Skip to main content

Advertisement

Log in

Physiological, pathological, and structural implications of non-enzymatic protein–protein interactions of the multifunctional human transglutaminase 2

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca2+-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2’s non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4(2):140–156. doi:10.1038/nrm1014

    CAS  PubMed  Google Scholar 

  2. Kiraly R, Demeny M, Fesus L (2011) Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein. FEBS J 278(24):4717–4739. doi:10.1111/j.1742-4658.2011.08345.x

    CAS  PubMed  Google Scholar 

  3. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368(Pt 2):377–396. doi:10.1042/BJ20021234

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Belkin AM (2011) Extracellular TG2: emerging functions and regulation. FEBS J 278(24):4704–4716. doi:10.1111/j.1742-4658.2011.08346.x

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264(5165):1593–1596

    CAS  PubMed  Google Scholar 

  6. Vezza R, Habib A, FitzGerald GA (1999) Differential signaling by the thromboxane receptor isoforms via the novel GTP-binding protein, Gh. J Biol Chem 274(18):12774–12779

    CAS  PubMed  Google Scholar 

  7. Baek KJ, Kwon NS, Lee HS, Kim MS, Muralidhar P, Im MJ (1996) Oxytocin receptor couples to the 80-kDa Gh alpha family protein in human myometrium. Biochem J 315(Pt 3):739–744

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373(Pt 3):793–803. doi:10.1042/BJ20021084

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Mastroberardino PG, Farrace MG, Viti I, Pavone F, Fimia GM, Melino G, Rodolfo C, Piacentini M (2006) “Tissue” transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochim Biophys Acta 1757(9–10):1357–1365. doi:10.1016/j.bbabio.2006.07.007

    CAS  PubMed  Google Scholar 

  10. Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279(23):23863–23868. doi:10.1074/jbc.M311919200

    CAS  PubMed  Google Scholar 

  11. Mishra S, Saleh A, Espino PS, Davie JR, Murphy LJ (2006) Phosphorylation of histones by tissue transglutaminase. J Biol Chem 281(9):5532–5538. doi:10.1074/jbc.M506864200

    CAS  PubMed  Google Scholar 

  12. Csosz E, Mesko B, Fesus L (2009) Transdab wiki: the interactive transglutaminase substrate database on web 2.0 surface. Amino Acids 36(4):615–617. doi:10.1007/s00726-008-0121-y

    CAS  PubMed  Google Scholar 

  13. Lesort M, Attanavanich K, Zhang J, Johnson GV (1998) Distinct nuclear localization and activity of tissue transglutaminase. J Biol Chem 273(20):11991–11994

    CAS  PubMed  Google Scholar 

  14. Zemskov EA, Mikhailenko I, Strickland DK, Belkin AM (2007) Cell-surface transglutaminase undergoes internalization and lysosomal degradation: an essential role for LRP1. J Cell Sci 120(Pt 18):3188–3199. doi:10.1242/jcs.010397

    CAS  PubMed  Google Scholar 

  15. Milakovic T, Tucholski J, McCoy E, Johnson GV (2004) Intracellular localization and activity state of tissue transglutaminase differentially impacts cell death. J Biol Chem 279(10):8715–8722. doi:10.1074/jbc.M308479200

    CAS  PubMed  Google Scholar 

  16. Aeschlimann D, Thomazy V (2000) Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res 41(1):1–27

    CAS  PubMed  Google Scholar 

  17. Scarpellini A, Germack R, Lortat-Jacob H, Muramatsu T, Billett E, Johnson T, Verderio EA (2009) Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J Biol Chem 284(27):18411–18423. doi:10.1074/jbc.M109.012948

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Gaudry CA, Verderio E, Aeschlimann D, Cox A, Smith C, Griffin M (1999) Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal beta-sandwich domain. J Biol Chem 274(43):30707–30714

    CAS  PubMed  Google Scholar 

  19. Balklava Z, Verderio E, Collighan R, Gross S, Adams J, Griffin M (2002) Analysis of tissue transglutaminase function in the migration of Swiss 3T3 fibroblasts: the active-state conformation of the enzyme does not affect cell motility but is important for its secretion. J Biol Chem 277(19):16567–16575. doi:10.1074/jbc.M109836200

    CAS  PubMed  Google Scholar 

  20. Nurminskaya MV, Belkin AM (2012) Cellular functions of tissue transglutaminase. International review of cell and molecular biology 294:1–97. doi:10.1016/B978-0-12-394305-7.00001-X

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Akimov SS, Belkin AM (2001) Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFbeta-dependent matrix deposition. J Cell Sci 114(Pt 16):2989–3000

    CAS  PubMed  Google Scholar 

  22. Lortat-Jacob H, Burhan I, Scarpellini A, Thomas A, Imberty A, Vives RR, Johnson T, Gutierrez A, Verderio EA (2012) Transglutaminase-2 interaction with heparin: identification of a heparin binding site that regulates cell adhesion to fibronectin-transglutaminase-2 matrix. J Biol Chem 287(22):18005–18017. doi:10.1074/jbc.M111.337089

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148(4):825–838

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285(33):25402–25409. doi:10.1074/jbc.M109.097162

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Lorand L, Dailey JE, Turner PM (1988) Fibronectin as a carrier for the transglutaminase from human erythrocytes. Proc Natl Acad Sci USA 85(4):1057–1059

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Turner PM, Lorand L (1989) Complexation of fibronectin with tissue transglutaminase. Biochemistry 28(2):628–635

    CAS  PubMed  Google Scholar 

  27. Radek JT, Jeong JM, Murthy SN, Ingham KC, Lorand L (1993) Affinity of human erythrocyte transglutaminase for a 42-kDa gelatin-binding fragment of human plasma fibronectin. Proc Natl Acad Sci USA 90(8):3152–3156

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Hang J, Zemskov EA, Lorand L, Belkin AM (2005) Identification of a novel recognition sequence for fibronectin within the NH2-terminal beta-sandwich domain of tissue transglutaminase. J Biol Chem 280(25):23675–23683. doi:10.1074/jbc.M503323200

    CAS  PubMed  Google Scholar 

  29. Forsprecher J, Wang Z, Nelea V, Kaartinen MT (2009) Enhanced osteoblast adhesion on transglutaminase 2-crosslinked fibronectin. Amino Acids 36(4):747–753. doi:10.1007/s00726-008-0125-7

    CAS  PubMed  Google Scholar 

  30. Haroon ZA, Hettasch JM, Lai TS, Dewhirst MW, Greenberg CS (1999) Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J Off Publ Fed Am Soc Exp Biol 13(13):1787–1795

    CAS  Google Scholar 

  31. Martinez J, Chalupowicz DG, Roush RK, Sheth A, Barsigian C (1994) Transglutaminase-mediated processing of fibronectin by endothelial cell monolayers. Biochemistry 33(9):2538–2545

    CAS  PubMed  Google Scholar 

  32. Kleman JP, Aeschlimann D, Paulsson M, van der Rest M (1995) Transglutaminase-catalyzed cross-linking of fibrils of collagen V/XI in A204 rhabdomyosarcoma cells. Biochemistry 34(42):13768–13775

    CAS  PubMed  Google Scholar 

  33. Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Maenpaa PH (1997) Transglutaminase-catalyzed cross-linking of osteopontin is inhibited by osteocalcin. J Biol Chem 272(36):22736–22741

    CAS  PubMed  Google Scholar 

  34. Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98(5):1567–1576

    CAS  PubMed  Google Scholar 

  35. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215. doi:10.1186/gb-2007-8-5-215

    PubMed Central  PubMed  Google Scholar 

  36. D’Souza SE, Ginsberg MH, Plow EF (1991) Arginine–glycine–aspartic (RGD): a cell adhesion motif. Trends Biochem Sci 16(7):246–250

    PubMed  Google Scholar 

  37. Verderio E, Nicholas B, Gross S, Griffin M (1998) Regulated expression of tissue transglutaminase in Swiss 3T3 fibroblasts: effects on the processing of fibronectin, cell attachment, and cell death. Exp Cell Res 239(1):119–138. doi:10.1006/excr.1997.3874

    CAS  PubMed  Google Scholar 

  38. Toth B, Garabuczi E, Sarang Z, Vereb G, Vamosi G, Aeschlimann D, Blasko B, Becsi B, Erdodi F, Lacy-Hulbert A, Zhang A, Falasca L, Birge RB, Balajthy Z, Melino G, Fesus L, Szondy Z (2009) Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol 182(4):2084–2092. doi:10.4049/jimmunol.0803444

    CAS  PubMed  Google Scholar 

  39. Jones RA, Nicholas B, Mian S, Davies PJ, Griffin M (1997) Reduced expression of tissue transglutaminase in a human endothelial cell line leads to changes in cell spreading, cell adhesion and reduced polymerisation of fibronectin. J Cell Sci 110(Pt 19):2461–2472

    CAS  PubMed  Google Scholar 

  40. Zemskov EA, Janiak A, Hang J, Waghray A, Belkin AM (2006) The role of tissue transglutaminase in cell–matrix interactions. Front Biosci J Virtual Libr 11:1057–1076

    CAS  Google Scholar 

  41. Leiss M, Beckmann K, Giros A, Costell M, Fassler R (2008) The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol 20(5):502–507. doi:10.1016/j.ceb.2008.06.001

    CAS  PubMed  Google Scholar 

  42. Signorini M, Bortolotti F, Poltronieri L, Bergamini CM (1988) Human erythrocyte transglutaminase: purification and preliminary characterisation. Biol Chem Hoppe Seyler 369(4):275–281

    CAS  PubMed  Google Scholar 

  43. Wang Z, Collighan RJ, Pytel K, Rathbone DL, Li X, Griffin M (2012) Characterization of heparin-binding site of tissue transglutaminase: its importance in cell surface targeting, matrix deposition, and cell signaling. J Biol Chem 287(16):13063–13083. doi:10.1074/jbc.M111.294819

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Huntington JA (2003) Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. J Thromb Haemost JTH 1(7):1535–1549

    CAS  PubMed  Google Scholar 

  45. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037. doi:10.1038/nature05817

    CAS  PubMed  Google Scholar 

  46. Verderio E, Scarpellini A (2010) Significance of the syndecan-4-transglutaminase-2 interaction. Sci World J 10:1073–1077. doi:10.1100/tsw.2010.102

    CAS  Google Scholar 

  47. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    CAS  PubMed  Google Scholar 

  48. Telci D, Wang Z, Li X, Verderio EA, Humphries MJ, Baccarini M, Basaga H, Griffin M (2008) Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem 283(30):20937–20947. doi:10.1074/jbc.M801763200

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Dardik R, Inbal A (2006) Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res 312(16):2973–2982. doi:10.1016/j.yexcr.2006.05.019

    CAS  PubMed  Google Scholar 

  50. Zemskov EA, Loukinova E, Mikhailenko I, Coleman RA, Strickland DK, Belkin AM (2009) Regulation of platelet-derived growth factor receptor function by integrin-associated cell surface transglutaminase. J Biol Chem 284(24):16693–16703. doi:10.1074/jbc.M109.010769

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Faverman L, Mikhaylova L, Malmquist J, Nurminskaya M (2008) Extracellular transglutaminase 2 activates beta-catenin signaling in calcifying vascular smooth muscle cells. FEBS Lett 582(10):1552–1557. doi:10.1016/j.febslet.2008.03.053

    CAS  PubMed  Google Scholar 

  52. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Investig 108(6):779–784. doi:10.1172/JCI13992

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Salicioni AM, Gaultier A, Brownlee C, Cheezum MK, Gonias SL (2004) Low-density lipoprotein receptor-related protein-1 promotes beta1 integrin maturation and transport to the cell surface. J Biol Chem 279(11):10005–10012. doi:10.1074/jbc.M306625200

    CAS  PubMed  Google Scholar 

  54. Salicioni AM, Mizelle KS, Loukinova E, Mikhailenko I, Strickland DK, Gonias SL (2002) The low-density lipoprotein receptor-related protein mediates fibronectin catabolism and inhibits fibronectin accumulation on cell surfaces. J Biol Chem 277(18):16160–16166. doi:10.1074/jbc.M201401200

    CAS  PubMed  Google Scholar 

  55. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494

    CAS  PubMed  Google Scholar 

  56. Belkin AM, Akimov SS, Zaritskaya LS, Ratnikov BI, Deryugina EI, Strongin AY (2001) Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J Biol Chem 276(21):18415–18422. doi:10.1074/jbc.M010135200

    CAS  PubMed  Google Scholar 

  57. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270(10):5331–5338

    CAS  PubMed  Google Scholar 

  58. Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J (1999) Mechanisms for pro matrix metalloproteinase activation. APMIS Acta Pathol Microbiol Immunol Scand 107(1):38–44

    CAS  Google Scholar 

  59. Belkin AM, Zemskov EA, Hang J, Akimov SS, Sikora S, Strongin AY (2004) Cell-surface-associated tissue transglutaminase is a target of MMP-2 proteolysis. Biochemistry 43(37):11760–11769. doi:10.1021/bi049266z

    CAS  PubMed  Google Scholar 

  60. Birckbichler PJ, Bonner RB, Hurst RE, Bane BL, Pitha JV, Hemstreet GP 3rd (2000) Loss of tissue transglutaminase as a biomarker for prostate adenocarcinoma. Cancer 89(2):412–423

    CAS  PubMed  Google Scholar 

  61. Lewis TE, Milam TD, Klingler DW, Rao PS, Jaggi M, Smith DJ, Hemstreet GP, Balaji KC (2005) Tissue transglutaminase interacts with protein kinase A anchor protein 13 in prostate cancer. Urol Oncol 23(6):407–412. doi:10.1016/j.urolonc.2005.04.002

    CAS  PubMed  Google Scholar 

  62. Edwards AS, Scott JD (2000) A-kinase anchoring proteins: protein kinase A and beyond. Curr Opin Cell Biol 12(2):217–221

    CAS  PubMed  Google Scholar 

  63. Michel JJ, Scott JD (2002) AKAP-mediated signal transduction. Annu Rev Pharmacol Toxicol 42:235–257. doi:10.1146/annurev.pharmtox.42.083101.135801

    CAS  PubMed  Google Scholar 

  64. Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LC (1997) Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem 272(2):952–960

    CAS  PubMed  Google Scholar 

  65. Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, DeMaggio AJ, Hoekstra MF, Blenis J, Hunter T, Cantley LC (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16(11):6486–6493

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362. doi:10.1006/jmbi.1999.3310

    CAS  PubMed  Google Scholar 

  67. Wang Y, Ande SR, Mishra S (2012) Phosphorylation of transglutaminase 2 (TG2) at serine-216 plays a role in TG2-mediated activation of nuclear factor-kappa B and in the downregulation of PTEN. BMC Cancer 12(1):277. doi:10.1186/1471-2407-12-277

    PubMed Central  PubMed  Google Scholar 

  68. McConnachie G, Langeberg LK, Scott JD (2006) AKAP signaling complexes: getting to the heart of the matter. Trends Mol Med 12(7):317–323. doi:10.1016/j.molmed.2006.05.008

    CAS  PubMed  Google Scholar 

  69. Hodge JC, Bub J, Kaul S, Kajdacsy-Balla A, Lindholm PF (2003) Requirement of RhoA activity for increased nuclear factor kappaB activity and PC-3 human prostate cancer cell invasion. Cancer Res 63(6):1359–1364

    CAS  PubMed  Google Scholar 

  70. Singh US, Pan J, Kao YL, Joshi S, Young KL, Baker KM (2003) Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Biol Chem 278(1):391–399. doi:10.1074/jbc.M206361200

    CAS  PubMed  Google Scholar 

  71. Diviani D, Soderling J, Scott JD (2001) AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation. J Biol Chem 276(47):44247–44257. doi:10.1074/jbc.M106629200

    CAS  PubMed  Google Scholar 

  72. Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM (2004) A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell 15(10):4682–4694. doi:10.1091/mbc.E04-04-0353

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, Ricks-Cord A, Natarajan V, Alieva I, Garcia JG, Verin AD (2004) Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of Rho-dependent mechanisms. J Cell Physiol 201(1):55–70. doi:10.1002/jcp.20055

    CAS  PubMed  Google Scholar 

  74. Verma A, Wang H, Manavathi B, Fok JY, Mann AP, Kumar R, Mehta K (2006) Increased expression of tissue transglutaminase in pancreatic ductal adenocarcinoma and its implications in drug resistance and metastasis. Cancer Res 66(21):10525–10533. doi:10.1158/0008-5472.CAN-06-2387

    CAS  PubMed  Google Scholar 

  75. Mangala LS, Fok JY, Zorrilla-Calancha IR, Verma A, Mehta K (2007) Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene 26(17):2459–2470. doi:10.1038/sj.onc.1210035

    CAS  PubMed  Google Scholar 

  76. Mehta K, Fok JY, Mangala LS (2006) Tissue transglutaminase: from biological glue to cell survival cues. Front Biosci J Virtual Libr 11:173–185

    Google Scholar 

  77. Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY, Kunnumakkara AB, Kumar R, Aggarwal BB, Mehta K (2006) Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway. Cancer Res 66(17):8788–8795. doi:10.1158/0008-5472.CAN-06-1457

    CAS  PubMed  Google Scholar 

  78. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280(5369):1614–1617

    CAS  PubMed  Google Scholar 

  79. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378

    CAS  PubMed  Google Scholar 

  80. Verma A, Guha S, Wang H, Fok JY, Koul D, Abbruzzese J, Mehta K (2008) Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells. Clin Cancer Res 14(7):1997–2005. doi:10.1158/1078-0432.CCR-07-1533

    CAS  PubMed  Google Scholar 

  81. Boroughs LK, Antonyak MA, Johnson JL, Cerione RA (2011) A unique role for heat shock protein 70 and its binding partner tissue transglutaminase in cancer cell migration. J Biol Chem 286(43):37094–37107. doi:10.1074/jbc.M111.242438

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Yi SJ, Groffen J, Heisterkamp N (2009) Transglutaminase 2 regulates the GTPase-activating activity of Bcr. J Biol Chem 284(51):35645–35651. doi:10.1074/jbc.M109.062240

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Yi SJ, Groffen J, Heisterkamp N (2011) Bcr is a substrate for transglutaminase 2 cross-linking activity. BMC Biochem 12:8. doi:10.1186/1471-2091-12-8

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Folkman J (2006) Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res 312(5):594–607. doi:10.1016/j.yexcr.2005.11.015

    CAS  PubMed  Google Scholar 

  85. Xu L, Begum S, Hearn JD, Hynes RO (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci USA 103(24):9023–9028. doi:10.1073/pnas.0602681103

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Faye C, Inforzato A, Bignon M, Hartmann DJ, Muller L, Ballut L, Olsen BR, Day AJ, Ricard-Blum S (2010) Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells. Biochem J 427(3):467–475. doi:10.1042/BJ20091594

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Yang L, Friedland S, Corson N, Xu L (2014) GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res 74(4):1022–1031. doi:10.1158/0008-5472.CAN-13-1268

    CAS  PubMed Central  PubMed  Google Scholar 

  88. L’Heureux DZ, Rothman VL, Tuszynski GP (2010) The interaction of angiocidin with tissue transglutaminase. Exp Mol Pathol 88(1):15–25. doi:10.1016/j.yexmp.2009.11.001

    PubMed Central  PubMed  Google Scholar 

  89. Feng JF, Gray CD, Im MJ (1999) Alpha 1B-adrenoceptor interacts with multiple sites of transglutaminase II: characteristics of the interaction in binding and activation. Biochemistry 38(7):2224–2232. doi:10.1021/bi9823176

    CAS  PubMed  Google Scholar 

  90. Chen S, Lin F, Iismaa S, Lee KN, Birckbichler PJ, Graham RM (1996) Alpha1-adrenergic receptor signaling via Gh is subtype specific and independent of its transglutaminase activity. J Biol Chem 271(50):32385–32391

    CAS  PubMed  Google Scholar 

  91. Im MJ, Russell MA, Feng JF (1997) Transglutaminase II: a new class of GTP-binding protein with new biological functions. Cell Signal 9(7):477–482

    CAS  PubMed  Google Scholar 

  92. Feng JF, Rhee SG, Im MJ (1996) Evidence that phospholipase delta1 is the effector in the Gh (transglutaminase II)-mediated signaling. J Biol Chem 271(28):16451–16454

    CAS  PubMed  Google Scholar 

  93. Baek KJ, Das T, Gray C, Antar S, Murugesan G, Im MJ (1993) Evidence that the Gh protein is a signal mediator from alpha 1-adrenoceptor to a phospholipase C. I. Identification of alpha 1-adrenoceptor-coupled Gh family and purification of Gh7 from bovine heart. J Biol Chem 268(36):27390–27397

    CAS  PubMed  Google Scholar 

  94. Hwang KC, Gray CD, Sivasubramanian N, Im MJ (1995) Interaction site of GTP binding Gh (transglutaminase II) with phospholipase C. J Biol Chem 270(45):27058–27062

    CAS  PubMed  Google Scholar 

  95. Kang SK, Kim DK, Damron DS, Baek KJ, Im MJ (2002) Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha(h) (transglutaminase II) and phospholipase C-delta 1. Biochem Biophys Res Commun 293(1):383–390. doi:10.1016/S0006-291X(02)00197-3

    CAS  PubMed  Google Scholar 

  96. Park ES, Won JH, Han KJ, Suh PG, Ryu SH, Lee HS, Yun HY, Kwon NS, Baek KJ (1998) Phospholipase C-delta1 and oxytocin receptor signalling: evidence of its role as an effector. Biochem J 331(Pt 1):283–289

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Feng JF, Readon M, Yadav SP, Im MJ (1999) Calreticulin down-regulates both GTP binding and transglutaminase activities of transglutaminase II. Biochemistry 38(33):10743–10749. doi:10.1021/bi9905009

    CAS  PubMed  Google Scholar 

  98. Baek KJ, Das T, Gray CD, Desai S, Hwang KC, Gacchui R, Ludwig M, Im MJ (1996) A 50-kDa protein modulates guanine nucleotide binding of transglutaminase II. Biochemistry 35(8):2651–2657. doi:10.1021/bi9522965

    CAS  PubMed  Google Scholar 

  99. Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, St-Arnaud R, Dedhar S (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386(6627):843–847. doi:10.1038/386843a0

    CAS  PubMed  Google Scholar 

  100. Dedhar S (1994) Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem Sci 19(7):269–271

    CAS  PubMed  Google Scholar 

  101. Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ et al (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367(6462):480–483. doi:10.1038/367480a0

    CAS  PubMed  Google Scholar 

  102. Takeuchi Y, Ohashi H, Birckbichler PJ, Ikejima T (1998) Nuclear translocation of tissue type transglutaminase during sphingosine-induced cell death: a novel aspect of the enzyme with DNA hydrolytic activity. Z Naturforsch C 53(5–6):352–358

    CAS  PubMed  Google Scholar 

  103. Campisi A, Caccamo D, Raciti G, Cannavo G, Macaione V, Curro M, Macaione S, Vanella A, Ientile R (2003) Glutamate-induced increases in transglutaminase activity in primary cultures of astroglial cells. Brain Res 978(1–2):24–30 (pii: S0006899303027252)

    CAS  PubMed  Google Scholar 

  104. Balajthy Z, Csomos K, Vamosi G, Szanto A, Lanotte M, Fesus L (2006) Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions. Blood 108(6):2045–2054. doi:10.1182/blood-2004-02-007948

    CAS  PubMed  Google Scholar 

  105. Kuo TF, Tatsukawa H, Kojima S (2011) New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 278(24):4756–4767. doi:10.1111/j.1742-4658.2011.08409.x

    CAS  PubMed  Google Scholar 

  106. Filiano AJ, Bailey CD, Tucholski J, Gundemir S, Johnson GV (2008) Transglutaminase 2 protects against ischemic insult, interacts with HIF1beta, and attenuates HIF1 signaling. FASEB J 22(8):2662–2675. doi:10.1096/fj.07-097709

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Oliverio S, Amendola A, Di Sano F, Farrace MG, Fesus L, Nemes Z, Piredda L, Spinedi A, Piacentini M (1997) Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis. Mol Cell Biol 17(10):6040–6048

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Luciani A, Villella VR, Vasaturo A, Giardino I, Raia V, Pettoello-Mantovani M, D’Apolito M, Guido S, Leal T, Quaratino S, Maiuri L (2009) SUMOylation of tissue transglutaminase as link between oxidative stress and inflammation. J Immunol 183(4):2775–2784. doi:10.4049/jimmunol.0900993

    CAS  PubMed  Google Scholar 

  109. Peng X, Zhang Y, Zhang H, Graner S, Williams JF, Levitt ML, Lokshin A (1999) Interaction of tissue transglutaminase with nuclear transport protein importin-alpha3. FEBS Lett 446(1):35–39

    CAS  PubMed  Google Scholar 

  110. Singh US, Li Q, Cerione R (1998) Identification of the eukaryotic initiation factor 5A as a retinoic acid-stimulated cellular binding partner for tissue transglutaminase II. J Biol Chem 273(4):1946–1950

    CAS  PubMed  Google Scholar 

  111. Bernhard EJ, Gruber SB, Muschel RJ (1994) Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA 91(10):4293–4297

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Ahn JS, Kim MK, Hahn JH, Park JH, Park KH, Cho BR, Park SB, Kim DJ (2008) Tissue transglutaminase-induced down-regulation of matrix metalloproteinase-9. Biochem Biophys Res Commun 376(4):743–747. doi:10.1016/j.bbrc.2008.09.048

    CAS  PubMed  Google Scholar 

  113. Condello S, Cao L, Matei D (2013) Tissue transglutaminase regulates beta-catenin signaling through a c-Src-dependent mechanism. FASEB J Off Publ Fed Am Soc Exp Biol 27(8):3100–3112. doi:10.1096/fj.12-222620

    CAS  Google Scholar 

  114. Tolentino PJ, Waghray A, Wang KK, Hayes RL (2004) Increased expression of tissue-type transglutaminase following middle cerebral artery occlusion in rats. J Neurochem 89(5):1301–1307. doi:10.1111/j.1471-4159.2004.02436.x

    CAS  PubMed  Google Scholar 

  115. Ientile R, Caccamo D, Marciano MC, Curro M, Mannucci C, Campisi A, Calapai G (2004) Transglutaminase activity and transglutaminase mRNA transcripts in gerbil brain ischemia. Neurosci Lett 363(2):173–177. doi:10.1016/j.neulet.2004.04.003

    CAS  PubMed  Google Scholar 

  116. Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27(17):6229–6242. doi:10.1128/MCB.02246-06

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Verderio EA, Johnson TS, Griffin M (2005) Transglutaminases in wound healing and inflammation. Prog Exp Tumor Res 38:89–114. doi:10.1159/000084235

    CAS  PubMed  Google Scholar 

  118. Verderio EA, Johnson T, Griffin M (2004) Tissue transglutaminase in normal and abnormal wound healing: review article. Amino Acids 26(4):387–404. doi:10.1007/s00726-004-0094-4

    CAS  PubMed  Google Scholar 

  119. Kim SY (2006) Transglutaminase 2 in inflammation. Front Biosci J Virtual Libr 11:3026–3035 (pii: 3030)

    CAS  Google Scholar 

  120. Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D’Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12(9):863–875. doi:10.1038/ncb2090

    CAS  PubMed  Google Scholar 

  121. Maiuri L, Luciani A, Giardino I, Raia V, Villella VR, D’Apolito M, Pettoello-Mantovani M, Guido S, Ciacci C, Cimmino M, Cexus ON, Londei M, Quaratino S (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 180(11):7697–7705 (pii: 180/11/7697)

    CAS  PubMed  Google Scholar 

  122. Kim Y, Lee YS, Hahn JH, Choe J, Kwon HJ, Ro JY, Jeoung D (2008) Hyaluronic acid targets CD44 and inhibits FcepsilonRI signaling involving PKCdelta, Rac1, ROS, and MAPK to exert anti-allergic effect. Mol Immunol 45(9):2537–2547. doi:10.1016/j.molimm.2008.01.008

    CAS  PubMed  Google Scholar 

  123. Sohn J, Kim TI, Yoon YH, Kim JY, Kim SY (2003) Novel transglutaminase inhibitors reverse the inflammation of allergic conjunctivitis. J Clin Investig 111(1):121–128. doi:10.1172/JCI15937

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Cheng G, Diebold BA, Hughes Y, Lambeth JD (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281(26):17718–17726. doi:10.1074/jbc.M512751200

    CAS  PubMed  Google Scholar 

  125. Kim SY, Grant P, Lee JH, Pant HC, Steinert PM (1999) Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer’s disease. J Biol Chem 274(43):30715–30721

    CAS  PubMed  Google Scholar 

  126. Wilhelmus MM, Grunberg SC, Bol JG, van Dam AM, Hoozemans JJ, Rozemuller AJ, Drukarch B (2009) Transglutaminases and transglutaminase-catalyzed cross-links colocalize with the pathological lesions in Alzheimer’s disease brain. Brain Pathol 19(4):612–622. doi:10.1111/j.1750-3639.2008.00197.x

    CAS  PubMed  Google Scholar 

  127. McConoughey SJ, Basso M, Niatsetskaya ZV, Sleiman SF, Smirnova NA, Langley BC, Mahishi L, Cooper AJ, Antonyak MA, Cerione RA, Li B, Starkov A, Chaturvedi RK, Beal MF, Coppola G, Geschwind DH, Ryu H, Xia L, Iismaa SE, Pallos J, Pasternack R, Hils M, Fan J, Raymond LA, Marsh JL, Thompson LM, Ratan RR (2010) Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Mol Med 2(9):349–370. doi:10.1002/emmm.201000084

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Munsie L, Caron N, Atwal RS, Marsden I, Wild EJ, Bamburg JR, Tabrizi SJ, Truant R (2011) Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum Mol Genet 20(10):1937–1951. doi:10.1093/hmg/ddr075

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Piredda L, Farrace MG, Lo Bello M, Malorni W, Melino G, Petruzzelli R, Piacentini M (1999) Identification of ‘tissue’ transglutaminase binding proteins in neural cells committed to apoptosis. FASEB J Off Publ Fed Am Soc Exp Biol 13(2):355–364

    CAS  Google Scholar 

  130. Gutekunst CA, Levey AI, Heilman CJ, Whaley WL, Yi H, Nash NR, Rees HD, Madden JJ, Hersch SM (1995) Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc Natl Acad Sci USA 92(19):8710–8714

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Li SH, Gutekunst CA, Hersch SM, Li XJ (1998) Interaction of huntingtin-associated protein with dynactin P150Glued. J Neurosci 18(4):1261–1269

    CAS  PubMed  Google Scholar 

  132. Billett HH, Puszkin EG (1991) The red cell membrane contains calmodulin-regulated crosslinking and proteolytic activity. Hematol Pathol 5(4):185–193

    CAS  PubMed  Google Scholar 

  133. Zainelli GM, Ross CA, Troncoso JC, Fitzgerald JK, Muma NA (2004) Calmodulin regulates transglutaminase 2 cross-linking of huntingtin. J Neurosci 24(8):1954–1961. doi:10.1523/JNEUROSCI.4424-03.2004

    CAS  PubMed  Google Scholar 

  134. Ballestar E, Abad C, Franco L (1996) Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 271(31):18817–18824

    CAS  PubMed  Google Scholar 

  135. Kim JH, Nam KH, Kwon OS, Kim IG, Bustin M, Choy HE, Park SC (2002) Histone cross-linking by transglutaminase. Biochem Biophys Res Commun 293(5):1453–1457. doi:10.1016/S0006-291X(02)00393-5

    CAS  PubMed  Google Scholar 

  136. Shimizu T, Hozumi K, Horiike S, Nunomura K, Ikegami S, Takao T, Shimonishi Y (1996) A covalently crosslinked histone. Nature 380(6569):32. doi:10.1038/380032a0

    CAS  PubMed  Google Scholar 

  137. Hand D, Perry MJ, Haynes LW (1993) Cellular transglutaminases in neural development. Int J Dev Neurosci Off J Int Soc Dev Neurosci 11(6):709–720

    CAS  Google Scholar 

  138. Del Duca S, Beninati S, Serafini-Fracassini D (1995) Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem J 305(Pt 1):233–237

    PubMed Central  PubMed  Google Scholar 

  139. Matthews HR (1993) Polyamines, chromatin structure and transcription. BioEssays News Rev Mol Cell Dev Biol 15(8):561–566. doi:10.1002/bies.950150811

    CAS  Google Scholar 

  140. Fesus L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579(15):3297–3302. doi:10.1016/j.febslet.2005.03.063

    PubMed  Google Scholar 

  141. Rodolfo C, Mormone E, Matarrese P, Ciccosanti F, Farrace MG, Garofano E, Piredda L, Fimia GM, Malorni W, Piacentini M (2004) Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 279(52):54783–54792. doi:10.1074/jbc.M410938200

    CAS  PubMed  Google Scholar 

  142. Porter GW, Khuri FR, Fu H (2006) Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Semin Cancer Biol 16(3):193–202. doi:10.1016/j.semcancer.2006.03.003

    CAS  PubMed  Google Scholar 

  143. Mackintosh C (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 381(Pt 2):329–342. doi:10.1042/BJ20031332

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Mishra S, Murphy LJ (2006) Phosphorylation of transglutaminase 2 by PKA at Ser216 creates 14-3-3 binding sites. Biochem Biophys Res Commun 347(4):1166–1170. doi:10.1016/j.bbrc.2006.07.041

    CAS  PubMed  Google Scholar 

  145. Caccamo D, Condello S, Ferlazzo N, Curro M, Griffin M, Ientile R (2013) Transglutaminase 2 interaction with small heat shock proteins mediate cell survival upon excitotoxic stress. Amino Acids 44(1):151–159. doi:10.1007/s00726-011-1083-z

    CAS  PubMed  Google Scholar 

  146. Stetler RA, Gao Y, Signore AP, Cao G, Chen J (2009) HSP27: mechanisms of cellular protection against neuronal injury. Curr Mol Med 9(7):863–872

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Caccamo D, Curro M, Cusumano G, Crisafulli G, Ientile R (2004) Excitotoxin-induced changes in transglutaminase during differentiation of cerebellar granule cells. Amino Acids 26(2):197–201. doi:10.1007/s00726-003-0007-y

    CAS  PubMed  Google Scholar 

  148. Ientile R, Caccamo D, Macaione V, Torre V, Macaione S (2002) NMDA-evoked excitotoxicity increases tissue transglutaminase in cerebellar granule cells. Neuroscience 115(3):723–729

    CAS  PubMed  Google Scholar 

  149. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417(6885):182–187. doi:10.1038/417182a

    CAS  PubMed  Google Scholar 

  150. D’Eletto M, Farrace MG, Rossin F, Strappazzon F, Giacomo GD, Cecconi F, Melino G, Sepe S, Moreno S, Fimia GM, Falasca L, Nardacci R, Piacentini M (2012) Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death Differ 19(7):1228–1238. doi:10.1038/cdd.2012.2

    PubMed Central  PubMed  Google Scholar 

  151. Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28(18):3442–3444

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Bossi A, Lehner B (2009) Tissue specificity and the human protein interaction network. Mol Syst Biol 5:260. doi:10.1038/msb.2009.17

    PubMed Central  PubMed  Google Scholar 

  153. Yee VC, Pedersen LC, Le Trong I, Bishop PD, Stenkamp RE, Teller DC (1994) Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc Natl Acad Sci USA 91(15):7296–7300

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Noguchi K, Ishikawa K, Yokoyama K, Ohtsuka T, Nio N, Suzuki E (2001) Crystal structure of red sea bream transglutaminase. J Biol Chem 276(15):12055–12059. doi:10.1074/jbc.M009862200

    CAS  PubMed  Google Scholar 

  155. Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747. doi:10.1073/pnas.042454899

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327. doi:10.1371/journal.pbio.0050327

    PubMed Central  PubMed  Google Scholar 

  157. Ahvazi B, Boeshans KM, Idler W, Baxa U, Steinert PM (2003) Roles of calcium ions in the activation and activity of the transglutaminase 3 enzyme. J Biol Chem 278(26):23834–23841. doi:10.1074/jbc.M301162200

    CAS  PubMed  Google Scholar 

  158. Fox BA, Yee VC, Pedersen LC, Le Trong I, Bishop PD, Stenkamp RE, Teller DC (1999) Identification of the calcium binding site and a novel ytterbium site in blood coagulation factor XIII by X-ray crystallography. J Biol Chem 274(8):4917–4923

    CAS  PubMed  Google Scholar 

  159. Kiraly R, Csosz E, Kurtan T, Antus S, Szigeti K, Simon-Vecsei Z, Korponay-Szabo IR, Keresztessy Z, Fesus L (2009) Functional significance of five noncanonical Ca2+-binding sites of human transglutaminase 2 characterized by site-directed mutagenesis. FEBS J 276(23):7083–7096. doi:10.1111/j.1742-4658.2009.07420.x

    CAS  PubMed  Google Scholar 

  160. Bergamini CM, Dondi A, Lanzara V, Squerzanti M, Cervellati C, Montin K, Mischiati C, Tasco G, Collighan R, Griffin M, Casadio R (2010) Thermodynamics of binding of regulatory ligands to tissue transglutaminase. Amino Acids 39(1):297–304. doi:10.1007/s00726-009-0442-5

    CAS  PubMed  Google Scholar 

  161. Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ (2012) Attributes of short linear motifs. Mol Biosyst 8(1):268–281. doi:10.1039/c1mb05231d

    CAS  PubMed  Google Scholar 

  162. Fuxreiter M, Tompa P, Simon I (2007) Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23(8):950–956. doi:10.1093/bioinformatics/btm035

    CAS  PubMed  Google Scholar 

  163. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. doi:10.1016/j.jmb.2004.02.002

    CAS  PubMed  Google Scholar 

  164. Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein disorder. Proteins 52(4):573–584. doi:10.1002/prot.10437

    CAS  PubMed  Google Scholar 

  165. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434. doi:10.1093/bioinformatics/bti541

    CAS  PubMed  Google Scholar 

  166. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4):827–839. doi:10.1016/j.jmb.2005.01.071

    CAS  PubMed  Google Scholar 

  167. Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born D, Speck T, Kruger D, Grebnev G, Kuban M, Strumillo M, Uyar B, Budd A, Altenberg B, Seiler M, Chemes LB, Glavina J, Sanchez IE, Diella F, Gibson TJ (2014) The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res 42(Database issue):D259–D266. doi:10.1093/nar/gkt1047

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Corti A, Curnis F (2011) Isoaspartate-dependent molecular switches for integrin-ligand recognition. J Cell Sci 124(Pt 4):515–522. doi:10.1242/jcs.077172

    CAS  PubMed  Google Scholar 

  169. Wang Z, Telci D, Griffin M (2011) Importance of syndecan-4 and syndecan-2 in osteoblast cell adhesion and survival mediated by a tissue transglutaminase–fibronectin complex. Exp Cell Res 317(3):367–381. doi:10.1016/j.yexcr.2010.10.015

    CAS  PubMed  Google Scholar 

  170. Echtermeyer F, Harendza T, Hubrich S, Lorenz A, Herzog C, Mueller M, Schmitz M, Grund A, Larmann J, Stypmann J, Schieffer B, Lichtinghagen R, Hilfiker-Kleiner D, Wollert KC, Heineke J, Theilmeier G (2011) Syndecan-4 signalling inhibits apoptosis and controls NFAT activity during myocardial damage and remodelling. Cardiovasc Res 92(1):123–131. doi:10.1093/cvr/cvr149

    CAS  PubMed  Google Scholar 

  171. Shenoy SK, Lefkowitz RJ (2005) Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE Signal Transduct Knowl Environ 308:cm10. doi:10.1126/stke.2005/308/cm10

  172. Hao N, Behar M, Elston TC, Dohlman HG (2007) Systems biology analysis of G protein and MAP kinase signaling in yeast. Oncogene 26(22):3254–3266. doi:10.1038/sj.onc.1210416

    CAS  PubMed  Google Scholar 

  173. Braun RFaW (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem 19(3):319–333. doi:10.1002/(SICI)1096-987X(199802)19:3<319:AID-JCC6>3.0.CO;2-W

    Google Scholar 

  174. Stamnaes J, Fleckenstein B, Lund-Johansen F, Sollid LM (2008) The monoclonal antibody 6B9 recognizes CD44 and not cell surface transglutaminase 2. Scand J Immunol 68(5):534–542. doi:10.1111/j.1365-3083.2008.02173.x

    CAS  PubMed  Google Scholar 

  175. Hodrea J, Demeny MA, Majai G, Sarang Z, Korponay-Szabo IR, Fesus L (2010) Transglutaminase 2 is expressed and active on the surface of human monocyte-derived dendritic cells and macrophages. Immunol Lett 130(1–2):74–81. doi:10.1016/j.imlet.2009.12.010

    CAS  PubMed  Google Scholar 

  176. Teesalu K, Panarina M, Uibo O, Uibo R, Utt M (2012) Autoantibodies from patients with celiac disease inhibit transglutaminase 2 binding to heparin/heparan sulfate and interfere with intestinal epithelial cell adhesion. Amino Acids 42(2–3):1055–1064. doi:10.1007/s00726-011-1020-1

    CAS  PubMed  Google Scholar 

  177. Halttunen T, Maki M (1999) Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology 116(3):566–572

    CAS  PubMed  Google Scholar 

  178. Myrsky E, Kaukinen K, Syrjanen M, Korponay-Szabo IR, Maki M, Lindfors K (2008) Coeliac disease-specific autoantibodies targeted against transglutaminase 2 disturb angiogenesis. Clin Exp Immunol 152(1):111–119. doi:10.1111/j.1365-2249.2008.03600.x

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Simon-Vecsei Z, Kiraly R, Bagossi P, Toth B, Dahlbom I, Caja S, Csosz E, Lindfors K, Sblattero D, Nemes E, Maki M, Fesus L, Korponay-Szabo IR (2012) A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci USA 109(2):431–436. doi:10.1073/pnas.1107811108

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Iversen R, Di Niro R, Stamnaes J, Lundin KE, Wilson PC, Sollid LM (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol 190(12):5981–5991. doi:10.4049/jimmunol.1300183

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Mehta K, Kumar A, Kim HI (2010) Transglutaminase 2: a multi-tasking protein in the complex circuitry of inflammation and cancer. Biochem Pharmacol 80(12):1921–1929. doi:10.1016/j.bcp.2010.06.029

    CAS  PubMed  Google Scholar 

  182. Kim Y et al (2010) Transglutaminase II interacts with rac1, regulates production of reactive oxygen species, expression of snail, secretion of Th2 cytokines and mediates in vitro and in vivo allergic inflammation. Mol Immunol 47:1010–1022. doi:10.1016/j.molimm.2009.11.017

    CAS  PubMed  Google Scholar 

  183. Trejo Skalli AV et al. (1995) Association of a transglutaminase-related antigen with intermediate filaments. Proc Natl Acad Sci USA 92:48940–48944

    Google Scholar 

  184. Korponay-Szabó IR et al (2008) Deamidated gliadin peptides form epitopes that transglutaminase antibodies recognize. J Pediatr Gastroenterol Nutr 46:253–261. doi:10.1097/MPG.0b013e31815ee555

    PubMed  Google Scholar 

  185. Iversen R et al (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol 190:5981–5991. doi:10.4049/jimmunol.1300183

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian Scientific Research Fund (OTKA NK 105046], the New Hungary Development Plan via the TAMOP-4.2.2.A-11/1/KONV-2012-0023 “V´ED ELEM” project, European Union Framework Programme 7 TRANSCOM-IAPP 251506 and TRANSPATH ITN 289964. The support of the Momentum program (LP2012-41) of the Hungarian Academy of Sciences is gratefully acknowledged (M. F.). We thank Dr. Máte Demény for critical reading of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Fésüs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanchan, K., Fuxreiter, M. & Fésüs, L. Physiological, pathological, and structural implications of non-enzymatic protein–protein interactions of the multifunctional human transglutaminase 2. Cell. Mol. Life Sci. 72, 3009–3035 (2015). https://doi.org/10.1007/s00018-015-1909-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1909-z

Keywords

Navigation