Skip to main content
Log in

Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sodium absorption by the distal part of the nephron, i.e., the distal convoluted tubule, the connecting tubule, and the collecting duct, plays a major role in the control of homeostasis by the kidney. In this part of the nephron, sodium transport can either be electroneutral or electrogenic. The study of electrogenic Na+ absorption, which is mediated by the epithelial sodium channel (ENaC), has been the focus of considerable interest because of its implication in sodium, potassium, and acid–base homeostasis. However, recent studies have highlighted the crucial role played by electroneutral NaCl absorption in the regulation of the body content of sodium chloride, which in turn controls extracellular fluid volume and blood pressure. Here, we review the identification and characterization of the NaCl cotransporter (NCC), the molecule accounting for the main part of electroneutral NaCl absorption in the distal nephron, and its regulators. We also discuss recent work describing the identification of a novel “NCC-like” transport system mediated by pendrin and the sodium-driven chloride/bicarbonate exchanger (NDCBE) in the β-intercalated cells of the collecting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Guyton AC (1991) Blood pressure control—special role of the kidneys and body fluids. Science 252(5014):1813–1816

    CAS  PubMed  Google Scholar 

  2. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104(4):545–556

    CAS  PubMed  Google Scholar 

  3. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23(2):394–401

    CAS  PubMed  Google Scholar 

  4. Skou JC (1998) Nobel Lecture. The identification of the sodium pump. Biosci Rep 18(4):155–169

    CAS  PubMed  Google Scholar 

  5. Bourdeau JE, Burg MB (1979) Voltage dependence of calcium transport in the thick ascending limb of Henle’s loop. Am J Physiol Renal Physiol 236(4):F357–F364

    CAS  Google Scholar 

  6. Verrey F, Hummler E, Schild L et al (2008) Mineralocorticoid action in the aldosterone-sensitive distal nephron. In: Alpern RJ, Hebert SC (eds) The kidney: physiology and pathophysiology, 4th edn. MA Academic, Burlington, p 889–924

  7. Gitelman HJ, Graham JB, Welt LG (1966) A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79:221–235

    CAS  PubMed  Google Scholar 

  8. Velazquez H, Wright FS (1986) Control by drugs of renal potassium handling. Annu Rev Pharmacol Toxicol 26:293–309

    CAS  PubMed  Google Scholar 

  9. Lalioti MD, Zhang J, Volkman HM et al (2006) Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet 38(10):1124–1132

    CAS  PubMed  Google Scholar 

  10. Yang SS, Morimoto T, Rai T et al (2007) Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 5(5):331–344

    CAS  PubMed  Google Scholar 

  11. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82(3):735–767

    CAS  PubMed  Google Scholar 

  12. Palmer LG, Patel A, Frindt G (2012) Regulation and dysregulation of epithelial Na+channels. Clin Exp Nephrol 16(1):35–43

    CAS  PubMed  Google Scholar 

  13. Rossier BC, Stutts MJ (2009) Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu Rev Physiol 71:361–379

    CAS  PubMed  Google Scholar 

  14. Butterworth MB, Edinger RS, Frizzell RA et al (2009) Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296(1):F10–F24

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Beyer KH Jr, Baer JE, Russo HF et al (1958) Electrolyte excretion as influenced by chlorothiazide. Science 127(3290):146–147

    CAS  PubMed  Google Scholar 

  16. Novello FC, Sprague JM (1957) Benzothiadiazine dioxides as novel diuretics. J Am Chem Soc 79:2028

    CAS  Google Scholar 

  17. Leslie BR, Schwartz JH, Steinmetz PR (1973) Coupling between Cl absorption and HCO3 secretion in turtle urinary bladder. Am J Physiol 225(3):610–617

    CAS  PubMed  Google Scholar 

  18. Frizzell RA, Koch MJ, Schultz SG (1976) Ion transport by rabbit colon. I. Active and passive components. J Membr Biol 27(3):297–316

    CAS  PubMed  Google Scholar 

  19. Renfro JL (1977) Interdependence of Active Na+ and Cl transport by the isolated urinary bladder of the teleost Pseudopleuronectes americanus. J Exp Zool 199(3):383–390

    CAS  PubMed  Google Scholar 

  20. Costanzo LS, Windhager EE (1978) Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol Renal Physiol 235(5):F492–F506

    CAS  Google Scholar 

  21. Hansen LL, Schilling AR, Wiederholt M (1981) Effect of calcium, furosemide and chlorothiazide on net volume reabsorption and basolateral membrane potential of the distal tubule. Pflugers Arch: Eur J Physiol 389(2):121–126

    CAS  Google Scholar 

  22. Kunau RT Jr, Weller DR, Webb HL (1975) Clarification of the site of action of chlorothiazide in the rat nephron. J Clin Invest 56(2):401–407

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Ellison DH, Velazquez H, Wright FS (1987) Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol 253(3 Pt 2):F546–F554

    CAS  PubMed  Google Scholar 

  24. Goldfarb DS, Chan AJ, Hernandez D et al (1991) Effect of thiazides on colonic NaCl absorption: role of carbonic anhydrase. Am J Physiol 261(3 Pt 2):F452–F458

    CAS  PubMed  Google Scholar 

  25. Stokes JB (1984) Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system. J Clin Invest 74(1):7–16

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Beaumont K, Vaughn DA, Fanestil DD (1988) Thiazide diuretic drug receptors in rat kidney: identification with [3H]metolazone. Proc Natl Acad Sci USA 85(7):2311–2314

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Beaumont K, Vaughn DA, Healy DP (1989) Thiazide diuretic receptors: autoradiographic localization in rat kidney with [3H]metolazone. J Pharmacol Exp Ther 250(1):414–419

    CAS  PubMed  Google Scholar 

  28. Tran JM, Farrell MA, Fanestil DD (1990) Effect of ions on binding of the thiazide-type diuretic metolazone to kidney membrane. Am J Physiol 258(4 Pt 2):F908–F915

    CAS  PubMed  Google Scholar 

  29. Chen ZF, Vaughn DA, Beaumont K et al (1990) Effects of diuretic treatment and of dietary sodium on renal binding of 3H-metolazone. J Am Soc Nephrol 1(1):91–98

    CAS  PubMed  Google Scholar 

  30. Morsing P, Velazquez H, Wright FS et al (1991) Adaptation of distal convoluted tubule of rats. II. Effects of chronic thiazide infusion. Am J Physiol 261(1 Pt 2):F137–F143

    CAS  PubMed  Google Scholar 

  31. Ellison DH, Morrisey J, Desir GV (1991) Solubilization and partial purification of the thiazide diuretic receptor from rabbit renal cortex. Biochim Biophys Acta 1069(2):241–249

    CAS  PubMed  Google Scholar 

  32. Ellison DH, Biemesderfer D, Morrisey J et al (1993) Immunocytochemical characterization of the high-affinity thiazide diuretic receptor in rabbit renal cortex. Am J Physiol 264(1 Pt 2):F141–F148

    CAS  PubMed  Google Scholar 

  33. Gamba G, Saltzberg SN, Lombardi M et al (1993) Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci USA 90(7):2749–2753

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Xu JC, Lytle C, Zhu TT et al (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na–K–Cl cotransporter. Proc Natl Acad Sci USA 91(6):2201–2205

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Hebert SC, Gamba G, Kaplan M (1996) The electroneutral Na(+)–(K+)–Cl cotransport family. Kidney Int 49(6):1638–1641

    CAS  PubMed  Google Scholar 

  36. Gamba G, Miyanoshita A, Lombardi M et al (1994) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium–(potassium)–chloride cotransporter family expressed in kidney. J Biol Chem 269(26):17713–17722

    CAS  PubMed  Google Scholar 

  37. Gillen CM, Brill S, Payne JA et al (1996) Molecular cloning and functional expression of the K–Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family. J Biol Chem 271(27):16237–16244

    CAS  PubMed  Google Scholar 

  38. Hiki K, D’Andrea RJ, Furze J et al (1999) Cloning, characterization, and chromosomal location of a novel human K+–Cl cotransporter. J Biol Chem 274(15):10661–10667

    CAS  PubMed  Google Scholar 

  39. Mount DB, Mercado A, Song L et al (1999) Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem 274(23):16355–16362

    CAS  PubMed  Google Scholar 

  40. Payne JA, Stevenson TJ, Donaldson LF (1996) Molecular characterization of a putative K–Cl cotransporter in rat brain. A neuronal-specific isoform. J Biol Chem 271(27):16245–16252

    CAS  PubMed  Google Scholar 

  41. Kim GH, Masilamani S, Turner R et al (1998) The thiazide-sensitive Na–Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci USA 95(24):14552–14557

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Velazquez H, Bartiss A, Bernstein P et al (1996) Adrenal steroids stimulate thiazide-sensitive NaCl transport by rat renal distal tubules. Am J Physiol 270(1 Pt 2):F211–F219

    CAS  PubMed  Google Scholar 

  43. Simon DB, Nelson-Williams C, Bia MJ et al (1996) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat Genet 12(1):24–30

    CAS  PubMed  Google Scholar 

  44. Ji W, Foo JN, O’Roak BJ et al (2008) Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40(5):592–599

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Boyden LM, Choi M, Choate KA et al (2012) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482(7383):98–102

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Louis-Dit-Picard H, Barc J, Trujillano D et al (2012) KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44(4):456–460 S451–S453

    CAS  PubMed  Google Scholar 

  47. Wilson FH, Disse-Nicodeme S, Choate KA et al (2001) Human hypertension caused by mutations in WNK kinases. Science 293(5532):1107–1112

    CAS  PubMed  Google Scholar 

  48. Wilson FH, Kahle KT, Sabath E et al (2003) Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na–Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 100(2):680–684

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Bachmann S, Velazquez H, Obermuller N et al (1995) Expression of the thiazide-sensitive Na–Cl cotransporter by rabbit distal convoluted tubule cells. J Clin Invest 96(5):2510–2514

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Loffing J, Loffing-Cueni D, Valderrabano V et al (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281(6):F1021–F1027

    CAS  PubMed  Google Scholar 

  51. Plotkin MD, Kaplan MR, Verlander JW et al (1996) Localization of the thiazide sensitive Na–Cl cotransporter, rTSC1 in the rat kidney. Kidney Int 50(1):174–183

    CAS  PubMed  Google Scholar 

  52. Katz AI, Doucet A, Morel F (1979) Na–K-ATPase activity along the rabbit, rat, and mouse nephron. Am J Physiol 237(2):F114–F120

    CAS  PubMed  Google Scholar 

  53. Ecelbarger CA, Kim GH, Wade JB et al (2001) Regulation of the abundance of renal sodium transporters and channels by vasopressin. Exp Neurol 171(2):227–234

    CAS  PubMed  Google Scholar 

  54. Mutig K, Saritas T, Uchida S et al (2010) Short-term stimulation of the thiazide-sensitive Na+–Cl cotransporter by vasopressin involves phosphorylation and membrane translocation. Am J Physiol Renal Physiol 298(3):F502–F509

    CAS  PubMed  Google Scholar 

  55. Pedersen NB, Hofmeister MV, Rosenbaek LL et al (2010) Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule. Kidney Int 78(2):160–169

    CAS  PubMed  Google Scholar 

  56. Saritas T, Borschewski A, McCormick JA et al (2013) SPAK differentially mediates vasopressin effects on sodium cotransporters. J Am Soc Nephrol 24(3):407–418

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Ko B, Cooke LL, Hoover RS (2011) Parathyroid hormone (PTH) regulates the sodium chloride cotransporter via Ras guanyl releasing protein 1 (Ras-GRP1) and extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) pathway. Transl Res 158(5):282–289

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Chavez-Canales M, Arroyo JP, Ko B et al (2013) Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens 31(2):303–311

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Komers R, Rogers S, Oyama TT et al (2012) Enhanced phosphorylation of Na(+)–Cl co-transporter in experimental metabolic syndrome: role of insulin. Clin Sci (Lond) 123(11):635–647

    CAS  Google Scholar 

  60. Sohara E, Rai T, Yang SS et al (2011) Acute insulin stimulation induces phosphorylation of the Na–Cl cotransporter in cultured distal mpkDCT cells and mouse kidney. PLoS One 6(8):e24277

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Masilamani S, Kim GH, Mitchell C et al (1999) Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104(7):R19–R23

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Bostanjoglo M, Reeves WB, Reilly RF et al (1998) 11Beta-hydroxysteroid dehydrogenase, mineralocorticoid receptor, and thiazide-sensitive Na–Cl cotransporter expression by distal tubules. J Am Soc Nephrol 9(8):1347–1358

    CAS  PubMed  Google Scholar 

  63. Rozansky DJ, Cornwall T, Subramanya AR et al (2009) Aldosterone mediates activation of the thiazide-sensitive Na–Cl cotransporter through an SGK1 and WNK4 signaling pathway. J Clin Invest 119(9):2601–2612

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Wang XY, Masilamani S, Nielsen J et al (2001) The renal thiazide-sensitive Na–Cl cotransporter as mediator of the aldosterone-escape phenomenon. J Clin Invest 108(2):215–222

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Sandberg MB, Riquier AD, Pihakaski-Maunsbach K et al (2007) ANG II provokes acute trafficking of distal tubule Na+–Cl(-) cotransporter to apical membrane. Am J Physiol Renal Physiol 293(3):F662–F669

    CAS  PubMed  Google Scholar 

  66. Talati G, Ohta A, Rai T et al (2010) Effect of angiotensin II on the WNK-OSR1/SPAK-NCC phosphorylation cascade in cultured mpkDCT cells and in vivo mouse kidney. Biochem Biophys Res Commun 393(4):844–848

    CAS  PubMed  Google Scholar 

  67. Brooks HL, Allred AJ, Beutler KT et al (2002) Targeted proteomic profiling of renal Na(+) transporter and channel abundances in angiotensin II type 1a receptor knockout mice. Hypertension 39(2 Pt 2):470–473

    CAS  PubMed  Google Scholar 

  68. Gurley SB, Riquier-Brison AD, Schnermann J et al (2011) AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab 13(4):469–475

    CAS  PubMed Central  PubMed  Google Scholar 

  69. San-Cristobal P, Pacheco-Alvarez D, Richardson C et al (2009) Angiotensin II signaling increases activity of the renal Na–Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci USA 106(11):4384–4389

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK et al (2013) The absence of intrarenal ACE protects against hypertension. J Clin Invest 123(5):2011–2023

    CAS  PubMed Central  PubMed  Google Scholar 

  71. van der Lubbe N, Lim CH, Meima ME et al (2012) Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway. Pflugers Arch: Eur J Physiol 463(6):853–863

    CAS  Google Scholar 

  72. Sorensen MV, Grossmann S, Roesinger M et al (2013) Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83(5):811–824

    CAS  PubMed  Google Scholar 

  73. Vallon V, Schroth J, Lang F et al (2009) Expression and phosphorylation of the Na+–Cl cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol 297(3):F704–F712

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Lee FN, Oh G, McDonough AA et al (2007) Evidence for gut factor in K+ homeostasis. Am J Physiol Renal Physiol 293(2):F541–F547

    CAS  PubMed  Google Scholar 

  75. Rabinowitz L (1988) Model of homeostatic regulation of potassium excretion in sheep. Am J Physiol 254(2 Pt 2):R381–R388

    CAS  PubMed  Google Scholar 

  76. Song J, Hu X, Shi M et al (2004) Effects of dietary fat, NaCl, and fructose on renal sodium and water transporter abundances and systemic blood pressure. Am J Physiol Renal Physiol 287(6):F1204–F1212

    CAS  PubMed  Google Scholar 

  77. Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85(2):423–493

    CAS  PubMed  Google Scholar 

  78. Darman RB, Forbush B (2002) A regulatory locus of phosphorylation in the N terminus of the Na–K–Cl cotransporter, NKCC1. J Biol Chem 277(40):37542–37550

    CAS  PubMed  Google Scholar 

  79. Vitari AC, Thastrup J, Rafiqi FH et al (2006) Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem J 397(1):223–231

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Richardson C, Rafiqi FH, Karlsson HK et al (2008) Activation of the thiazide-sensitive Na+–Cl cotransporter by the WNK-regulated kinases SPAK and OSR1. J Cell Sci 121(Pt 5):675–684

    CAS  PubMed  Google Scholar 

  81. Pacheco-Alvarez D, Cristobal PS, Meade P et al (2006) The Na+:Cl cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem 281(39):28755–28763

    CAS  PubMed  Google Scholar 

  82. Lee DH, Maunsbach AB, Riquier-Brison AD et al (2013) Effects of ACE inhibition and ANG II stimulation on renal Na–Cl cotransporter distribution, phosphorylation, and membrane complex properties. Am J Physiol Cell Physiol 304(2):C147–C163

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Gamba G (2012) Regulation of the renal Na+–Cl cotransporter by phosphorylation and ubiquitylation. Am J Physiol Renal Physiol 303(12):F1573–F1583

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Richardson C, Sakamoto K, de los Heros P et al (2011) Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. J Cell Sci 124(Pt 5):789–800

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Piechotta K, Lu J, Delpire E (2002) Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem 277(52):50812–50819

    CAS  PubMed  Google Scholar 

  86. McCormick JA, Mutig K, Nelson JH et al (2011) A SPAK isoform switch modulates renal salt transport and blood pressure. Cell Metab 14(3):352–364

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Yang SS, Lo YF, Wu CC et al (2010) SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 21(11):1868–1877

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Rafiqi FH, Zuber AM, Glover M et al (2010) Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med 2(2):63–75

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Lin SH, Yu IS, Jiang ST et al (2011) Impaired phosphorylation of Na(+)–K(+)–2Cl(−) cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc Natl Acad Sci USA 108(42):17538–17543

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Piechotta K, Garbarini N, England R et al (2003) Characterization of the interaction of the stress kinase SPAK with the Na+–K+–2Cl cotransporter in the nervous system: evidence for a scaffolding role of the kinase. J Biol Chem 278(52):52848–52856

    CAS  PubMed  Google Scholar 

  91. Vitari AC, Deak M, Morrice NA et al (2005) The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391(Pt 1):17–24

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Delaloy C, Hadchouel J, Imbert-Teboul M et al (2006) Cardiovascular expression of the mouse WNK1 gene during development and adulthood revealed by a BAC reporter assay. Am J Pathol 169(1):105–118

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Ohno M, Uchida K, Ohashi T et al (2011) Immunolocalization of WNK4 in mouse kidney. Histochem Cell Biol 136(1):25–35

    CAS  PubMed  Google Scholar 

  94. Vidal-Petiot E, Elivra-Matelot E, Mutig K et al. (2014) WNK1-related familial hyperkalemic hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. Proc Natl Acad Sci USA 110(35):14366–14371

    Google Scholar 

  95. Yang CL, Angell J, Mitchell R et al (2003) WNK kinases regulate thiazide-sensitive Na–Cl cotransport. J Clin Invest 111(7):1039–1045

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Wang Z, Yang CL, Ellison DH (2004) Comparison of WNK4 and WNK1 kinase and inhibiting activities. Biochem Biophys Res Commun 317(3):939–944

    CAS  PubMed  Google Scholar 

  97. Castaneda-Bueno M, Cervantes-Perez LG, Vazquez N et al (2012) Activation of the renal Na+:Cl cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci USA 109(20):7929–7934

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Wakabayashi M, Mori T, Isobe K et al (2013) Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep 3(3):858–868

    CAS  PubMed  Google Scholar 

  99. Thastrup JO, Rafiqi FH, Vitari AC et al (2012) SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Biochem J 441(1):325–337

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Na T, Wu G, Peng JB (2012) Disease-causing mutations in the acidic motif of WNK4 impair the sensitivity of WNK4 kinase to calcium ions. Biochem Biophys Res Commun 419(2):293–298

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Chiga M, Rafiqi FH, Alessi DR et al (2011) Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade. J Cell Sci 124(Pt 9):1391–1395

    CAS  PubMed  Google Scholar 

  102. van der Lubbe N, Lim CH, Fenton RA et al (2011) Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int 79(1):66–76

    PubMed  Google Scholar 

  103. Zambrowicz BP, Abuin A, Ramirez-Solis R et al (2003) Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci USA 100(24):14109–14114

    PubMed Central  PubMed  Google Scholar 

  104. Cai H, Cebotaru V, Wang YH et al (2006) WNK4 kinase regulates surface expression of the human sodium chloride cotransporter in mammalian cells. Kidney Int 69(12):2162–2170

    CAS  PubMed  Google Scholar 

  105. Golbang AP, Cope G, Hamad A et al (2006) Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved. Am J Physiol Renal Physiol 291(6):F1369–F1376

    CAS  PubMed  Google Scholar 

  106. Subramanya AR, Liu J, Ellison DH et al (2009) WNK4 diverts the thiazide-sensitive NaCl cotransporter to the lysosome and stimulates AP-3 interaction. J Biol Chem 284(27):18471–18480

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Zhou B, Zhuang J, Gu D et al (2010) WNK4 enhances the degradation of NCC through a sortilin-mediated lysosomal pathway. J Am Soc Nephrol 21(1):82–92

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Ko B, Joshi LM, Cooke LL et al (2007) Phorbol ester stimulation of RasGRP1 regulates the sodium-chloride cotransporter by a PKC-independent pathway. Proc Natl Acad Sci USA 104(50):20120–20125

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Zhou B, Wang D, Feng X et al (2012) WNK4 inhibits NCC protein expression through MAPK ERK1/2 signaling pathway. Am J Physiol Renal Physiol 302(5):F533–F539

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Lai L, Feng X, Liu D et al (2012) Dietary salt modulates the sodium chloride cotransporter expression likely through an aldosterone-mediated WNK4-ERK1/2 signaling pathway. Pflugers Arch: Eur J Physiol 463(3):477–485

    CAS  Google Scholar 

  111. Shi H, Asher C, Chigaev A et al (2002) Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an ERK-mediated phosphorylation. J Biol Chem 277(16):13539–13547

    CAS  PubMed  Google Scholar 

  112. Arroyo JP, Lagnaz D, Ronzaud C et al (2011) Nedd4-2 modulates renal Na+–Cl cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 22(9):1707–1719

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Ronzaud C, Loffing-Cueni D, Hausel P et al (2013) Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J Clin Invest 123(2):657–665

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Schlatter E, Greger R, Schafer JA (1990) Principal cells of cortical collecting ducts of the rat are not a route of transepithelial Cl transport. Pflugers Arch: Eur J Physiol 417(3):317–323

    CAS  Google Scholar 

  115. Greger R (1988) Chloride transport in thick ascending limb, distal convolution, and collecting duct. Annu Rev Physiol 50:111–122

    CAS  PubMed  Google Scholar 

  116. Royaux IE, Wall SM, Karniski LP et al (2001) Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci USA 98(7):4221–4226

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Wall SM, Kim YH, Stanley L et al (2004) NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl conservation. Hypertension 44(6):982–987

    CAS  PubMed  Google Scholar 

  118. Jacques T, Picard N, Miller RL et al (2013) Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol 24(7):1104–1113

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Estevez R, Boettger T, Stein V et al (2001) Barttin is a Cl channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature 414(6863):558–561

    CAS  PubMed  Google Scholar 

  120. Nissant A, Paulais M, Lachheb S et al (2006) Similar chloride channels in the connecting tubule and cortical collecting duct of the mouse kidney. Am J Physiol Renal Physiol 290(6):F1421–F1429

    CAS  PubMed  Google Scholar 

  121. Boettger T, Hubner CA, Maier H et al (2002) Deafness and renal tubular acidosis in mice lacking the K–Cl co-transporter Kcc4. Nature 416(6883):874–878

    CAS  PubMed  Google Scholar 

  122. Melo Z, Cruz-Rangel S, Bautista R et al (2013) Molecular evidence for a role for K(+)–Cl(−) cotransporters in the kidney. Am J Physiol Renal Physiol 305(10):F1402–F1411

    CAS  PubMed  Google Scholar 

  123. Sansom SC, Weinman EJ, O’Neil RG (1984) Microelectrode assessment of chloride-conductive properties of cortical collecting duct. Am J Physiol 247(2 Pt 2):F291–F302

    CAS  PubMed  Google Scholar 

  124. Leviel F, Hubner CA, Houillier P et al (2010) The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120(5):1627–1635

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Terada Y, Knepper MA (1990) Thiazide-sensitive NaCl absorption in rat cortical collecting duct. Am J Physiol 259(3 Pt 2):F519–F528

    CAS  PubMed  Google Scholar 

  126. Pech V, Thumova M, Kim YH et al (2012) ENaC inhibition stimulates Cl secretion in the mouse cortical collecting duct through an NKCC1-dependent mechanism. Am J Physiol Renal Physiol 303(1):F45–F55

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Sansom SC, O’Neil RG (1985) Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am J Physiol 248(6 Pt 2):F858–F868

    CAS  PubMed  Google Scholar 

  128. Alexandre MD, Lu Q, Chen YH (2005) Overexpression of claudin-7 decreases the paracellular Cl conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J Cell Sci 118(Pt 12):2683–2693

    CAS  PubMed  Google Scholar 

  129. Hou J, Gomes AS, Paul DL et al (2006) Study of claudin function by RNA interference. J Biol Chem 281(47):36117–36123

    CAS  PubMed  Google Scholar 

  130. Tatum R, Zhang Y, Salleng K et al (2010) Renal salt wasting and chronic dehydration in claudin-7-deficient mice. Am J Physiol Renal Physiol 298(1):F24–F34

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Hou J, Renigunta A, Yang J et al (2010) Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci USA 107(42):18010–18015

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Fujita H, Hamazaki Y, Noda Y et al (2012) Claudin-4 deficiency results in urothelial hyperplasia and lethal hydronephrosis. PLoS One 7(12):e52272

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Le Moellic C, Boulkroun S, Gonzalez-Nunez D et al (2005) Aldosterone and tight junctions: modulation of claudin-4 phosphorylation in renal collecting duct cells. Am J Physiol Cell Physiol 289(6):C1513–C1521

    PubMed  Google Scholar 

  134. Amasheh S, Milatz S, Krug SM et al (2009) Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun 378(1):45–50

    CAS  PubMed  Google Scholar 

  135. Schambelan M, Sebastian A, Rector FC Jr (1981) Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int 19(5):716–727

    CAS  PubMed  Google Scholar 

  136. Take C, Ikeda K, Kurasawa T et al (1991) Increased chloride reabsorption as an inherited renal tubular defect in familial type II pseudohypoaldosteronism. N Engl J Med 324(7):472–476

    CAS  PubMed  Google Scholar 

  137. Yamauchi K, Rai T, Kobayashi K et al (2004) Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci USA 101(13):4690–4694

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Tatum R, Zhang Y, Lu Q et al (2007) WNK4 phosphorylates ser(206) of claudin-7 and promotes paracellular Cl(−) permeability. FEBS Lett 581(20):3887–3891

    CAS  PubMed  Google Scholar 

  139. Kahle KT, Macgregor GG, Wilson FH et al (2004) Paracellular Cl permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. Proc Natl Acad Sci USA 101(41):14877–14882

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Tomita K, Pisano JJ, Burg MB et al (1986) Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest 77(1):136–141

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Tomita K, Pisano JJ, Knepper MA (1985) Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest 76(1):132–136

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Eladari D, Chambrey R, Peti-Peterdi J (2012) A new look at electrolyte transport in the distal tubule. Annu Rev Physiol 74:325–349

    CAS  PubMed  Google Scholar 

  143. Matsuzaki K, Stokes JB, Schuster VL (1989) Stimulation of Cl self exchange by intracellular HCO3 in rabbit cortical collecting duct. Am J Physiol 257(1 Pt 1):C94–C101

    CAS  PubMed  Google Scholar 

  144. Chambrey R, Kurth I, Peti-Peterdi J et al (2013) Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci USA 110(19):7928–7933

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Hentschke M, Hentschke S, Borgmeyer U et al (2009) The murine AE4 promoter predominantly drives type B intercalated cell specific transcription. Histochem Cell Biol 132(4):405–412

    CAS  PubMed  Google Scholar 

  146. Lipovich L, Lynch ED, Lee MK et al (2001) A novel sodium bicarbonate cotransporter-like gene in an ancient duplicated region: SLC4A9 at 5q31. Genome Biol 2(4):RESEARCH0011

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3 transporters. Pflugers Arch: Eur J Physiol 447(5):495–509

    CAS  Google Scholar 

  148. Ko SB, Luo X, Hager H et al (2002) AE4 is a DIDS-sensitive Cl(−)/HCO(−)(3) exchanger in the basolateral membrane of the renal CCD and the SMG duct. Am J Physiol Cell Physiol 283(4):C1206–C1218

    CAS  PubMed  Google Scholar 

  149. Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93(2):803–959

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Quentin F, Chambrey R, Trinh-Trang-Tan MM et al (2004) The Cl/HCO3 exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol 287(6):F1179–F1188

    CAS  PubMed  Google Scholar 

  151. Vallet M, Picard N, Loffing-Cueni D et al (2006) Pendrin regulation in mouse kidney primarily is chloride-dependent. J Am Soc Nephrol 17(8):2153–2163

    CAS  PubMed  Google Scholar 

  152. Kim YH, Pech V, Spencer KB et al (2007) Reduced ENaC protein abundance contributes to the lower blood pressure observed in pendrin-null mice. Am J Physiol Renal Physiol 293(4):F1314–F1324

    CAS  PubMed  Google Scholar 

  153. Verlander JW, Hassell KA, Royaux IE et al (2003) Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension 42(3):356–362

    CAS  PubMed  Google Scholar 

  154. Gueutin V, Vallet M, Jayat M et al (2013) Renal beta-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest 123(10):4219–4231

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Pech V, Pham TD, Hong S et al (2010) Pendrin modulates ENaC function by changing luminal HCO3. J Am Soc Nephrol 21(11):1928–1941

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Carattino MD, Hughey RP, Kleyman TR (2008) Proteolytic processing of the epithelial sodium channel gamma subunit has a dominant role in channel activation. J Biol Chem 283(37):25290–25295

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Soleimani M, Barone S, Xu J et al (2012) Double knockout of pendrin and Na−Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure. Proc Natl Acad Sci USA 109(33):13368–13373

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

R. Chambrey, J. Hadchouel, and D. Eladari are funded by Institut National de la Santé et de la Recherche Médicale (INSERM) and N. Picard is funded by Centre National de la Recherche Scientifique (CNRS). This work was also funded by grants from l’Agence Nationale de la Recherche (BLANC-2010-R10164DD to DE, BLANC-2012-R13011KK to RC, and 2012-ISV1-0001-01 to JH), from the Fondation pour la Recherche sur l’Hypertension Arterielle to JH, from the Société de Néphrologie (subvention de recherche 2013 AMGEN) to NP, and the Fondation du rein (Prix Jeune Chercheur 2012) to NP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Eladari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eladari, D., Chambrey, R., Picard, N. et al. Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell. Mol. Life Sci. 71, 2879–2895 (2014). https://doi.org/10.1007/s00018-014-1585-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1585-4

Keywords

Navigation