Skip to main content

Advertisement

Log in

Distinct functions of Crumbs regulating slit diaphragms and endocytosis in Drosophila nephrocytes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mammalian podocytes, the key determinants of the kidney’s filtration barrier, differentiate from columnar epithelial cells and several key determinants of apical–basal polarity in the conventional epithelia have been shown to regulate podocyte morphogenesis and function. However, little is known about the role of Crumbs, a conserved polarity regulator in many epithelia, for slit-diaphragm formation and podocyte function. In this study, we used Drosophila nephrocytes as model system for mammalian podocytes and identified a conserved function of Crumbs proteins for cellular morphogenesis, nephrocyte diaphragm assembly/maintenance, and endocytosis. Nephrocyte-specific knock-down of Crumbs results in disturbed nephrocyte diaphragm assembly/maintenance and decreased endocytosis, which can be rescued by Drosophila Crumbs as well as human Crumbs2 and Crumbs3, which were both expressed in human podocytes. In contrast to the extracellular domain, which facilitates nephrocyte diaphragm assembly/maintenance, the intracellular FERM-interaction motif of Crumbs is essential for regulating endocytosis. Moreover, Moesin, which binds to the FERM-binding domain of Crumbs, is essential for efficient endocytosis. Thus, we describe here a new mechanism of nephrocyte development and function, which is likely to be conserved in mammalian podocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Patrakka J, Tryggvason K (2007) Nephrin—a unique structural and signaling protein of the kidney filter. Trends Mol Med 13(9):396–403. doi:10.1016/j.molmed.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  2. Fukasawa H, Bornheimer S, Kudlicka K, Farquhar MG (2009) Slit diaphragms contain tight junction proteins. J Am Soc Nephrol 20(7):1491–1503. doi:10.1681/ASN.2008101117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Itoh M, Nakadate K, Horibata Y, Matsusaka T, Xu J, Hunziker W, Sugimoto H (2014) The structural and functional organization of the podocyte filtration slits is regulated by Tjp1/ZO-1. PLoS One 9(9):e106621. doi:10.1371/journal.pone.0106621

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huber TB, Schmidts M, Gerke P, Schermer B, Zahn A, Hartleben B, Sellin L, Walz G, Benzing T (2003) The carboxyl terminus of Neph family members binds to the PDZ domain protein zonula occludens-1. J Biol Chem 278(15):13417–13421. doi:10.1074/jbc.C200678200

    Article  CAS  PubMed  Google Scholar 

  5. Hartleben B, Schweizer H, Lubben P, Bartram MP, Moller CC, Herr R, Wei C, Neumann-Haefelin E, Schermer B, Zentgraf H, Kerjaschki D, Reiser J, Walz G, Benzing T, Huber TB (2008) Neph-Nephrin proteins bind the Par3–Par6-atypical protein kinase C (aPKC) complex to regulate podocyte cell polarity. J Biol Chem 283(34):23033–23038. doi:10.1074/jbc.M803143200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirose T, Satoh D, Kurihara H, Kusaka C, Hirose H, Akimoto K, Matsusaka T, Ichikawa I, Noda T, Ohno S (2009) An essential role of the universal polarity protein, aPKClambda, on the maintenance of podocyte slit diaphragms. PLoS One 4(1):e4194. doi:10.1371/journal.pone.0004194

    Article  PubMed  PubMed Central  Google Scholar 

  7. Huber TB, Hartleben B, Winkelmann K, Schneider L, Becker JU, Leitges M, Walz G, Haller H, Schiffer M (2009) Loss of podocyte aPKClambda/iota causes polarity defects and nephrotic syndrome. J Am Soc Nephrol 20(4):798–806. doi:10.1681/ASN.2008080871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Satoh D, Hirose T, Harita Y, Daimon C, Harada T, Kurihara H, Yamashita A, Ohno S (2014) aPKClambda maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J Biochem 156(2):115–128. doi:10.1093/jb/mvu022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hartleben B, Widmeier E, Suhm M, Worthmann K, Schell C, Helmstadter M, Wiech T, Walz G, Leitges M, Schiffer M, Huber TB (2013) aPKClambda/iota and aPKCzeta contribute to podocyte differentiation and glomerular maturation. J Am Soc Nephrol 24(2):253–267. doi:10.1681/ASN.2012060582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tepass U (2012) The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 28:655–685. doi:10.1146/annurev-cellbio-092910-154033

    Article  CAS  PubMed  Google Scholar 

  11. Kumichel A, Knust E (2014) Apical localisation of crumbs in the boundary cells of the Drosophila hindgut is independent of its canonical interaction partner stardust. PLoS One 9(4):e94038. doi:10.1371/journal.pone.0094038

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bachmann A, Schneider M, Theilenberg E, Grawe F, Knust E (2001) Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414(6864):638–643

    Article  CAS  PubMed  Google Scholar 

  13. Hong Y, Stronach B, Perrimon N, Jan LY, Jan YN (2001) Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414(6864):634–638

    Article  CAS  PubMed  Google Scholar 

  14. Makarova O, Roh MH, Liu CJ, Laurinec S, Margolis B (2003) Mammalian Crumbs3 is a small transmembrane protein linked to protein associated with Lin-7 (Pals1). Gene 302(1–2):21–29

    Article  CAS  PubMed  Google Scholar 

  15. Roh MH, Fan S, Liu CJ, Margolis B (2003) The Crumbs3–Pals1 complex participates in the establishment of polarity in mammalian epithelial cells. J Cell Sci 116(Pt 14):2895–2906

    Article  CAS  PubMed  Google Scholar 

  16. Straight SW, Shin K, Fogg VC, Fan S, Liu CJ, Roh M, Margolis B (2004) Loss of PALS1 expression leads to tight junction and polarity defects. Mol Biol Cell 15(4):1981–1990. doi:10.1091/mbc.E03-08-0620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sen A, Nagy-Zsver-Vadas Z, Krahn MP (2012) Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity. J Cell Biol 199(4):685–698. doi:10.1083/jcb.201206064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sen A, Sun R, Krahn MP (2015) Localization and function of Pals1-associated tight junction protein in Drosophila is regulated by two distinct apical complexes. J Biol Chem 290(21):13224–13233. doi:10.1074/jbc.M114.629014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Penalva C, Mirouse V (2012) Tissue-specific function of Patj in regulating the Crumbs complex and epithelial polarity. Development 139(24):4549–4554. doi:10.1242/dev.085449

    Article  CAS  PubMed  Google Scholar 

  20. Zhou W, Hong Y (2012) Drosophila Patj plays a supporting role in apical-basal polarity but is essential for viability. Development 139(16):2891–2896. doi:10.1242/dev.083162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shin K, Straight S, Margolis B (2005) PATJ regulates tight junction formation and polarity in mammalian epithelial cells. J Cell Biol 168(5):705–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Michel D, Arsanto JP, Massey-Harroche D, Beclin C, Wijnholds J, Le Bivic A (2005) PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells. J Cell Sci 118(Pt 17):4049–4057. doi:10.1242/jcs.02528

    Article  CAS  PubMed  Google Scholar 

  23. Tepass U (1996) Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev Biol 177(1):217–225

    Article  CAS  PubMed  Google Scholar 

  24. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics tissue-based map of the human proteome. Science 347(6220):1260419. doi:10.1126/science.1260419

    Article  PubMed  Google Scholar 

  25. Lemmers C, Michel D, Lane-Guermonprez L, Delgrossi MH, Medina E, Arsanto JP, Le Bivic A (2004) CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 15(3):1324–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Whiteman EL, Fan S, Harder JL, Walton KD, Liu CJ, Soofi A, Fogg VC, Hershenson MB, Dressler GR, Deutsch GH, Gumucio DL, Margolis B (2014) Crumbs3 is essential for proper epithelial development and viability. Mol Cell Biol 34(1):43–56. doi:10.1128/MCB.00999-13

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alves CH, Sanz AS, Park B, Pellissier LP, Tanimoto N, Beck SC, Huber G, Murtaza M, Richard F, Sridevi Gurubaran I, Garcia Garrido M, Levelt CN, Rashbass P, Le Bivic A, Seeliger MW, Wijnholds J (2013) Loss of CRB2 in the mouse retina mimics human retinitis pigmentosa due to mutations in the CRB1 gene. Hum Mol Genet 22(1):35–50. doi:10.1093/hmg/dds398

    Article  CAS  PubMed  Google Scholar 

  28. Xiao Z, Patrakka J, Nukui M, Chi L, Niu D, Betsholtz C, Pikkarainen T, Vainio S, Tryggvason K (2011) Deficiency in Crumbs homolog 2 (Crb2) affects gastrulation and results in embryonic lethality in mice. Dev Dyn 240(12):2646–2656. doi:10.1002/dvdy.22778

    Article  CAS  PubMed  Google Scholar 

  29. Ebarasi L, Ashraf S, Bierzynska A, Gee HY, McCarthy HJ, Lovric S, Sadowski CE, Pabst W, Vega-Warner V, Fang H, Koziell A, Simpson MA, Dursun I, Serdaroglu E, Levy S, Saleem MA, Hildebrandt F, Majumdar A (2015) Defects of CRB2 cause steroid-resistant nephrotic syndrome. Am J Hum Genet 96(1):153–161. doi:10.1016/j.ajhg.2014.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Slavotinek A, Kaylor J, Pierce H, Cahr M, DeWard SJ, Schneidman-Duhovny D, Alsadah A, Salem F, Schmajuk G, Mehta L (2015) CRB2 mutations produce a phenotype resembling congenital nephrosis, Finnish type, with cerebral ventriculomegaly and raised alpha-fetoprotein. Am J Hum Genet 96(1):162–169. doi:10.1016/j.ajhg.2014.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ebarasi L, He L, Hultenby K, Takemoto M, Betsholtz C, Tryggvason K, Majumdar A (2009) A reverse genetic screen in the zebrafish identifies crb2b as a regulator of the glomerular filtration barrier. Dev Biol 334(1):1–9. doi:10.1016/j.ydbio.2009.04.017

    Article  CAS  PubMed  Google Scholar 

  32. Weavers H, Prieto-Sanchez S, Grawe F, Garcia-Lopez A, Artero R, Wilsch-Brauninger M, Ruiz-Gomez M, Skaer H, Denholm B (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457(7227):322–326. doi:10.1038/nature07526

    Article  CAS  PubMed  Google Scholar 

  33. Zhuang S, Shao H, Guo F, Trimble R, Pearce E, Abmayr SM (2009) Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development 136(14):2335–2344. doi:10.1242/dev.031609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Na J, Sweetwyne MT, Park AS, Susztak K, Cagan RL (2015) Diet-induced podocyte dysfunction in drosophila and mammals. Cell Rep 12(4):636–647. doi:10.1016/j.celrep.2015.06.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tutor AS, Prieto-Sanchez S, Ruiz-Gomez M (2014) Src64B phosphorylates Dumbfounded and regulates slit diaphragm dynamics: Drosophila as a model to study nephropathies. Development 141(2):367–376. doi:10.1242/dev.099408

    Article  CAS  PubMed  Google Scholar 

  36. Zhang F, Zhao Y, Han Z (2013) An in vivo functional analysis system for renal gene discovery in Drosophila pericardial nephrocytes. J Am Soc Nephrol 24(2):191–197. doi:10.1681/ASN.2012080769

    Article  PubMed  PubMed Central  Google Scholar 

  37. Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166(4):1775–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klebes A, Knust E (2000) A conserved motif in Crumbs is required for E-cadherin localisation and zonula adherens formation in Drosophila. Curr Biol 10(2):76–85

    Article  CAS  PubMed  Google Scholar 

  39. Mitsuishi Y, Hasegawa H, Matsuo A, Araki W, Suzuki T, Tagami S, Okochi M, Takeda M, Roepman R, Nishimura M (2010) Human CRB2 inhibits gamma-secretase cleavage of amyloid precursor protein by binding to the presenilin complex. J Biol Chem 285(20):14920–14931. doi:10.1074/jbc.M109.038760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Djuric I, Siebrasse JP, Schulze U, Granado D, Schluter MA, Kubitscheck U, Pavenstadt H, Weide T (2016) The C-terminal domain controls the mobility of Crumbs 3 isoforms. Biochem Biophys Acta. doi:10.1016/j.bbamcr.2016.03.008

    PubMed  Google Scholar 

  41. Feng Y, Ueda A, Wu CF (2004) A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J Neurogenet 18(2):377–402. doi:10.1080/01677060490894522

    Article  CAS  PubMed  Google Scholar 

  42. Berger S, Bulgakova NA, Grawe F, Johnson K, Knust E (2007) Unraveling the genetic complexity of Drosophila stardust during photoreceptor morphogenesis and prevention of light-induced degeneration. Genetics 176(4):2189–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanaka T, Nakamura A (2008) The endocytic pathway acts downstream of Oskar in Drosophila germ plasm assembly. Development 135(6):1107–1117. doi:10.1242/dev.017293

    Article  CAS  PubMed  Google Scholar 

  44. Edwards KA, Demsky M, Montague RA, Weymouth N, Kiehart DP (1997) GFP-moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev Biol 191(1):103–117. doi:10.1006/dbio.1997.8707

    Article  CAS  PubMed  Google Scholar 

  45. Tepass U, Knust E (1990) Phenotypic and developmental analysis of mutations at the crumbs locus, a gene required for the development of epithelia in Drosophila melanogaster. Roux’s Arch Dev Biol 199:189–206

    Article  CAS  Google Scholar 

  46. Lin YH, Currinn H, Pocha SM, Rothnie A, Wassmer T, Knust E (2015) AP-2-complex-mediated endocytosis of Drosophila Crumbs regulates polarity by antagonizing Stardust. J Cell Sci 128(24):4538–4549. doi:10.1242/jcs.174573

    Article  CAS  PubMed  Google Scholar 

  47. Krahn MP, Buckers J, Kastrup L, Wodarz A (2010) Formation of a Bazooka–Stardust complex is essential for plasma membrane polarity in epithelia. J Cell Biol 190(5):751–760. doi:10.1083/jcb.201006029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roh MH, Makarova O, Liu CJ, Shin K, Lee S, Laurinec S, Goyal M, Wiggins R, Margolis B (2002) The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol 157(1):161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kempkens O, Medina E, Fernandez-Ballester G, Ozuyaman S, Le Bivic A, Serrano L, Knust E (2006) Computer modelling in combination with in vitro studies reveals similar binding affinities of Drosophila Crumbs for the PDZ domains of Stardust and DmPar-6. Eur J Cell Biol 85(8):753–767

    Article  CAS  PubMed  Google Scholar 

  50. Wang Q, Hurd TW, Margolis B (2004) Tight junction protein Par6 interacts with an evolutionarily conserved region in the amino terminus of PALS1/stardust. J Biol Chem 279(29):30715–30721

    Article  CAS  PubMed  Google Scholar 

  51. Whitney DS, Peterson FC, Kittell AW, Egner JM, Prehoda KE, Volkman BF (2016) Crumbs binding to the Par-6 CRIB-PDZ module is regulated by Cdc42. Biochemistry. doi:10.1021/acs.biochem.5b01342

    PubMed Central  Google Scholar 

  52. Fan S, Fogg V, Wang Q, Chen XW, Liu CJ, Margolis B (2007) A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. J Cell Biol 178(3):387–398. doi:10.1083/jcb.200609096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Letizia A, Ricardo S, Moussian B, Martin N, Llimargas M (2013) A functional role of the extracellular domain of Crumbs in cell architecture and apicobasal polarity. J Cell Sci 126(Pt 10):2157–2163. doi:10.1242/jcs.122382

    Article  CAS  PubMed  Google Scholar 

  54. Zou J, Wang X, Wei X (2012) Crb apical polarity proteins maintain zebrafish retinal cone mosaics via intercellular binding of their extracellular domains. Dev Cell 22(6):1261–1274. doi:10.1016/j.devcel.2012.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wodarz A, Hinz U, Engelbert M, Knust E (1995) Expression of Crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82(1):67–76

    Article  CAS  PubMed  Google Scholar 

  56. Laprise P, Beronja S, Silva-Gagliardi NF, Pellikka M, Jensen AM, McGlade CJ, Tepass U (2006) The FERM protein Yurt is a negative regulatory component of the Crumbs complex that controls epithelial polarity and apical membrane size. Dev Cell 11(3):363–374. doi:10.1016/j.devcel.2006.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Medina E, Williams J, Klipfell E, Zarnescu D, Thomas G, Le Bivic A (2002) Crumbs interacts with moesin and beta(Heavy)-spectrin in the apical membrane skeleton of Drosophila. J Cell Biol 158(5):941–951. doi:10.1083/jcb.200203080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE (2010) Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 20(7):573–581. doi:10.1016/j.cub.2010.01.055

    Article  CAS  PubMed  Google Scholar 

  59. Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C, Halder G (2010) The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci USA 107(36):15810–15815. doi:10.1073/pnas.1004060107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robinson BS, Huang J, Hong Y, Moberg KH (2010) Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 20(7):582–590. doi:10.1016/j.cub.2010.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sherrard KM, Fehon RG (2015) The transmembrane protein Crumbs displays complex dynamics during follicular morphogenesis and is regulated competitively by Moesin and aPKC. Development 142(10):1869–1878. doi:10.1242/dev.115329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Inoue K, Ishibe S (2015) Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am J Physiol Renal Physiol 00136:02015. doi:10.1152/ajprenal.00136.2015

    Google Scholar 

  63. Soukup SF, Culi J, Gubb D (2009) Uptake of the necrotic serpin in Drosophila melanogaster via the lipophorin receptor-1. PLoS Genet 5(6):e1000532. doi:10.1371/journal.pgen.1000532

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nomachi A, Yoshinaga M, Liu J, Kanchanawong P, Tohyama K, Thumkeo D, Watanabe T, Narumiya S, Hirata T (2013) Moesin controls clathrin-mediated S1PR1 internalization in T cells. PLoS One 8(12):e82590. doi:10.1371/journal.pone.0082590

    Article  PubMed  PubMed Central  Google Scholar 

  65. Barroso-Gonzalez J, Machado JD, Garcia-Exposito L, Valenzuela-Fernandez A (2009) Moesin regulates the trafficking of nascent clathrin-coated vesicles. J Biol Chem 284(4):2419–2434. doi:10.1074/jbc.M805311200

    Article  CAS  PubMed  Google Scholar 

  66. Karagiosis SA, Ready DF (2004) Moesin contributes an essential structural role in Drosophila photoreceptor morphogenesis. Development 131(4):725–732. doi:10.1242/dev.00976

    Article  CAS  PubMed  Google Scholar 

  67. Speck O, Hughes SC, Noren NK, Kulikauskas RM, Fehon RG (2003) Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421(6918):83–87. doi:10.1038/nature01295

    Article  CAS  PubMed  Google Scholar 

  68. Wei Z, Li Y, Ye F, Zhang M (2015) Structural basis for the phosphorylation-regulated interaction between the cytoplasmic tail of cell polarity protein crumbs and the actin-binding protein moesin. J Biol Chem 290(18):11384–11392. doi:10.1074/jbc.M115.643791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Soda K, Ishibe S (2013) The function of endocytosis in podocytes. Curr Opin Nephrol Hypertens 22(4):432–438. doi:10.1097/MNH.0b013e3283624820

    Article  CAS  PubMed  Google Scholar 

  70. Soda K, Balkin DM, Ferguson SM, Paradise S, Milosevic I, Giovedi S, Volpicelli-Daley L, Tian X, Wu Y, Ma H, Son SH, Zheng R, Moeckel G, Cremona O, Holzman LB, De Camilli P, Ishibe S (2012) Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J Clin Investig 122(12):4401–4411. doi:10.1172/JCI65289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qin XS, Tsukaguchi H, Shono A, Yamamoto A, Kurihara H, Doi T (2009) Phosphorylation of nephrin triggers its internalization by raft-mediated endocytosis. J Am Soc Nephrol 20(12):2534–2545. doi:10.1681/ASN.2009010011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bechtel W, Helmstadter M, Balica J, Hartleben B, Kiefer B, Hrnjic F, Schell C, Kretz O, Liu S, Geist F, Kerjaschki D, Walz G, Huber TB (2013) Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J Am Soc Nephrol 24(5):727–743. doi:10.1681/ASN.2012070700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen J, Chen MX, Fogo AB, Harris RC, Chen JK (2013) mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J Am Soc Nephrol 24(2):198–207. doi:10.1681/ASN.2012010101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Klose S, Flores-Benitez D, Riedel F, Knust E (2013) Fosmid-based structure-function analysis reveals functionally distinct domains in the cytoplasmic domain of Drosophila crumbs. G3 (Bethesda) 3(2):153–165. doi:10.1534/g3.112.005074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Kiehart, E. Knust, A. Nakamura, R. Roepman, the Bloomington Drosophila stock center at the University of Indiana (USA), the National Institute of Genetics, (Shizuoka, Japan), the Vienna Drosophila Resource Center (Austria), and the Developmental Studies Hybridoma Bank at the University of Iowa (USA) for sending reagents. Thanks to Karin Wacker for excellent technical assistance. This work was supported by grants of the German research foundation (DFG) to M. P. K. (DFG3901/2-1, DFG3901/1-2, SFB699-A13) and to T.W. (SCHL1845/2-1, WE2550/2-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Krahn.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2017_2593_MOESM1_ESM.tif

Supplemental Fig. 1. ANP–RFP-accumulation assay. Example of garland nephrocytes with accumulated RFP (RFP channel is depicted in B, D, F, and H). RFP expressed from the Myosin heavy chain promoter was secreted into the hemolymph and taken up by cell garland nephrocytes. The tissue was counterstained with DAPI (without permeabilizing reagents) to visualize cellular structures (A, C, E, and G). A garland nephrocyte was outlined in red in A, B, E, and F. The RFP signal within the encircled area was measured and the signal from unspecific staining (“background”, taken from the tissue of the stomach) was subtracted (encircled in red in C and D and G and H) to obtain a quantification of RFP accumulation within a single nephrocyte. To quantify the overall accumulation efficiency (as described in the methods section), we scored at least 40 nephrocytes from 5 independent larvae (TIFF 1330 kb)

18_2017_2593_MOESM2_ESM.tif

Supplemental Fig. 2. Downregulation of Moesin affects the ultrastructure and filamentous actin accumulation of nephrocytes. (A) Transmission electron micrographs of nephrocytes expressing Moesin–RNAi show a disturbed ultrastructure similar to Crb–RNAi nephrocytes. (B and C) Phalloidin staining of control (B) and Crb–RNAi (C) garland nephrocytes demonstrates a disturbance of cortical actin in Moesin–RNAi expressing cells. Note that even in control nephrocytes, actin staining is rather weak in comparison with surrounding tissues (e.g., proventriculus, arrows). (D) Immunostaining of garland nephrocytes with Moesin–RNAi visualizes a loss of cortical Crb and Sns (TIFF 3642 kb)

18_2017_2593_MOESM3_ESM.tif

Supplemental Fig. 3. Overexpression of Crb proteins in garland nephrocytes increases accumulation of RFP. The indicated Crb proteins were overexpressed in garland nephrocytes and the accumulation of secreted RFP in garland nephrocytes was quantified as described in Suppl. Figure 1 (TIFF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochapfel, F., Denk, L., Mendl, G. et al. Distinct functions of Crumbs regulating slit diaphragms and endocytosis in Drosophila nephrocytes. Cell. Mol. Life Sci. 74, 4573–4586 (2017). https://doi.org/10.1007/s00018-017-2593-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2593-y

Keywords

Navigation