Skip to main content

Advertisement

Log in

The role of the insulin-like growth factor (IGF) axis in osteogenic and odontogenic differentiation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The insulin-like growth factor (IGF) axis is a multicomponent molecular network which has important biological functions in the development and maintenance of differentiated tissue function(s). One of the most important functions of the IGF axis is the control of skeletal tissue metabolism by the finely tuned regulation of the process of osteogenesis. To achieve this, the IGF axis controls the activity of several cell types—osteoprogenitor cells, osteoblasts, osteocytes and osteoclasts to achieve the co-ordinated development of appropriate hard tissue structure and associated matrix deposition. In addition, there is an increasing awareness that the IGF axis also plays a role in the process of odontogenesis (tooth formation). In this review, we highlight some of the key findings in both of these areas. A further understanding of the role of the IGF axis in hard tissue biology may contribute to tissue regeneration strategies in cases of skeletal tissue trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Annunziata M, Granata R, Ghigo E (2011) The IGF system. Acta Diabetol 48(1):1–9

    Article  CAS  PubMed  Google Scholar 

  2. Reiss K et al (1998) Molecular markers of IGF-I-mediated mitogenesis. Exp Cell Res 242(1):361–372

    Article  CAS  PubMed  Google Scholar 

  3. Kooijman R (2006) Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine Growth Factor Rev 17(4):305–323

    Article  CAS  PubMed  Google Scholar 

  4. Jones JI, Doerr ME, Clemmons DR (1995) Cell migration: interactions among integrins, IGFs and IGFBPs. Prog Growth Factor Res 6(2–4):319–327

    Article  CAS  PubMed  Google Scholar 

  5. Mauro L et al (2003) Role of the IGF-I receptor in the regulation of cell–cell adhesion: implications in cancer development and progression. J Cell Physiol 194(2):108–116

    Article  CAS  PubMed  Google Scholar 

  6. Valentinis B, Baserga R (2001) IGF-I receptor signalling in transformation and differentiation. Mol Pathol 54(3):133–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chesik D, De Keyser J, Wilczak N (2007) Insulin-like growth factor binding protein-2 as a regulator of IGF actions in CNS: implications in multiple sclerosis. Cytokine Growth Factor Rev 18(3–4):267–278

    Article  CAS  PubMed  Google Scholar 

  8. Duan C, Ren H, Gao S (2010) Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 167(3):344–351

    Article  CAS  PubMed  Google Scholar 

  9. Lochrie JD et al (2006) Insulin-like growth factor binding protein (IGFBP)-5 is upregulated during both differentiation and apoptosis in primary cultures of mouse mammary epithelial cells. J Cell Physiol 207(2):471–479

    Article  CAS  PubMed  Google Scholar 

  10. Govoni KE (2012) Insulin-like growth factor-I molecular pathways in osteoblasts: potential targets for pharmacological manipulation. Curr Mol Pharmacol 5(2):143–152

    Article  CAS  PubMed  Google Scholar 

  11. Patil AS, Sable RB, Kothari RM (2012) Role of insulin-like growth factors (IGFs), their receptors and genetic regulation in the chondrogenesis and growth of the mandibular condylar cartilage. J Cell Physiol 227(5):1796–1804

    Article  CAS  PubMed  Google Scholar 

  12. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signalling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Marcellini S, Henriquez JP, Bertin A (2012) Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. BioEssays 34(11):953–962

    Article  CAS  PubMed  Google Scholar 

  14. Froesch ER et al (1985) Actions of insulin-like growth factors. Annu Rev Physiol 47:443–467

    Article  CAS  PubMed  Google Scholar 

  15. Tannenbaum GS, Guyda HJ, Posner BI (1983) Insulin-like growth factors: a role in growth hormone negative feedback and body weight regulation via brain. Science 220(4592):77–79

    Article  CAS  PubMed  Google Scholar 

  16. Sussenbach JS et al (1993) Transcriptional and post-transcriptional regulation of the human IGF-II gene expression. Adv Exp Med Biol 343:63–71

    Article  CAS  PubMed  Google Scholar 

  17. De Meyts P et al (2004) Structural biology of insulin and IGF-1 receptors. Novartis Found Symp 262:160–171 (discussion 171–6, 265–8)

    Article  PubMed  Google Scholar 

  18. Morgan DO et al (1987) Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329(6137):301–307

    Article  CAS  PubMed  Google Scholar 

  19. Rainier S et al (1993) Relaxation of imprinted genes in human cancer. Nature 362(6422):747–749

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y et al (1993) Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Commun 197(2):747–754

    Article  CAS  PubMed  Google Scholar 

  21. Siddle K (2011) Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol 47(1):R1–R10

    Article  CAS  PubMed  Google Scholar 

  22. Yu KT, Czech MP (1984) The type I insulin-like growth factor receptor mediates the rapid effects of multiplication-stimulating activity on membrane transport systems in rat soleus muscle. J Biol Chem 259(5):3090–3095

    CAS  PubMed  Google Scholar 

  23. Beattie J et al (2008) Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study. Mol Cell Biochem 307(1–2):221–236

    CAS  PubMed  Google Scholar 

  24. Denley A et al (2005) Molecular interactions of the IGF system. Cytokine Growth Factor Rev 16(4–5):421–439

    Article  CAS  PubMed  Google Scholar 

  25. Clemmons DR (2001) Use of mutagenesis to probe IGF-binding protein structure/function relationships. Endocr Rev 22(6):800–817

    Article  CAS  PubMed  Google Scholar 

  26. Zhang M et al (2002) Targeted expression of a protease-resistant IGFBP-4 mutant in smooth muscle of transgenic mice results in IGFBP-4 stabilization and smooth muscle hypotrophy. J Biol Chem 277(24):21285–21290

    Article  CAS  PubMed  Google Scholar 

  27. Fielder PJ et al (1990) Characterization of insulin-like growth factor binding proteins (IGFBPs) during gestation in mice: effects of hypophysectomy and an IGFBP-specific serum protease activity. Endocrinology 127(5):2270–2280

    Article  CAS  PubMed  Google Scholar 

  28. James PL et al (1993) A highly conserved insulin-like growth factor-binding protein (IGFBP-5) is expressed during myoblast differentiation. J Biol Chem 268(30):22305–22312

    CAS  PubMed  Google Scholar 

  29. Sureshbabu A et al (2012) IGFBP5 induces cell adhesion, increases cell survival and inhibits cell migration in MCF-7 human breast cancer cells. J Cell Sci 125(Pt 7):1693–1705

    Article  CAS  PubMed  Google Scholar 

  30. Beattie J et al (2006) Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 395(1):1–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Stracke H et al (1984) Effect of growth hormone on osteoblasts and demonstration of somatomedin-C/IGF I in bone organ culture. Acta Endocrinol (Copenh) 107(1):16–24

    CAS  Google Scholar 

  32. Scheven BA et al (1991) Effects of recombinant human insulin-like growth factor I and II (IGF-I/-II) and growth hormone (GH) on the growth of normal adult human osteoblast-like cells and human osteogenic sarcoma cells. Growth Regul 1(4):160–167

    CAS  PubMed  Google Scholar 

  33. Langdahl BL et al (1998) The effects of IGF-I and IGF-II on proliferation and differentiation of human osteoblasts and interactions with growth hormone. Eur J Clin Invest 28(3):176–183

    Article  CAS  PubMed  Google Scholar 

  34. Ernst M, Rodan GA (1990) Increased activity of insulin-like growth factor (IGF) in osteoblastic cells in the presence of growth hormone (GH): positive correlation with the presence of the GH-induced IGF-binding protein BP-3. Endocrinology 127(2):807–814

    Article  CAS  PubMed  Google Scholar 

  35. Wong GL et al (1990) IGF-I production by mouse osteoblasts. J Bone Miner Res 5(2):133–140

    Article  CAS  PubMed  Google Scholar 

  36. Schmid C et al (1991) Intact but not truncated insulin-like growth factor binding protein-3 (IGFBP-3) blocks IGF I-induced stimulation of osteoblasts: control of IGF signalling to bone cells by IGFBP-3-specific proteolysis? Biochem Biophys Res Commun 179(1):579–585

    Article  CAS  PubMed  Google Scholar 

  37. Slootweg MC et al (1990) The presence of classical insulin-like growth factor (IGF) type-I and -II receptors on mouse osteoblasts: autocrine/paracrine growth effect of IGFs? J Endocrinol 125(2):271–277

    Article  CAS  PubMed  Google Scholar 

  38. Mochizuki S et al (2005) Effects of estriol on proliferative activity and expression of insulin-like growth factor-I (IGF-I) and IGF-I receptor mRNA in cultured human osteoblast-like osteosarcoma cells. Gynecol Endocrinol 20(1):6–12

    Article  CAS  PubMed  Google Scholar 

  39. Yeh LC, Lee JC (2006) Co-transfection with the osteogenic protein (OP)-1 gene and the insulin-like growth factor (IGF)-I gene enhanced osteoblastic cell differentiation. Biochim Biophys Acta 1763(1):57–63

    Article  CAS  PubMed  Google Scholar 

  40. Delany AM, Durant D, Canalis E (2001) Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol 15(10):1781–1789

    Article  CAS  PubMed  Google Scholar 

  41. Yang S et al (2011) Foxo1 mediates insulin-like growth factor 1 (IGF1)/insulin regulation of osteocalcin expression by antagonizing Runx2 in osteoblasts. J Biol Chem 286(21):19149–19158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Nakasaki M et al (2008) IGF-I secreted by osteoblasts acts as a potent chemotactic factor for osteoblasts. Bone 43(5):869–879

    Article  CAS  PubMed  Google Scholar 

  43. Hatakeyama N et al (2008) IGF-I regulates tight-junction protein claudin-1 during differentiation of osteoblast-like MC3T3-E1 cells via a MAP-kinase pathway. Cell Tissue Res 334(2):243–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Yeh LC et al (2010) Protein kinase D mediates the synergistic effects of BMP-7 and IGF-I on osteoblastic cell differentiation. Growth Factors 28(5):318–328

    Article  CAS  PubMed  Google Scholar 

  45. Zhang M et al (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signalling in bone matrix mineralization. J Biol Chem 277(46):44005–44012

    Article  CAS  PubMed  Google Scholar 

  46. Gan Y et al (2010) Deletion of IGF-I receptor (IGF-IR) in primary osteoblasts reduces GH-induced STAT5 signalling. Mol Endocrinol 24(3):644–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Martinez DA et al (1995) Identification of functional insulin-like growth factor-II/mannose-6-phosphate receptors in isolated bone cells. J Cell Biochem 59(2):246–257

    Article  CAS  PubMed  Google Scholar 

  48. Scharla SH et al (1994) Effect of tumor necrosis factor-alpha on the expression of insulin-like growth factor I and insulin-like growth factor binding protein 4 in mouse osteoblasts. Eur J Endocrinol 131(3):293–301

    Article  CAS  PubMed  Google Scholar 

  49. Lalou C et al (1994) Interactions between insulin-like growth factor-I (IGF-I) and the system of plasminogen activators and their inhibitors in the control of IGF-binding protein-3 production and proteolysis in human osteosarcoma cells. Endocrinology 135(6):2318–2326

    CAS  PubMed  Google Scholar 

  50. Andress DL, Birnbaum RS (1992) Human osteoblast-derived insulin-like growth factor (IGF) binding protein-5 stimulates osteoblast mitogenesis and potentiates IGF action. J Biol Chem 267(31):22467–22472

    CAS  PubMed  Google Scholar 

  51. Andress DL (1995) Comparison studies of IGFBP-5 binding to osteoblasts and osteoblast-derived extracellular matrix. Prog Growth Factor Res 6(2–4):337–344

    Article  CAS  PubMed  Google Scholar 

  52. Schmid C et al (1995) Expression, effects, and fate of IGFBP-5 are different in normal and malignant osteoblastic cells. Prog Growth Factor Res 6(2–4):167–173

    Article  CAS  PubMed  Google Scholar 

  53. Andress DL (1995) Heparin modulates the binding of insulin-like growth factor (IGF) binding protein-5 to a membrane protein in osteoblastic cells. J Biol Chem 270(47):28289–28296

    CAS  PubMed  Google Scholar 

  54. Chihara K, Sugimoto T (1997) The action of GH/IGF-I/IGFBP in osteoblasts and osteoclasts. Horm Res 48(Suppl 5):45–49

    Article  CAS  PubMed  Google Scholar 

  55. Nasu M et al (2000) Estrogen modulates osteoblast proliferation and function regulated by parathyroid hormone in osteoblastic SaOS-2 cells: role of insulin-like growth factor (IGF)-I and IGF-binding protein-5. J Endocrinol 167(2):305–313

    Article  CAS  PubMed  Google Scholar 

  56. Andress DL (2001) IGF-binding protein-5 stimulates osteoblast activity and bone accretion in ovariectomized mice. Am J Physiol Endocrinol Metab 281(2):E283–E288

    CAS  PubMed  Google Scholar 

  57. Amaar YG, Baylink DJ, Mohan S (2005) Ras-association domain family 1 protein, RASSF1C, is an IGFBP-5 binding partner and a potential regulator of osteoblast cell proliferation. J Bone Miner Res 20(8):1430–1439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kim SK, Kwon JY, Nam TJ (2007) Involvement of ligand occupancy in insulin-like growth factor-I (IGF-I) induced cell growth in osteoblast like MC3T3-E1 cells. BioFactors 29(4):187–202

    Article  CAS  PubMed  Google Scholar 

  59. Thrailkill KM et al (1995) Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentiation. Endocrinology 136(8):3527–3533

    CAS  PubMed  Google Scholar 

  60. Durham SK, Riggs BL, Conover CA (1994) The insulin-like growth factor-binding protein-4 (IGFBP-4)-IGFBP-4 protease system in normal human osteoblast-like cells: regulation by transforming growth factor-beta. J Clin Endocrinol Metab 79(6):1752–1758

    CAS  PubMed  Google Scholar 

  61. Durham SK et al (1995) Regulation of insulin-like growth factor (IGF)-binding protein-4 availability in normal human osteoblast-like cells: role of endogenous IGFs. J Clin Endocrinol Metab 80(1):104–110

    CAS  PubMed  Google Scholar 

  62. Bunn RC et al (2004) IGFBP-4 degradation by pregnancy-associated plasma protein-A in MC3T3 osteoblasts. Biochem Biophys Res Commun 325(3):698–706

    Article  CAS  PubMed  Google Scholar 

  63. Qin X et al (1999) Studies on the role of human insulin-like growth factor-II (IGF-II)-dependent IGF binding protein (hIGFBP)-4 protease in human osteoblasts using protease-resistant IGFBP-4 analogs. J Bone Miner Res 14(12):2079–2088

    Article  CAS  PubMed  Google Scholar 

  64. Zhang M et al (2003) Paracrine overexpression of IGFBP-4 in osteoblasts of transgenic mice decreases bone turnover and causes global growth retardation. J Bone Miner Res 18(5):836–843

    Article  CAS  PubMed  Google Scholar 

  65. Strohbach C et al (2008) Potential involvement of the interaction between insulin-like growth factor binding protein (IGFBP)-6 and LIM mineralization protein (LMP)-1 in regulating osteoblast differentiation. J Cell Biochem 104(5):1890–1905

    Article  CAS  PubMed  Google Scholar 

  66. Perez-Casellas LA et al (2009) Nuclear factor I transcription factors regulate IGF binding protein 5 gene transcription in human osteoblasts. Biochim Biophys Acta 1789(2):78–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Schmid C et al (1994) Growth hormone and parathyroid hormone stimulate IGFBP-3 in rat osteoblasts. Am J Physiol 267(2 Pt 1):E226–E233

    CAS  PubMed  Google Scholar 

  68. Schmid C et al (1996) 1 alpha, 25-dihydroxyvitamin D3 increases IGF binding protein-5 expression in cultured osteoblasts. FEBS Lett 392(1):21–24

    Article  CAS  PubMed  Google Scholar 

  69. Schmid C et al (1992) Triiodothyronine (T3) stimulates insulin-like growth factor (IGF)-1 and IGF binding protein (IGFBP)-2 production by rat osteoblasts in vitro. Acta Endocrinol (Copenh) 126(5):467–473

    CAS  Google Scholar 

  70. Lalou C et al (1994) Interactions of insulin-like growth factors (IGF) and their binding proteins with the plasminogen/plasmin activator system in cultured osteoblasts. Ann Endocrinol (Paris) 55(2):103–107

    CAS  Google Scholar 

  71. Hurley MM, Abreu C, Hakeda Y (1995) Basic fibroblast growth factor regulates IGF-I binding proteins in the clonal osteoblastic cell line MC3T3-E1. J Bone Miner Res 10(2):222–230

    Article  CAS  PubMed  Google Scholar 

  72. Thrailkill KM et al (1995) Differentiation of MC3T3-E1 osteoblasts is associated with temporal changes in the expression of IGF-I and IGFBPs. Bone 17(3):307–313

    Article  CAS  PubMed  Google Scholar 

  73. Birnbaum RS, Bowsher RR, Wiren KM (1995) Changes in IGF-I and -II expression and secretion during the proliferation and differentiation of normal rat osteoblasts. J Endocrinol 144(2):251–259

    Article  CAS  PubMed  Google Scholar 

  74. Palermo C et al (2004) Potentiating role of IGFBP-2 on IGF-II-stimulated alkaline phosphatase activity in differentiating osteoblasts. Am J Physiol Endocrinol Metab 286(4):E648–E657

    Article  CAS  PubMed  Google Scholar 

  75. Schmid C et al (1995) Effects of insulin-like growth factor (IGF) binding proteins (BPs)-3 and -6 on DNA synthesis of rat osteoblasts: further evidence for a role of auto-/paracrine IGF I but not IGF II in stimulating osteoblast growth. Biochem Biophys Res Commun 212(1):242–248

    Article  CAS  PubMed  Google Scholar 

  76. Middleton J et al (1995) Osteoblasts and osteoclasts in adult human osteophyte tissue express the mRNAs for insulin-like growth factors I and II and the type 1 IGF receptor. Bone 16(3):287–293

    Article  CAS  PubMed  Google Scholar 

  77. Conover CA, Khosla S (2003) Role of extracellular matrix in insulin-like growth factor (IGF) binding protein-2 regulation of IGF-II action in normal human osteoblasts. Growth Horm IGF Res 13(6):328–335

    Article  CAS  PubMed  Google Scholar 

  78. Abdallah BM (2006) Osteoblast differentiation of NIH3T3 fibroblasts is associated with changes in the IGF-I/IGFBP expression pattern. Cell Mol Biol Lett 11(4):461–474

    Article  CAS  PubMed  Google Scholar 

  79. Nakashima M (1992) The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Arch Oral Biol 37(3):231–236

    Article  CAS  PubMed  Google Scholar 

  80. Denholm IA, Moule AJ, Bartold PM (1998) The behaviour and proliferation of human dental pulp cell strains in vitro, and their response to the application of platelet-derived growth factor-BB and insulin-like growth factor-1. Int Endod J 31(4):251–258

    Article  CAS  PubMed  Google Scholar 

  81. Joseph BK et al (1996) In situ hybridization evidence for a paracrine/autocrine role for insulin-like growth factor-I in tooth development. Growth Factors 13(1–2):11–17

    Article  CAS  PubMed  Google Scholar 

  82. Li H et al (1998) Growth hormone and insulin-like growth factor I induce bone morphogenetic proteins 2 and 4: a mediator role in bone and tooth formation? Endocrinology 139(9):3855–3862

    CAS  PubMed  Google Scholar 

  83. Onishi T et al (1999) Stimulation of proliferation and differentiation of dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch Oral Biol 44(4):361–371

    Article  CAS  PubMed  Google Scholar 

  84. Shi S, Robey PG, Gronthos S (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29(6):532–539

    Article  CAS  PubMed  Google Scholar 

  85. Caviedes-Bucheli J et al (2004) Expression of insulin-like growth factor-1 receptor in human pulp tissue. J Endod 30(11):767–769

    Article  PubMed  Google Scholar 

  86. Reichenmiller KM et al (2004) IGFs, IGFBPs, IGF-binding sites and biochemical markers of bone metabolism during differentiation in human pulp fibroblasts. Horm Res 62(1):33–39

    Article  CAS  PubMed  Google Scholar 

  87. Gotz W et al (2006) Immunohistochemical localization of components of the insulin-like growth factor system in human permanent teeth. Arch Oral Biol 51(5):387–395

    Article  PubMed  Google Scholar 

  88. Yamamoto T, Oida S, Inage T (2006) Gene expression and localization of insulin-like growth factors and their receptors throughout amelogenesis in rat incisors. J Histochem Cytochem 54(2):243–252

    Article  CAS  PubMed  Google Scholar 

  89. Caviedes-Bucheli J et al (2009) Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development. Int Endod J 42(8):686–693

    Article  CAS  PubMed  Google Scholar 

  90. Mori G et al (2011) Dental pulp stem cells: osteogenic differentiation and gene expression. Ann NY Acad Sci 1237:47–52

    Article  CAS  PubMed  Google Scholar 

  91. Mori G et al (2010) Osteogenic properties of human dental pulp stem cells. J Biol Regul Homeost Agents 24(2):167–175

    CAS  PubMed  Google Scholar 

  92. Wang S et al (2012) Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res 8(3):346–356

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Beattie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Kharobi, H., El-Gendy, R., Devine, D.A. et al. The role of the insulin-like growth factor (IGF) axis in osteogenic and odontogenic differentiation. Cell. Mol. Life Sci. 71, 1469–1476 (2014). https://doi.org/10.1007/s00018-013-1508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1508-9

Keywords

Navigation