcinoma and acts as a transcriptional activator of the estrogen receptor alpha. Int J Oncol 47(1):106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ming S, Lee Y, Li HY, Kai E, Ng O, Man S et al (1999) Characterization of a brain-specific nuclear LIM domain protein (FHL1B) which is an alternatively spliced variant of FHL1. Gene 237:253–263

    Article  Google Scholar 

  42. Goyal P, Pandey D, Siess W (2006) Phosphorylation-dependent regulation of unique nuclear and nucleolar localization signals of LIM kinase 2 in endothelial cells. J Biol Chem 281(35):25223–25230

    Article  CAS  PubMed  Google Scholar 

  43. Mori K, Asakawa M, Hayashi M, Imura M, Ohki T, Hirao E et al (2006) Oligomerizing potential of a focal adhesion LIM protein Hic-5 organizing a nuclear-cytoplasmic shuttling complex. J Biol Chem 281(31):22048–22061

    Article  CAS  PubMed  Google Scholar 

  44. Leach DA, Need EF, Trotta AP, Grubisha MJ, DeFranco DB, Buchanan G (2014) Hic-5 influences genomic and non-genomic actions of the androgen receptor in prostate myofibroblasts. Mol Cell Endocrinol 384(1–2):185–199

    Article  CAS  PubMed  Google Scholar 

  45. Sen A, De Castro I, DeFranco DB, Deng FM, Melamed J, Kapur P et al (2012) Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J Clin Investig 122(7):2469–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Youn H, Kim EJ, Um SJ (2013) Zyxin cooperates with PTOV1 to confer retinoic acid resistance by repressing RAR activity. Cancer Lett 331(2):192–199

    Article  CAS  PubMed  Google Scholar 

  47. Shibanuma M, Mori K, Kim-Kaneyama J, Nose K (2005) Involvement of FAK and PTP-PEST in the regulation of redox-sensitive nuclear-cytoplasmic shuttling of a LIM protein, Hic-5. Antioxid Redox Signal 7(2–3):335–347

    Article  CAS  PubMed  Google Scholar 

  48. Cattaruzza M, Lattrich C, Hecker M (2004) Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension 43(4):726–730

    Article  CAS  PubMed  Google Scholar 

  49. McGrath MJ, Binge LC, Sriratana A, Wang H, Robinson PA, Pook D et al (2013) Regulation of the transcriptional coactivator FHL2 licenses activation of the androgen receptor in castrate-resistant prostate cancer. Cancer Res 73(16):5066–5079

    Article  CAS  PubMed  Google Scholar 

  50. Kurakula K, Van Der Wal E, Geerts D, van Tiel CM, De Vries CJM (2011) FHL2 protein is a novel co-repressor of nuclear receptor Nur77. J Biol Chem 286(52):44336–44343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muller J, Isele U, Metzger E, Rempel A, Moser M, Pscherer A et al (2000) FHL2, a novel tissue-specific coactivator of the androgen receptor. EMBO J 19(3):359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kurakula K, Sommer D, Sokolovic M, Moerland PD, Scheij S, van Loenen PB et al (2015) LIM-only protein FHL2 is a positive regulator of liver X receptors in smooth muscle cells involved in lipid homeostasis. Mol Cell Biol 35(1):52–62

    Article  PubMed  Google Scholar 

  53. Matulis CK, Mayo KE (2012) The LIM domain protein FHL2 interacts with the NR5A family of nuclear receptors and CREB to activate the inhibin-alpha subunit gene in ovarian granulosa cells. Mol Endocrinol 26(8):1278–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiong Z, Ding L, Sun J, Cao J, Lin J, Lu Z et al (2010) Synergistic repression of estrogen receptor transcriptional activity by FHL2 and Smad4 in breast cancer cells. IUBMB Life 62(9):669–676

    Article  CAS  PubMed  Google Scholar 

  55. Ding L, Niu C, Zheng Y, Xiong Z, Liu Y, Lin J et al (2011) FHL1 interacts with oestrogen receptors and regulates breast cancer cell growth. J Cell Mol Med 15(1):72–85

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi S, Shibata H, Yokota K, Suda N, Murai A, Kurihara I et al (2004) FHL2, UBC9, and PIAS1 are novel estrogen receptor alpha-interacting proteins. Endocr Res 30(4):617–621

    Article  CAS  PubMed  Google Scholar 

  57. Sala S, Van Troys M, Medves S, Catillon M, Timmerman E, Staes A et al (2017) Expanding the interactome of TES by exploiting TES modules with different subcellular localizations. J Proteome Res 16(5):2054–2071

    Article  CAS  PubMed  Google Scholar 

  58. Wang X, Yang Y, Guo X, Sampson ER, Hsu C, Tsai M et al (2002) Suppression of androgen receptor transactivation by Pyk2 via interaction and phosphorylation of the ARA55 coregulator. J Biol Chem 277(18):15426–15431

    Article  CAS  PubMed  Google Scholar 

  59. Kaulfuss S, Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Neesen J et al (2008) Leupaxin, a novel coactivator of the androgen receptor, is expressed in prostate cancer and plays a role in adhesion and invasion of prostate carcinoma cells. Mol Endocrinol 22(7):1606–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kasai M, Guerrero-santoro J, Friedman R, Leman ES, Getzenberg RH, Defranco DB (2003) The group 3 LIM domain protein paxillin potentiates androgen receptor transactivation in prostate cancer cell lines. Cancer Res 63(28):4927–4935

    CAS  PubMed  Google Scholar 

  61. Fujimoto N, Yeh S, Kang HY, Inui S, Chang HC, Mizokami A et al (1999) Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem 274(12):8316–8321

    Article  CAS  PubMed  Google Scholar 

  62. Yang L, Guerrero J, Hong H, DeFranco DB, Stallcup MR (2000) Interaction of the tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol Biol Cell 11(6):2007–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chodankar R, Wu D, Gerke DS, Stallcup MR (2015) Selective coregulator function and restriction of steroid receptor chromatin occupancy by Hic-5. Mol Endocrinol 29(5):716–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Drori S, Girnun GD, Tou L, Szwaya JD, Mueller E, Kia X et al (2005) Hic-5 regulates an epithelial program mediated by PPARγ. Genes Dev 19(3):362–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Solomon JD, Heitzer MD, Liu TT, Beumer JH, Parise RA, Normolle DP et al (2014) VDR activity is differentially affected by Hic-5 in prostate cancer and stromal cells. Mol Cancer Res 12(8):1166–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Aghajanova L, Velarde MC, Giudice LC (2009) The progesterone receptor coactivator Hic-5 is involved in the pathophysiology of endometriosis. Endocrinology 150(8):3863–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xie S, Ni J, Lee Y, Liu S, Li G, Shyr C et al (2011) Increased acetylation in the DNA-binding domain of TR4 nuclear receptor by the coregulator ARA55 leads to suppression of TR4 transactivation. J Biol Chem 286(24):21129–21136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. He B, Minges JT, Lee LW, Wilson EM (2002) The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J Biol Chem 277(12):10226–10235

    Article  CAS  PubMed  Google Scholar 

  69. Guerrero-Santoro J, Yang L, Stallcup MR, DeFranco DB (2004) Distinct LIM domains of Hic-5/ARA55 are required for nuclear matrix targeting and glucocorticoid receptor binding and coactivation. J Cell Biochem 92(4):810–819

    Article  CAS  PubMed  Google Scholar 

  70. Li B, Trueb B (2001) Analysis of the alpha-Actinin/Zyxin interaction. J Biol Chem 276(36):33328–33335

    Article  CAS  PubMed  Google Scholar 

  71. Hou Z, Peng H, White DE, Negorev DG, Maul GG, Feng Y et al (2010) LIM protein Ajuba functions as a nuclear receptor corepressor and negatively regulates retinoic acid signaling. Proc Natl Acad Sci 107(7):2938–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li Q, Peng H, Fan H, Zou X, Liu Q, Zhang Y et al (2016) The LIM protein Ajuba promotes adipogenesis by enhancing PPARγ and p300/CBP interaction. Cell Death Differ 23(1):158–168

    Article  CAS  PubMed  Google Scholar 

  73. Lee JW, Choi HS, Gyuris J, Brent R, Moore DD (1995) Two classes of proteins dependent on either presence or absence of thyroid hormone for interaction with the thyroid-hormone receptor. Mol Endocrinol 9(2):243–254

    CAS  PubMed  Google Scholar 

  74. Diefenbacher ME, Litfin M, Herrlich P, Kassel O (2010) The nuclear isoform of the LIM domain protein Trip6 integrates activating and repressing signals at the promoter-bound glucocorticoid receptor. Mol Cell Endocrinol 320(1–2):58–66

    Article  CAS  PubMed  Google Scholar 

  75. Fan H, Dong W, Li Q, Zou X, Zhang Y, Wang J et al (2015) Ajuba preferentially binds LXRα/RXRγ heterodimer to enhance LXR target gene expression in liver cells. Mol Endocrinol 29(11):1608–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Healy NC, O’Connor R (2009) Sequestration of PDLIM2 in the cytoplasm of monocytic/macrophage cells is associated with adhesion and increased nuclear activity of NF-kappaB. J Leukoc Biol 85(3):481–490

    Article  CAS  PubMed  Google Scholar 

  77. Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P (2006) Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Res 34(19):5515–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eom KS, Cheong JS, Lee SJ (2016) Structural analyses of zinc finger domains for specific interactions with DNA. J Microbiol Biotechnol 26(12):2019–2029

    Article  PubMed  Google Scholar 

  79. Matthews JM, Bhati M, Lehtomaki E, Mansfield RE, Cubeddu L, Mackay JP (2009) It takes two to tango: the structure and function of LIM, RING, PHD and MYND domains. Curr Pharm Des 15(31):3681–3696

    Article  CAS  PubMed  Google Scholar 

  80. Moes D, Gatti S, Hoffmann C, Dieterle M, Moreau F (2013) A LIM domain protein from tobacco involved in actin-bundling and histone gene transcription. Mol Plant 6(2):483–502

    Article  CAS  PubMed  Google Scholar 

  81. McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20(3):321–344

    CAS  PubMed  Google Scholar 

  82. Heitzer MD, DeFranco DB (2006) Mechanism of action of Hic-5/androgen receptor activator 55, a LIM domain-containing nuclear receptor coactivator. Mol Endocrinol 20(1):56–64

    Article  CAS  PubMed  Google Scholar 

  83. Chodankar R, Wu DY, Schiller BJ, Yamamoto KR, Stallcup MR (2014) Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner. Proc Natl Acad Sci 111(11):4007–4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Diefenbacher ME, Reich D, Dahley O, Kemler D, Litfin M, Herrlich P et al (2014) The LIM domain protein nTRIP6 recruits the mediator complex to AP-1-regulated promoters. PLoS One 9(5):e97549

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ciarlo JD, Flores AM, McHugh NG, Aneskievich BJ (2004) FHL2 expression in keratinocytes and transcriptional effect on PPARgamma/RXRalpha. J Dermatol Sci 35(1):61–63

    Article  CAS  PubMed  Google Scholar 

  86. Ishaq M, Lin BR, Bosche M, Zheng X, Yang J, Huang D et al (2011) LIM kinase 1- dependent cofilin 1 pathway and actin dynamics mediate nuclear retinoid receptor function in T lymphocytes. BMC Mol Biol 12(1):41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mardilovich K, Gabrielsen M, McGarry L, Orange C, Patel R, Shanks E et al (2015) Elevated LIM kinase 1 in nonmetastatic prostate cancer reflects its role in facilitating androgen receptor nuclear translocation. Mol Cancer Ther 14(1):246–258

    Article  CAS  PubMed  Google Scholar 

  88. Rahman MM, Miyamoto H, Lardy H, Chang C (2003) Inactivation of androgen receptor coregulator ARA55 inhibits androgen receptor activity and agonist effect of antiandrogens in prostate cancer cells. Proc Natl Acad Sci USA 100(9):5124–5129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Obrdlik A, Percipalle P (2011) The F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation. Nucleus 2(1):72–79

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kristό I, Bajusz I, Bajusz C, Borkúti P, Vilmos P (2016) Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol 145(4):373–388

    Article  Google Scholar 

  91. Savoy RM, Chen L, Siddiqui S, Melgoza FU, Durbin-Johnson B, Drake C et al (2015) Transcription of Nrdp1 by the androgen receptor is regulated by nuclear filamin A in prostate cancer. Endocr Relat Cancer 22(3):369–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao X, Khurana S, Charkraborty S, Tian Y, Sedor JR, Bruggman LA et al (2017) α actinin 4 (ACTN4) regulates glucocorticoid receptor-mediated transactivation and transrepression in podocytes. J Biol Chem 292(5):1637–1647

    Article  CAS  PubMed  Google Scholar 

  93. Ting HJ, Yeh S, Nishimura K, Chang C (2002) Supervillin associates with androgen receptor and modulates its transcriptional activity. Proc Natl Acad Sci 99(2):661–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nishimura K, Ting HJ, Harada Y, Tokizane T, Nonomura N, Kang HY et al (2003) Modulation of androgen receptor transactivation by gelsolin. Cancer Res 63(16):4888–4894

    CAS  PubMed  Google Scholar 

  95. Dasgupta S, Lonard DM, O’Malley BW (2014) Nuclear receptor coactivators: master regulators of human health and disease. Annu Rev Med 65(1):279–292

    Article  CAS  PubMed  Google Scholar 

  96. Heitzer MD, DeFranco DB (2006) Hic-5/ARA55, a LIM domain-containing nuclear receptor coactivator expressed in prostate stromal cells. Cancer Res 66(14):7326–7333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Ampe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sala, S., Ampe, C. An emerging link between LIM domain proteins and nuclear receptors. Cell. Mol. Life Sci. 75, 1959–1971 (2018). https://doi.org/10.1007/s00018-018-2774-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2774-3

Keywords

Navigation