Skip to main content

Advertisement

Log in

Absent in melanoma 2 proteins in the development of cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Recent studies utilizing chemical-induced colitis-associated and sporadic colon cancer in mouse models indicated a protective role for absent in melanoma 2 (Aim2) in colon epithelial cells. Accordingly, mutations in the human AIM2 gene have been found in colorectal cancer (CRC), and reduced expression of AIM2 in CRC is associated with its progression. Furthermore, the overexpression of AIM2 protein in human cancer cell lines inhibits cell proliferation. Interferon-inducible Aim2 and AIM2 are members of the PYHIN (PYRIN and HIN domain-containing) protein family and share ~57 % amino acid identity. The family also includes murine p202, human PYRIN-only protein 3, and IFI16, which negatively regulate Aim2/AIM2 functions. Because the CRC incidence and mortality rates are higher among men compared with women and the expression of Aim2/AIM2 proteins and their regulators is dependent upon age, gender, and sex hormones, we discuss the potential roles of Aim2/AIM2 in the development of cancer. An improved understanding of the biological functions of the AIM2 in the development of CRC will likely identify new therapeutic approaches to treat patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aim2:

Absent in melanoma 2 (murine)

AIM2:

Absent in melanoma 2 (human)

AR:

Androgen receptor

ASC:

Apoptotic speck protein containing a caspase recruitment domain

ATM:

Ataxia telangiectasia

BMDM:

Bone marrow-derived macrophage

CAC:

Colitis-associated cancer

CRC:

Colorectal cancer

DHT:

Dihydrotestosterone

ERα:

Estrogen receptor-α

IFN:

Interferon

ISGs:

Interferon-stimulated genes

POP3:

PYRIN-only protein 3

PrECs:

Prostate epithelial cells

PYD:

PYRIN domain

PYHIN:

YRIN and HIN domain-containing

TMA:

Tissue microarray

References

  1. Asefa B, Klarmann KD, Copeland NG, Gilbert DJ, Jenkins NA, Keller JR (2004) The interferon-inducible p200 family of proteins: a perspective on their roles in cell cycle regulation and differentiation. Blood Cells Mol Dis 32:155–167

    Article  CAS  PubMed  Google Scholar 

  2. Choubey D, Duan X, Dickerson E, Ponomareva L, Panchanathan R, Shen H, Srivastava R (2010) Interferon-inducible p200-family proteins as novel sensors of cytoplasmic DNA: role in inflammation and autoimmunity. J Interferon Cytokine Res 30:371–380. doi:10.1089/jir.2009.0096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243:109–118. doi:10.1111/j.1600-065X.2011.01053.x

    Article  CAS  PubMed  Google Scholar 

  4. Choubey D (2012) DNA-responsive inflammasomes and their regulators in autoimmunity. Clin Immunol 142:223–231. doi:10.1016/j.clim.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  5. Khare S, Ratsimandresy RA, de Almeida L, Cuda CM, Rellick SL, Misharin AV, Wallin MC, Gangopadhyay A, Forte E, Gottwein E, Perlman H, Reed JC, Greaves DR, Dorfleutner A, Stehlik C (2014) The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 15:343–353. doi:10.1038/ni.2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Connolly DJ, Bowie AG (2014) The emerging role of human PYHIN proteins in innate immunity: implications for health and disease. Biochem Pharmacol 92:405–414. doi:10.1016/j.bcp.2014.08.031

    Article  CAS  PubMed  Google Scholar 

  7. Man SM, Karki R, Kanneganti TD (2016) AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 46:269–280. doi:10.1002/eji.201545839

    Article  CAS  PubMed  Google Scholar 

  8. Schroder K, Muruve DA, Tschopp J (2009) Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome. Curr Biol 19:R262–R265. doi:10.1016/j.cub.2009.02.011

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12:715–723. doi:10.1038/ni.2060

    Article  CAS  PubMed  Google Scholar 

  10. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13:759–771. doi:10.1038/nrc3611

    Article  CAS  PubMed  Google Scholar 

  11. Chen GY, Núñez G (2011) Inflammasomes in intestinal inflammation and cancer. Gastroenterology 141:1986–1999. doi:10.1053/j.gastro.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gagliani N, Palm NW, de Zoete MR, Flavell RA (2014) Inflammasomes and intestinal homeostasis: regulating and connecting infection, inflammation and the microbiota. Int Immunol 26:495–499. doi:10.1093/intimm/dxu066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Man SM, Karki R, Kanneganti TD (2016) DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota. Pathog Dis 74(4). doi:10.1093/femspd/ftw028

  14. Nguyen SP, Bent S, Chen YH, Terdiman JP (2009) Gender as a risk factor for advanced neoplasia and colorectal cancer: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 7:676.e1-3–681.e1-3. doi:10.1016/j.cgh.2009.01.008

    Google Scholar 

  15. Majek O, Gondos A, Jansen L, Emrich K, Holleczek B, Katalinic A, Nennecke A, Eberle A, Brenner H, GEKID Cancer Survival Working Group (2013) Sex differences in colorectal cancer survival: population-based analysis of 164,996 colorectal cancer patients in Germany. PLoS One 8:e68077. doi:10.1371/journal.pone.0068077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DeYoung KL, Ray ME, Su YA, Anzick SL, Johnstone RW, Trapani JA, Meltzer PS, Trent JM (1997) Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 15:453–457

    Article  CAS  PubMed  Google Scholar 

  17. Dombrowski Y, Peric M, Koglin S, Kammerbauer C, Göss C, Anz D, Simanski M, Gläser R, Harder J, Hornung V, Gallo RL, Ruzicka T, Besch R, Schauber J (2011) Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 3:82ra38. doi:10.1126/scitranslmed.3002001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kopfnagel V, Wittmann M, Werfel T (2011) Human keratinocytes express AIM2 and respond to dsDNA with IL-1β secretion. Exp Dermatol 20:1027–1029. doi:10.1111/j.1600-0625.2011.01382.x

    Article  CAS  PubMed  Google Scholar 

  19. Duan X, Ponomareva L, Veeranki S, Panchanathan R, Dickerson E, Choubey D (2011) Differential roles for the interferon-inducible IFI16 and AIM2 innate immune sensors for cytosolic DNA in cellular senescence of human fibroblasts. Mol Cancer Res 9:589–602. doi:10.1158/1541-7786.MCR-10-0565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ponomareva L, Liu H, Duan X, Dickerson E, Shen H, Panchanathan R, Choubey D (2013) AIM2, an IFN-inducible cytosolic DNA sensor, in the development of benign prostate hyperplasia and prostate cancer. Mol Cancer Res 11:1193–1202. doi:10.1158/1541-7786.MCR-13-0145

    Article  CAS  PubMed  Google Scholar 

  21. Hakimi M, Peters A, Becker A, Böckler D, Dihlmann S (2014) Inflammation-related induction of absent in melanoma 2 (AIM2) in vascular cells and atherosclerotic lesions suggests a role in vascular pathogenesis. J Vasc Surg 59:794–803. doi:10.1016/j.jvs.2013.03.048

    Article  PubMed  Google Scholar 

  22. Yang CA, Huang ST, Chiang BL (2015) Sex-dependent differential activation of NLRP3 and AIM2 inflammasomes in SLE macrophages. Rheumatology (Oxford) 54:324–331. doi:10.1093/rheumatology/keu318

    Article  Google Scholar 

  23. Wang Q, Westra J, van der Geest KS, Moser J, Bijzet J, Kuiper T, Lorencetti PG, Joosten LA, Netea MG, Heeringa P, Brouwer E, Boots AM (2016) Reduced levels of cytosolic DNA sensor AIM2 are associated with impaired cytokine responses in healthy elderly. Exp Gerontol 78:39–46. doi:10.1016/j.exger.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  24. Panchanathan R, Duan X, Shen H, Rathinam VA, Erickson LD, Fitzgerald KA, Choubey D (2010) Aim2-deficiency stimulates the expression of IFN-inducible Ifi202, a lupus susceptibility murine gene within the Nba2 autoimmune susceptibility locus. J Immunol 185:7385–7393. doi:10.4049/jimmunol.1002468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sester DP, Sagulenko V, Thygesen SJ, Cridland JA, Loi YS, Cridland SO, Masters SL, Genske U, Hornung V, Andoniou CE, Sweet MJ, Degli-Esposti MA, Schroder K, Stacey KJ (2015) Deficient NLRP3 and AIM2 inflammasome function in autoimmune NZB Mice. J Immunol 195:1233–1241. doi:10.4049/jimmunol.1402859

    Article  CAS  PubMed  Google Scholar 

  26. Panchanathan R, Duan X, Arumugam M, Shen H, Liu H, Choubey D (2011) Cell type and gender-dependent differential regulation of the p202 and Aim2 proteins: implications for the regulation of innate immune responses in SLE. Mol Immunol 49:273–280. doi:10.1016/j.molimm.2011.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schulmann K, Brasch FE, Kunstmann E, Engel C, Pagenstecher C, Vogelsang H, Krüger S, Vogel T, Knaebel HP, Rüschoff J, Hahn SA, Knebel-Doeberitz MV, Moeslein G, Meltzer SJ, Schackert HK, Tympner C, Mangold E, Schmiegel W, German HNPCC Consortium (2005) HNPCC-associated small bowel cancer: clinical and molecular characteristics. Gastroenterology 128:590–599

    Article  CAS  PubMed  Google Scholar 

  28. Woerner SM, Kloor M, Schwitalle Y, Youmans H, Mv Doeberitz, Gebert J, Dihlmann S (2007) The putative tumor suppressor AIM2 is frequently affected by different genetic alterations in microsatellite unstable colon cancers. Genes Chromosomes Cancer 46:1080–1089

    Article  CAS  PubMed  Google Scholar 

  29. Dihlmann S, Tao S, Echterdiek F, Herpel E, Jansen L, Chang-Claude J, Brenner H, Hoffmeister M, Kloor M (2014) Lack of Absent in Melanoma 2 (AIM2) expression in tumor cells is closely associated with poor survival in colorectal cancer patients. Int J Cancer 135:2387–2396. doi:10.1002/ijc.28891

    Article  CAS  PubMed  Google Scholar 

  30. Liu R, Truax AD, Chen L, Hu P, Li Z, Chen J, Song C, Chen L, Ting JP (2015) Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components. Oncotarget 6:33456–33469. doi:10.18632/oncotarget.5587

    PubMed  PubMed Central  Google Scholar 

  31. Chen LC, Wang LJ, Tsang NM, Ojcius DM, Chen CC, Ouyang CN, Hsueh C, Liang Y, Chang KP, Chen CC, Chang YS (2012) Tumour inflammasome-derived IL-1β recruits neutrophils and improves local recurrence-free survival in EBV-induced nasopharyngeal carcinoma. EMBO Mol Med 4:1276–1293. doi:10.1002/emmm.201201569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kondo Y, Nagai K, Nakahata S, Saito Y, Ichikawa T, Suekane A, Taki T, Iwakawa R, Enari M, Taniwaki M, Yokota J, Sakoda S, Morishita K (2012) Overexpression of the DNA sensor proteins, absent in melanoma 2 and interferon-inducible 16, contributes to tumorigenesis of oral squamous cell carcinoma with p53 inactivation. Cancer Sci 103:782–790. doi:10.1111/j.1349-7006.2012.02211.x

    Article  CAS  PubMed  Google Scholar 

  33. Kong H, Wang Y, Zeng X, Wang Z, Wang H, Xie W (2015) Differential expression of inflammasomes in lung cancer cell lines and tissues. Tumour Biol 36:7501–7513. doi:10.1007/s13277-015-3473-4

    Article  CAS  PubMed  Google Scholar 

  34. Chakrabarti S, Multani S, Dabholkar J, Saranath D (2015) Whole genome expression profiling in chewing-tobacco-associated oral cancers: a pilot study. Med Oncol 32:60. doi:10.1007/s12032-015-0483-4

    Article  PubMed  Google Scholar 

  35. Milutin Gašperov N, Farkas SA, Nilsson TK, Grce M (2014) Epigenetic activation of immune genes in cervical cancer. Immunol Lett 162(2 Pt B):256–257. doi:10.1016/j.imlet.2014.09.019

    Article  PubMed  Google Scholar 

  36. Reinholz M, Kawakami Y, Salzer S, Kreuter A, Dombrowski Y, Koglin S, Kresse S, Ruzicka T, Schauber J (2013) HPV16 activates the AIM2 inflammasome in keratinocytes. Arch Dermatol Res 305:723–732. doi:10.1007/s00403-013-1375-0

    Article  CAS  PubMed  Google Scholar 

  37. Choubey D, Walter S, Geng Y, Xin H (2000) Cytoplasmic localization of the interferon- inducible protein that is encoded by the AIM2 (absent in melanoma) gene from the 200-gene family. FEBS Lett 474:38–42

    Article  CAS  PubMed  Google Scholar 

  38. Veeranki S, Duan X, Panchanathan R, Liu H, Choubey D (2011) IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS One 6:e27040. doi:10.1371/journal.pone.0027040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cresswell KS, Clarke CJ, Jackson JT, Darcy PK, Trapani JA, Johnstone RW (2005) Biochemical and growth regulatory activities of the HIN-200 family member and putative tumor suppressor protein, AIM2. Biochem Biophys Res Commun 326:417–424

    Article  CAS  PubMed  Google Scholar 

  40. Chen IF, Ou-Yang F, Hung JY, Liu JC, Wang H, Wang SC, Hou MF, Hortobagyi GN, Hung MC (2006) AIM2 suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model. Mol Cancer Ther 5:1–7

    Article  CAS  PubMed  Google Scholar 

  41. Liao JC, Lam R, Brazda V, Duan S, Ravichandran M, Ma J, Xiao T, Tempel W, Zuo X, Wang YX, Chirgadze NY (2010) Arrowsmith CH (2011) Interferon-inducible protein 16: insight into the interaction with tumor suppressor p53. Structure 19:418–429. doi:10.1016/j.str.12.015

    Article  Google Scholar 

  42. Yin Q, Sester DP, Tian Y, Hsiao YS, Lu A, Cridland JA, Sagulenko V, Thygesen SJ, Choubey D, Hornung V, Walz T, Stacey KJ, Wu H (2013) Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation. Cell Rep 4:327–339. doi:10.1016/j.celrep.2013.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin T, Perry A, Smith P, Jiang J, Xiao TS (2013) Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 auto-inhibition and inflammasome assembly. J Biol Chem 288:13225–13235. doi:10.1074/jbc.M113.468033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li H, Wang ZX, Wu JW (2013) Comparative purification and characterization of two HIN domains, hematopoietic interferon-inducible nuclear antigens with a 200-amino-acid repeat, in murine AIM2-like receptors. Biosci Biotechnol Biochem 77:2283–2287

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Wang J, Wang J, Cao LS, Wang ZX, Wu JW (2014) Structural mechanism of DNA recognition by the p202 HINa domain: insights into the inhibition of Aim2-mediated inflammatory signalling. Acta Crystallogr F Struct Biol Commun 70:21–29. doi:10.1107/S2053230X1303135X

    Article  CAS  PubMed  Google Scholar 

  46. Xin H, D’Souza S, Jørgensen TN, Vaughan AT, Lengyel P, Kotzin BL, Choubey D (2006) Increased expression of Ifi202, an IFN-activatable gene, in B6.Nba2 lupus susceptible mice inhibits p53-mediated apoptosis. J Immunol 176:5863–5870

    Article  CAS  PubMed  Google Scholar 

  47. Liu ZY, Yi J, Liu FE (2015) The molecular mechanism of breast cancer cell apoptosis induction by absent in melanoma (AIM2). Int J Clin Exp Med 8:14750–14758

    PubMed  PubMed Central  Google Scholar 

  48. Patsos G, Germann A, Gebert J, Dihlmann S (2010) Restoration of absent in melanoma 2 (AIM2) induces G2/M cell cycle arrest and promotes invasion of colorectal cancer cells. Int J Cancer 126:1838–1849. doi:10.1002/ijc.24905

    CAS  PubMed  Google Scholar 

  49. Patsos G, André S, Roeckel N, Gromes R, Gebert J, Kopitz J, Gabius HJ (2009) Compensation of loss of protein function in microsatellite-unstable colon cancer cells (HCT116): a gene-dependent effect on the cell surface glycan profile. Glycobiology 19:726–734. doi:10.1093/glycob/cwp040

    Article  CAS  PubMed  Google Scholar 

  50. Lee J, Li L, Gretz N, Gebert J, Dihlmann S (2012) Absent in Melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLA-DRB gene expression in colorectal cancers. Oncogene 31:1242–1253. doi:10.1038/onc.2011.320

    Article  CAS  PubMed  Google Scholar 

  51. Veeranki S, Choubey D (2012) Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol 49:567–571. doi:10.1016/j.molimm.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  52. Choubey D, Panchanathan R (2016) IFI16, an amplifier of DNA-damage response: role in cellular senescence and aging-associated inflammatory diseases. Ageing Res Rev 28:27–36. doi:10.1016/j.arr.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  53. Choubey D, Panchanathan R, Shen H, Duan X (2010) Comment on “Development of murine lupus involves the combined genetic contribution of the SLAM and Fc gamma R intervals within the Nba2 autoimmune susceptibility locus”. J Immunol 184:4051–4052. doi:10.4049/jimmunol.1090015

    Article  CAS  PubMed  Google Scholar 

  54. Pramanik R, Jørgensen TN, Xin H, Kotzin BL, Choubey D (2004) Interleukin-6 induces expression of Ifi202, an interferon-inducible candidate gene for lupus susceptibility. J Biol Chem 279:16121–16127

    Article  CAS  PubMed  Google Scholar 

  55. Panchanathan R, Shen H, Bupp MG, Gould KA, Choubey D (2009) Female and male sex hormones differentially regulate expression of Ifi202, an interferon-inducible lupus susceptibility gene within the Nba2 interval. J Immunol 183:7031–7038. doi:10.4049/jimmunol.0802665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D’Souza S, Xin H, Walter S, Choubey D (2001) The gene encoding p202, an interferon-inducible negative regulator of the p53 tumor suppressor, is a target of p53-mediated transcriptional repression. J Biol Chem 276:298–305

    Article  PubMed  Google Scholar 

  57. Geng Y, D’Souza S, Xin H, Walter S, Choubey D (2000) p202 levels are negatively regulated by serum growth factors. Cell Growth Differ 11:475–483

    CAS  PubMed  Google Scholar 

  58. Panchanathan R, Xin H, Choubey D (2008) Disruption of mutually negative regulatory feedback loop between interferon-inducible p202 protein and the E2F family of transcription factors in lupus-prone mice. J Immunol 180:5927–5934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choubey D, Pramanik R, Xin H (2003) Sub-cellular localization and mechanisms of nucleo-cytoplasmic distribution of p202, an interferon-inducible candidate for lupus susceptibility. FEBS Lett 553:245–249

    Article  CAS  PubMed  Google Scholar 

  60. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057–1060. doi:10.1126/science.1169841

    Article  CAS  PubMed  Google Scholar 

  61. Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O’Rourke K, Chan S, Dong J, Qu Y, Roose-Girma M, Dixit VM, Monack DM (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA 107:9771–9776. doi:10.1073/pnas.1003738107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Corrales L, Woo SR, Williams JB, McWhirter SM, Dubensky TW Jr, Gajewski TF (2016) Antagonism of the STING pathway via activation of the AIM2 inflammasome by intracellular DNA. J Immunol 196:3191–3198. doi:10.4049/jimmunol.1502538

    Article  CAS  PubMed  Google Scholar 

  63. Hu GQ, Song PX, Li N, Chen W, Lei QQ, Yu SX, Zhang XJ, Du CT, Deng XM, Han WY, Yang YJ (2016) AIM2 contributes to the maintenance of intestinal integrity via Akt and protects against Salmonella mucosal infection. Mucosal Immunol. doi:10.1038/mi.2015.142

    PubMed  Google Scholar 

  64. Hu S, Peng L, Kwak YT, Tekippe EM, Pasare C, Malter JS, Hooper LV, Zaki MH (2015) The DNA sensor AIM2 maintains intestinal homeostasis via regulation of epithelial antimicrobial host defense. Cell Rep 13:1922–1936. doi:10.1016/j.celrep.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  65. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L, Signori E, Fazio VM (2011) The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog 10:9. doi:10.4103/1477-3163.78279

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104:Unit 15.25. doi:10.1002/0471142735.im1525s104

    PubMed  PubMed Central  Google Scholar 

  67. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088. doi:10.1126/science.1233521

    Article  CAS  PubMed  Google Scholar 

  68. Tang A, Li N, Li X, Yang H, Wang W, Zhang L, Li G, Xiong W, Ma J, Shen S (2012) Dynamic activation of the key pathways: linking colitis to colorectal cancer in a mouse model. Carcinogenesis 33:1375–1383. doi:10.1093/carcin/bgs183

    Article  CAS  PubMed  Google Scholar 

  69. Fujii S, Fujimori T, Kawamata H, Takeda J, Kitajima K, Omotehara F, Kaihara T, Kusaka T, Ichikawa K, Ohkura Y, Ono Y, Imura J, Yamaoka S, Sakamoto C, Ueda Y, Chiba T (2004) Development of colonic neoplasia in p53 deficient mice with experimental colitis induced by dextran sulphate sodium. Gut 53:710–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilson JE, Petrucelli AS, Chen L, Koblansky AA, Truax AD, Oyama Y, Rogers AB, Brickey WJ, Wang Y, Schneider M, Mühlbauer M, Chou WC, Barker BR, Jobin C, Allbritton NL, Ramsden DA, Davis BK, Ting JP (2015) Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med 21:906–913. doi:10.1038/nm.3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Man SM, Zhu Q, Zhu L, Liu Z, Karki R, Malik A, Sharma D, Li L, Malireddi RK, Gurung P, Neale G, Olsen SR, Carter RA, McGoldrick DJ, Wu G, Finkelstein D, Vogel P, Gilbertson RJ, Kanneganti TD (2015) Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162:45–58. doi:10.1016/j.cell.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hughes GC, Choubey D (2014) Modulation of autoimmune rheumatic diseases by oestrogen and progesterone. Nat Rev Rheumatol 10:740–751. doi:10.1038/nrrheum.2014.144

    Article  CAS  PubMed  Google Scholar 

  73. Minn AJ, Wherry EJ (2016) Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell 165:272–275. doi:10.1016/j.cell.2016.03.031

    Article  CAS  PubMed  Google Scholar 

  74. Rommereim LM, Subramanian N (2015) AIMing 2 curtail cancer. Cell 162:18–20. doi:10.1016/j.cell.2015.06.041

    Article  CAS  PubMed  Google Scholar 

  75. Narayan G, Bourdon V, Chaganti S, Arias-Pulido H, Nandula SV, Rao PH, Gissmann L, Dürst M, Schneider A, Pothuri B, Mansukhani M, Basso K, Chaganti RS, Murty VV (2007) Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer 46:373–384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research work in author’s laboratory was supported by a Merit Award (I01BX001133) from the Veterans Administration (VA). The author apologizes to those colleagues, whose research work could not be cited directly due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divaker Choubey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choubey, D. Absent in melanoma 2 proteins in the development of cancer. Cell. Mol. Life Sci. 73, 4383–4395 (2016). https://doi.org/10.1007/s00018-016-2296-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2296-9

Keywords

Navigation