Skip to main content
Log in

Joining S100 proteins and migration: for better or for worse, in sickness and in health

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

EGF:

Epidermal growth factor

F-actin:

Filamentous actin

FGF:

Fibroblast growth factor

G-actin:

Globular actin

GAG:

Glycosaminoglycan

IL:

Interleukin

MMP:

Matrix metalloproteinases

NM:

Non muscle myosin

PMN:

Polymorphonuclear neutrophil

RAGE:

Receptor for advanced glycation end product

siRNA:

Small interfering RNA

shRNA:

Short hairpin RNA

TGF:

Transforming growth factor

VEFG:

Vascular endothelial growth factor

References

  1. Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19(6):739–744

    PubMed  CAS  Google Scholar 

  2. Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60(6):540–551. doi:10.1002/jemt.10296

    PubMed  CAS  Google Scholar 

  3. Zimmer DB, Eubanks JO, Ramakrishnan D, Criscitiello MF (2012) Evolution of the S100 family of calcium sensor proteins. Cell Calcium 53(3):170–179. doi:10.1016/j.ceca.2012.11.006

    PubMed  Google Scholar 

  4. Shang X, Cheng H, Zhou R (2008) Chromosomal mapping, differential origin and evolution of the S100 gene family. Genet Sel Evol GSE 40(4):449–464. doi:10.1051/gse:2008013

    CAS  Google Scholar 

  5. Barraclough R, Savin J, Dube SK, Rudland PS (1987) Molecular cloning and sequence of the gene for p9Ka. A cultured myoepithelial cell protein with strong homology to S-100, a calcium-binding protein. J Mol Biol 198(1):13–20

    PubMed  CAS  Google Scholar 

  6. Donato R (1986) S-100 proteins. Cell Calcium 7(3):123–145

    PubMed  CAS  Google Scholar 

  7. Gribenko AV, Makhatadze GI (1998) Oligomerization and divalent ion binding properties of the S100P protein: a Ca2+/Mg2+-switch model. J Mol Biol 283(3):679–694. doi:10.1006/jmbi.1998.2116

    PubMed  CAS  Google Scholar 

  8. Barraclough R, Gibbs F, Smith JA, Haynes GA, Rudland PS (1990) Calcium-ion binding by the potential calcium-ion-binding protein, p9Ka. Biochem Biophys Res Commun 169(2):660–666

    PubMed  CAS  Google Scholar 

  9. Strynadka NC, James MN (1989) Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 58:951–998. doi:10.1146/annurev.bi.58.070189.004511

    PubMed  CAS  Google Scholar 

  10. Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396(2):201–214. doi:10.1042/BJ20060195

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322(4):1111–1122. doi:10.1016/j.bbrc.2004.07.096

    PubMed  CAS  Google Scholar 

  12. Donato R (1999) Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1450(3):191–231

    PubMed  CAS  Google Scholar 

  13. Kligman D, Hilt DC (1988) The S100 protein family. Trends Biochem Sci 13(11):437–443. doi:10.1016/0968-0004(88)90218-6

    PubMed  CAS  Google Scholar 

  14. Bhattacharya S, Bunick CG, Chazin WJ (2004) Target selectivity in EF-hand calcium binding proteins. Biochim Biophys Acta 1742(1–3):69–79. doi:10.1016/j.bbamcr.2004.09.002

    PubMed  CAS  Google Scholar 

  15. Mohan SK, Yu C (2011) The IL1alpha-S100A13 heterotetrameric complex structure: a component in the non-classical pathway for interleukin 1alpha secretion. J Biol Chem 286(16):14608–14617. doi:10.1074/jbc.M110.201954

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Rammes A, Roth J, Goebeler M, Klempt M, Hartmann M, Sorg C (1997) Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem 272(14):9496–9502

    PubMed  CAS  Google Scholar 

  17. Forst B, Hansen MT, Klingelhofer J, Moller HD, Nielsen GH, Grum-Schwensen B, Ambartsumian N, Lukanidin E, Grigorian M (2010) Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice. PLoS ONE 5(4):e10374. doi:10.1371/journal.pone.0010374

    PubMed Central  PubMed  Google Scholar 

  18. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793(6):1008–1022. doi:10.1016/j.bbamcr.2008.11.009

    PubMed  CAS  Google Scholar 

  19. Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 277(22):4578–4590. doi:10.1111/j.1742-4658.2010.07887.x

    PubMed  CAS  Google Scholar 

  20. Lukanidin E, Sleeman JP (2012) Building the niche: the role of the S100 proteins in metastatic growth. Semin Cancer Biol 22(3):216–225. doi:10.1016/j.semcancer.2012.02.006

    PubMed  CAS  Google Scholar 

  21. Zimmer DB, Wright Sadosky P, Weber DJ (2003) Molecular mechanisms of S100-target protein interactions. Microsc Res Tech 60(6):552–559. doi:10.1002/jemt.10297

    PubMed  CAS  Google Scholar 

  22. Sherbet GV (2009) Metastasis promoter S100A4 is a potentially valuable molecular target for cancer therapy. Cancer Lett 280(1):15–30. doi:10.1016/j.canlet.2008.10.037

    PubMed  CAS  Google Scholar 

  23. Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K (2004) S100 proteins in the epidermis. J Invest Dermatol 123(1):23–33. doi:10.1111/j.0022-202X.2004.22719.x

    PubMed  CAS  Google Scholar 

  24. He H, Li J, Weng S, Li M, Yu Y (2009) S100A11: diverse function and pathology corresponding to different target proteins. Cell Biochem Biophys 55(3):117–126. doi:10.1007/s12013-009-9061-8

    PubMed  CAS  Google Scholar 

  25. Zimmer DB, Cornwall EH, Landar A, Song W (1995) The S100 protein family: history, function, and expression. Brain Res Bull 37(4):417–429

    PubMed  CAS  Google Scholar 

  26. Moore BW, McGregor D (1965) Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J Biol Chem 240:1647–1653

    PubMed  CAS  Google Scholar 

  27. Haimoto H, Kato K (1987) S100a0 (alpha alpha) protein, a calcium-binding protein, is localized in the slow-twitch muscle fiber. J Neurochem 48(3):917–923

    PubMed  CAS  Google Scholar 

  28. Wright NT, Cannon BR, Zimmer DB, Weber DJ (2009) S100A1: structure, function, and therapeutic potential. Curr Chem Biol 3(2):138–145. doi:10.2174/187231309788166460

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Most P, Seifert H, Gao E, Funakoshi H, Volkers M, Heierhorst J, Remppis A, Pleger ST, DeGeorge BR Jr, Eckhart AD, Feldman AM, Koch WJ (2006) Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation 114(12):1258–1268. doi:10.1161/CIRCULATIONAHA.106.622415

    PubMed  CAS  Google Scholar 

  30. Most P, Lerchenmuller C, Rengo G, Mahlmann A, Ritterhoff J, Rohde D, Goodman C, Busch CJ, Laube F, Heissenberg J, Pleger ST, Weiss N, Katus HA, Koch WJ, Peppel K (2013) S100A1 deficiency impairs postischemic angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide synthase regulation. Circ Res 112(1):66–78. doi:10.1161/CIRCRESAHA.112.275156

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Wang G, Zhang S, Fernig DG, Martin-Fernandez M, Rudland PS, Barraclough R (2005) Mutually antagonistic actions of S100A4 and S100A1 on normal and metastatic phenotypes. Oncogene 24(8):1445–1454. doi:10.1038/sj.onc.1208291

    PubMed  CAS  Google Scholar 

  32. Zimmer DB, Cornwall EH, Reynolds PD, Donald CM (1998) S100A1 regulates neurite organization, tubulin levels, and proliferation in PC12 cells. J Biol Chem 273(8):4705–4711

    PubMed  CAS  Google Scholar 

  33. Sorci G, Agneletti AL, Donato R (2000) Effects of S100A1 and S100B on microtubule stability. An in vitro study using triton-cytoskeletons from astrocyte and myoblast cell lines. Neuroscience 99(4):773–783

    PubMed  CAS  Google Scholar 

  34. Donato R, Isobe T, Okuyama T (1985) S-100 proteins and microtubules: analysis of the effects of rat brain S-100 (S-100b) and ox brain S-100a0, S-100a and S-100b on microtubule assembly-disassembly. FEBS Lett 186(1):65–69

    PubMed  CAS  Google Scholar 

  35. Garbuglia M, Verzini M, Rustandi RR, Osterloh D, Weber DJ, Gerke V, Donato R (1999) Role of the C-terminal extension in the interaction of S100A1 with GFAP, tubulin, the S100A1- and S100B-inhibitory peptide, TRTK-12, and a peptide derived from p53, and the S100A1 inhibitory effect on GFAP polymerization. Biochem Biophys Res Commun 254(1):36–41. doi:10.1006/bbrc.1998.9881

    PubMed  CAS  Google Scholar 

  36. Garbuglia M, Verzini M, Sorci G, Bianchi R, Giambanco I, Agneletti AL, Donato R (1999) The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments. Brazilian J Med Biol Res Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al] 32(10):1177–1185

  37. Garbuglia M, Verzini M, Giambanco I, Spreca A, Donato R (1996) Effects of calcium-binding proteins (S-100a(o), S-100a, S-100b) on desmin assembly in vitro. FASEB J Off Publ Fed Am Soc Exp Biol 10(2):317–324

    CAS  Google Scholar 

  38. Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H (2001) Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J 81(4):2297–2313. doi:10.1016/S0006-3495(01)75876-6

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Fukushima H, Chung CS, Granzier H (2010) Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium. J Biomed Biotechnol 2010:727239. doi:10.1155/2010/727239

    PubMed Central  PubMed  Google Scholar 

  40. Ritterhoff J, Most P (2012) Targeting S100A1 in heart failure. Gene Ther 19(6):613–621. doi:10.1038/gt.2012.8

    PubMed  CAS  Google Scholar 

  41. Mandinova A, Atar D, Shäfer BW, Spiess M, Aebi U, Heizmann CW (1998) Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J Cell Sci 111(Pt 14):2043–2054

    PubMed  CAS  Google Scholar 

  42. Benfenati F, Ferrari R, Onofri F, Arcuri C, Giambanco I, Donato R (2004) S100A1 codistributes with synapsin I in discrete brain areas and inhibits the F-actin-bundling activity of synapsin I. J Neurochem 89(5):1260–1270. doi:10.1111/j.1471-4159.2004.02419.x

    PubMed  CAS  Google Scholar 

  43. Nagy N, Brenner C, Markadieu N, Chaboteaux C, Camby I, Shäfer BW, Pochet R, Heizmann CW, Salmon I, Kiss R, Decaestecker C (2001) S100A2, a putative tumor suppressor gene, regulates in vitro squamous cell carcinoma migration. Lab Investig J Tech Meth Pathol 81(4):599–612

    CAS  Google Scholar 

  44. Tsai WC, Tsai ST, Jin YT, Wu LW (2006) Cyclooxygenase-2 is involved in S100A2-mediated tumor suppression in squamous cell carcinoma. Mol Cancer Res MCR 4(8):539–547. doi:10.1158/1541-7786.MCR-05-0266

    CAS  Google Scholar 

  45. Liu D, Rudland PS, Sibson DR, Platt-Higgins A, Barraclough R (2000) Expression of calcium-binding protein S100A2 in breast lesions. Br J Cancer 83(11):1473–1479. doi:10.1054/bjoc.2000.1488

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Wolf S, Haase-Kohn C, Pietzsch J (2011) S100A2 in cancerogenesis: a friend or a foe? Amino Acids 41(4):849–861. doi:10.1007/s00726-010-0623-2

    PubMed  CAS  Google Scholar 

  47. Nagy N, Hoyaux D, Gielen I, Shäfer BW, Pochet R, Heizmann CW, Kiss R, Salmon I, Decaestecker C (2002) The Ca2+-binding S100A2 protein is differentially expressed in epithelial tissue of glandular or squamous origin. Histol Histopathol 17(1):123–130

    PubMed  CAS  Google Scholar 

  48. van Dieck J, Brandt T, Teufel DP, Veprintsev DB, Joerger AC, Fersht AR (2010) Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73. Oncogene 29(14):2024–2035. doi:10.1038/onc.2009.490

    PubMed  Google Scholar 

  49. Mueller A, Shäfer BW, Ferrari S, Weibel M, Makek M, Hochli M, Heizmann CW (2005) The calcium-binding protein S100A2 interacts with p53 and modulates its transcriptional activity. J Biol Chem 280(32):29186–29193. doi:10.1074/jbc.M505000200

    PubMed  CAS  Google Scholar 

  50. Komada T, Araki R, Nakatani K, Yada I, Naka M, Tanaka T (1996) Novel specific chemtactic receptor for S100L protein on guinea pig eosinophils. Biochem Biophys Res Commun 220(3):871–874

    PubMed  CAS  Google Scholar 

  51. Bulk E, Sargin B, Krug U, Hascher A, Jun Y, Knop M, Kerkhoff C, Gerke V, Liersch R, Mesters RM, Hotfilder M, Marra A, Koschmieder S, Dugas M, Berdel WE, Serve H, Muller-Tidow C (2009) S100A2 induces metastasis in non-small cell lung cancer. Clin Cancer Res 15(1):22–29. doi:10.1158/1078-0432.CCR-08-0953

    PubMed  CAS  Google Scholar 

  52. Diederichs S, Bulk E, Steffen B, Ji P, Tickenbrock L, Lang K, Zanker KS, Metzger R, Schneider PM, Gerke V, Thomas M, Berdel WE, Serve H, Muller-Tidow C (2004) S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res 64(16):5564–5569. doi:10.1158/0008-5472.CAN-04-2004

    PubMed  CAS  Google Scholar 

  53. Naz S, Ranganathan P, Bodapati P, Shastry AH, Mishra LN, Kondaiah P (2012) Regulation of S100A2 expression by TGF-beta-induced MEK/ERK signalling and its role in cell migration/invasion. Biochem J 447(1):81–91. doi:10.1042/BJ20120014

    PubMed  CAS  Google Scholar 

  54. Gimona M, Lando Z, Dolginov Y, Vandekerckhove J, Kobayashi R, Sobieszek A, Helfman DM (1997) Ca2+-dependent interaction of S100A2 with muscle and nonmuscle tropomyosins. J Cell Sci 110:611–621

    PubMed  CAS  Google Scholar 

  55. Leclerc E, Fritz G, Vetter SW, Heizmann CW (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793(6):993–1007. doi:10.1016/j.bbamcr.2008.11.016

    PubMed  CAS  Google Scholar 

  56. Davies BR, Davies MP, Gibbs FE, Barraclough R, Rudland PS (1993) Induction of the metastatic phenotype by transfection of a benign rat mammary epithelial cell line with the gene for p9Ka, a rat calcium-binding protein, but not with the oncogene EJ-ras-1. Oncogene 8(4):999–1008

    PubMed  CAS  Google Scholar 

  57. Mishra SK, Siddique HR, Saleem M (2012) S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev 31(1–2):163–172. doi:10.1007/s10555-011-9338-4

    PubMed  CAS  Google Scholar 

  58. Rudland PS, Platt-Higgins A, Renshaw C, West CR, Winstanley JH, Robertson L, Barraclough R (2000) Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res 60(6):1595–1603

    PubMed  CAS  Google Scholar 

  59. Boye K, Maelandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176(2):528–535. doi:10.2353/ajpath.2010.090526

    PubMed Central  PubMed  CAS  Google Scholar 

  60. de Silva Rudland S, Platt-Higgins A, Winstanley JH, Jones NJ, Barraclough R, West C, Carroll J, Rudland PS (2011) Statistical association of basal cell keratins with metastasis-inducing proteins in a prognostically unfavorable group of sporadic breast cancers. Am J Pathol 179(2):1061–1072. doi:10.1016/j.ajpath.2011.04.022

    Google Scholar 

  61. Goh Then Sin C, Hersch N, Rudland PS, Barraclough R, Hoffmann B, Gross SR (2011) S100A4 downregulates filopodia formation through increased dynamic instability. Cell Adh Migr 5(5):439–447. doi:10.4161/cam.5.5.17773

    PubMed  Google Scholar 

  62. Huang L, Xu Y, Cai G, Guan Z, Cai S (2012) Downregulation of S100A4 expression by RNA interference suppresses cell growth and invasion in human colorectal cancer cells. Oncol Rep 27(4):917–922. doi:10.3892/or.2011.1598

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Li N, Song MM, Chen XH, Liu LH, Li FS (2012) S100A4 siRNA inhibits human pancreatic cancer cell invasion in vitro. Biomed Environ Sci BES 25(4):465–470. doi:10.3967/0895-3988.2012.04.012

    CAS  Google Scholar 

  64. Chen D, Zheng XF, Yang ZY, Liu DX, Zhang GY, Jiao XL, Zhao H (2012) S100A4 silencing blocks invasive ability of esophageal squamous cell carcinoma cells. World J Gastroenterol WJG 18(9):915–922. doi:10.3748/wjg.v18.i9.915

    CAS  Google Scholar 

  65. Wang L, Wang X, Liang Y, Diao X, Chen Q (2012) S100A4 promotes invasion and angiogenesis in breast cancer MDA-MB-231 cells by upregulating matrix metalloproteinase-13. Acta Biochim Pol 59(4):593–598

    PubMed  CAS  Google Scholar 

  66. Bowers RR, Manevich Y, Townsend DM, Tew KD (2012) Sulfiredoxin redox-sensitive interaction with S100A4 and non-muscle myosin IIA regulates cancer cell motility. Biochemistry 51(39):7740–7754. doi:10.1021/bi301006w

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Zhang K, Zhang M, Zhao H, Yan B, Zhang D, Liang J (2012) S100A4 regulates motility and invasiveness of human esophageal squamous cell carcinoma through modulating the AKT/Slug signal pathway. Dis Esophagus Off J Int Soc Dis Esophagus/ISDE 25(8):731–739. doi:10.1111/j.1442-2050.2012.01323.x

    CAS  Google Scholar 

  68. Sack U, Walther W, Scudiero D, Selby M, Aumann J, Lemos C, Fichtner I, Schlag PM, Shoemaker RH, Stein U (2011) S100A4-induced cell motility and metastasis is restricted by the Wnt/beta-catenin pathway inhibitor calcimycin in colon cancer cells. Mol Biol Cell 22(18):3344–3354. doi:10.1091/mbc.E10-09-0739

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Jenkinson SR, Barraclough R, West CR, Rudland PS (2004) S100A4 regulates cell motility and invasion in an in vitro model for breast cancer metastasis. Br J Cancer 90(1):253–262. doi:10.1038/sj.bjc.6601483

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Hapangama DK, Raju RS, Valentijn AJ, Barraclough D, Hart A, Turner MA, Platt-Higgins A, Barraclough R, Rudland PS (2012) Aberrant expression of metastasis-inducing proteins in ectopic and matched eutopic endometrium of women with endometriosis: implications for the pathogenesis of endometriosis. Hum Reprod 27(2):394–407. doi:10.1093/humrep/der412

    PubMed  CAS  Google Scholar 

  71. Rudland PS, Barraclough R, Fernig DG, Smith JA (1998) Growth and differentiation of the normal mammary gland and its tumours. Biochem Soc Symp 63:1–20

    PubMed  CAS  Google Scholar 

  72. Barraclough R, Dawson KJ, Rudland PS (1982) Control of protein synthesis in cuboidal rat mammary epithelial cells in culture. Changes in gene expression accompany the formation of elongated cells. Eur J Biochem 129(2):335–341

    PubMed  CAS  Google Scholar 

  73. Andersen K, Mori H, Fata J, Bascom J, Oyjord T, Maelandsmo GM, Bissell M (2011) The metastasis-promoting protein S100A4 regulates mammary branching morphogenesis. Dev Biol 352(2):181–190. doi:10.1016/j.ydbio.2010.12.033

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Gibbs FE, Barraclough R, Platt-Higgins A, Rudland PS, Wilkinson MC, Parry EW (1995) Immunocytochemical distribution of the calcium-binding protein p9Ka in normal rat tissues: variation in the cellular location in different tissues. J Histochem Cytochem 43(2):169–180

    PubMed  CAS  Google Scholar 

  75. Grigorian M, Tulchinsky E, Burrone O, Tarabykina S, Georgiev G, Lukanidin E (1994) Modulation of mts1 expression in mouse and human normal and tumor cells. Electrophoresis 15(3–4):463–468

    PubMed  CAS  Google Scholar 

  76. Takenaga K, Nakamura Y, Sakiyama S (1994) Cellular localization of pEL98 protein, an S100-related calcium binding protein, in fibroblasts and its tissue distribution analyzed by monoclonal antibodies. Cell Struct Funct 19(3):133–141

    PubMed  CAS  Google Scholar 

  77. Jackson-Grusby LL, Swiergiel J, Linzer DI (1987) A growth-related mRNA in cultured mouse cells encodes a placental calcium binding protein. Nucl Acids Res 15(16):6677–6690

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Davies M, Harris S, Rudland P, Barraclough R (1995) Expression of the rat, S-100-related, calcium-binding protein gene, p9Ka, in transgenic mice demonstrates different patterns of expression between these two species. DNA Cell Biol 14(10):825–832

    PubMed  CAS  Google Scholar 

  79. EL Naaman C, Grum-Schwensen B, Mansouri A, Grigorian M, Santoni-Rugiu E, Hansen T, Kriajevska M, Shäfer BW, Heizmann CW, Lukanidin E, Ambartsumian N (2004) Cancer predisposition in mice deficient for the metastasis-associated Mts1(S100A4) gene. Oncogene 23(20):3670–3680. doi:10.1038/sj.onc.1207420

    PubMed  CAS  Google Scholar 

  80. Davies MP, Rudland PS, Robertson L, Parry EW, Jolicoeur P, Barraclough R (1996) Expression of the calcium-binding protein S100A4 (p9Ka) in MMTV-neu transgenic mice induces metastasis of mammary tumours. Oncogene 13(8):1631–1637

    PubMed  CAS  Google Scholar 

  81. Li ZH, Dulyaninova NG, House RP, Almo SC, Bresnick AR (2010) S100A4 regulates macrophage chemotaxis. Mol Biol Cell 21(15):2598–2610. doi:10.1091/mbc.E09-07-0609

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130(2):393–405

    PubMed  CAS  Google Scholar 

  83. Okada H, Danoff TM, Kalluri R, Neilson EG (1997) Early role of Fsp1 in epithelialmesenchymal transformation. Am J Physiol 273(4 Pt 2):F563–F574

    PubMed  CAS  Google Scholar 

  84. Schneider M, Hansen JL, Sheikh SP (2008) S100A4: a common mediator of epithelial-mesenchymal transition, fibrosis and regeneration in diseases? J Mol Med (Berl) 86(5):507–522. doi:10.1007/s00109-007-0301-3

    CAS  Google Scholar 

  85. Xue C, Plieth D, Venkov C, Xu C, Neilson EG (2003) The gatekeeper effect of epithelial–mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63(12):3386–3394

    PubMed  CAS  Google Scholar 

  86. Li ZH, Bresnick AR (2006) The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res 66(10):5173–5180. doi:10.1158/0008-5472.CAN-05-3087

    PubMed  CAS  Google Scholar 

  87. Malashkevich VN, Varney KM, Garrett SC, Wilder PT, Knight D, Charpentier TH, Ramagopal UA, Almo SC, Weber DJ, Bresnick AR (2008) Structure of Ca2+-bound S100A4 and its interaction with peptides derived from nonmuscle myosin-IIA. Biochemistry 47(18):5111–5126. doi:10.1021/bi702537s

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Semov A, Moreno MJ, Onichtchenko A, Abulrob A, Ball M, Ekiel I, Pietrzynski G, Stanimirovic D, Alakhov V (2005) Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin II and accelerated plasmin formation. J Biol Chem 280(21):20833–20841. doi:10.1074/jbc.M412653200

    PubMed  CAS  Google Scholar 

  89. Cabezon T, Celis JE, Skibshoj I, Klingelhofer J, Grigorian M, Gromov P, Rank F, Myklebust JH, Maelandsmo GM, Lukanidin E, Ambartsumian N (2007) Expression of S100A4 by a variety of cell types present in the tumor microenvironment of human breast cancer. Int J Cancer 121(7):1433–1444. doi:10.1002/ijc.22850

    PubMed  CAS  Google Scholar 

  90. Ambartsumian N, Klingelhofer J, Grigorian M, Christensen C, Kriajevska M, Tulchinsky E, Georgiev G, Berezin V, Bock E, Rygaard J, Cao R, Cao Y, Lukanidin E (2001) The metastasis-associated Mts1(S100A4) protein could act as an angiogenic factor. Oncogene 20(34):4685–4695. doi:10.1038/sj.onc.1204636

    PubMed  CAS  Google Scholar 

  91. Lawrie A, Spiekerkoetter E, Martinez EC, Ambartsumian N, Sheward WJ, MacLean MR, Harmar AJ, Schmidt AM, Lukanidin E, Rabinovitch M (2005) Interdependent serotonin transporter and receptor pathways regulate S100A4/Mts1, a gene associated with pulmonary vascular disease. Circ Res 97(3):227–235. doi:10.1161/01.RES.0000176025.57706.1e

    PubMed  CAS  Google Scholar 

  92. Spiekerkoetter E, Guignabert C, de Jesus Perez V, Alastalo TP, Powers JM, Wang L, Lawrie A, Ambartsumian N, Schmidt AM, Berryman M, Ashley RH, Rabinovitch M (2009) S100A4 and bone morphogenetic protein-2 codependently induce vascular smooth muscle cell migration via phospho-extracellular signal-regulated kinase and chloride intracellular channel 4. Circ Res 105(7):639–647, 613 p following 647. doi:10.1161/CIRCRESAHA.109.205120

    Google Scholar 

  93. Klingelhofer J, Grum-Schwensen B, Beck MK, Knudsen RS, Grigorian M, Lukanidin E, Ambartsumian N (2012) Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion. Neoplasia 14(12):1260–1268

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Schmidt-Hansen B, Ornas D, Grigorian M, Klingelhofer J, Tulchinsky E, Lukanidin E, Ambartsumian N (2004) Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene 23(32):5487–5495. doi:10.1038/sj.onc.1207720

    PubMed  CAS  Google Scholar 

  95. Takenaga K, Kozlova EN (2006) Role of intracellular S100A4 for migration of rat astrocytes. Glia 53(3):313–321. doi:10.1002/glia.20284

    PubMed  Google Scholar 

  96. Fang Z, Duthoit N, Wicher G, Kallskog O, Ambartsumian N, Lukanidin E, Takenaga K, Kozlova EN (2006) Intracellular calcium-binding protein S100A4 influences injury-induced migration of white matter astrocytes. Acta Neuropathol 111(3):213–219. doi:10.1007/s00401-005-0019-7

    PubMed  CAS  Google Scholar 

  97. Dmytriyeva O, Pankratova S, Owczarek S, Sonn K, Soroka V, Ridley CM, Marsolais A, Lopez-Hoyos M, Ambartsumian N, Lukanidin E, Bock E, Berezin V, Kiryushko D (2012) The metastasis-promoting S100A4 protein confers neuroprotection in brain injury. Nature communications 3:1197. doi:10.1038/ncomms2202

    PubMed  Google Scholar 

  98. Takenaga K, Nakamura Y, Sakiyama S, Hasegawa Y, Sato K, Endo H (1994) Binding of pEL98 protein, an S100-related calcium-binding protein, to nonmuscle tropomyosin. J Cell Biol 124(5):757–768

    PubMed  CAS  Google Scholar 

  99. Watanabe Y, Usada N, Minami H, Morita T, Tsugane S, Ishikawa R, Kohama K, Tomida Y, Hidaka H (1993) Calvasculin, as a factor affecting the microfilament assemblies in rat fibroblasts transfected by src gene. FEBS Lett 324(1):51–55

    PubMed  CAS  Google Scholar 

  100. Flynn AM, Rudland PS, Barraclough R (1996) Protein interactions between S100A4 (p9Ka) and other cellular proteins identified using in vitro methods. Biochem Soc Trans 24(3):341S

    PubMed  CAS  Google Scholar 

  101. Chen H, Fernig DG, Rudland PS, Sparks A, Wilkinson MC, Barraclough R (2001) Binding to intracellular targets of the metastasis-inducing protein, S100A4 (p9Ka). Biochem Biophys Res Commun 286(5):1212–1217. doi:10.1006/bbrc.2001.5517

    PubMed  CAS  Google Scholar 

  102. Chen M, Bresnick AR, O’Connor KL (2012) Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene (Epub ahead of print). doi:10.1038/onc.2012.383

  103. Fukata Y, Oshiro N, Kinoshita N, Kawano Y, Matsuoka Y, Bennett V, Matsuura Y, Kaibuchi K (1999) Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility. J Cell Biol 145(2):347–361

    PubMed Central  PubMed  CAS  Google Scholar 

  104. O’Connor KL, Nguyen BK, Mercurio AM (2000) RhoA function in lamellae formation and migration is regulated by the alpha6beta4 integrin and cAMP metabolism. J Cell Biol 148(2):253–258

    PubMed Central  PubMed  Google Scholar 

  105. Kurokawa K, Matsuda M (2005) Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol Biol Cell 16(9):4294–4303. doi:10.1091/mbc.E04-12-1076

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Petrie RJ, Yamada KM (2013) At the leading edge of three-dimensional cell migration. J Cell Sci 125(Pt 24):5917–5926. doi:10.1242/jcs.093732

    Google Scholar 

  107. Sudo K, Ito H, Iwamoto I, Morishita R, Asano T, Nagata K (2006) Identification of a cell polarity-related protein, Lin-7B, as a binding partner for a Rho effector, Rhotekin, and their possible interaction in neurons. Neurosci Res 56(4):347–355. doi:10.1016/j.neures.2006.08.003

    PubMed  CAS  Google Scholar 

  108. Li ZH, Spektor A, Varlamova O, Bresnick AR (2003) Mts1 regulates the assembly of nonmuscle myosin-IIA. Biochemistry 42(48):14258–14266. doi:10.1021/bi0354379

    PubMed  CAS  Google Scholar 

  109. Dulyaninova NG, Malashkevich VN, Almo SC, Bresnick AR (2005) Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation. Biochemistry 44(18):6867–6876. doi:10.1021/bi0500776

    PubMed  CAS  Google Scholar 

  110. Ford HL, Silver DL, Kachar B, Sellers JR, Zain SB (1997) Effect of Mts1 on the structure and activity of nonmuscle myosin II. Biochemistry 36(51):16321–16327. doi:10.1021/bi971182l

    PubMed  CAS  Google Scholar 

  111. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633–643. doi:10.1038/nrm2957

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790. doi:10.1038/nrm2786

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Vicente-Manzanares M, Zareno J, Whitmore L, Choi CK, Horwitz AF (2007) Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J Cell Biol 176(5):573–580. doi:10.1083/jcb.200612043

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Vicente-Manzanares M, Koach MA, Whitmore L, Lamers ML, Horwitz AF (2008) Segregation and activation of myosin IIB creates a rear in migrating cells. J Cell Biol 183(3):543–554. doi:10.1083/jcb.200806030

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Zhang S, Wang G, Fernig DG, Rudland PS, Webb SE, Barraclough R, Martin-Fernandez M (2005) Interaction of metastasis-inducing S100A4 protein in vivo by fluorescence lifetime imaging microscopy. Eur Biophys J 34(1):19–27. doi:10.1007/s00249-004-0428-x

    PubMed  Google Scholar 

  116. Ismail T, Fernig DG, Rudland PS, Terry CJ, Wang G, Barraclough R (2008) The basic C-terminal amino acids of calcium-binding protein S100A4 promote metastasis. Carcinogenesis 29(12):2259–2266. doi:10.1093/carcin/bgn217

    PubMed  CAS  Google Scholar 

  117. Zhang S, Wang G, Liu D, Bao Z, Fernig DG, Rudland PS, Barraclough R (2005) The C-terminal region of S100A4 is important for its metastasis-inducing properties. Oncogene 24(27):4401–4411. doi:10.1038/sj.onc.1208663

    PubMed  CAS  Google Scholar 

  118. Elliott PR, Irvine AF, Jung HS, Tozawa K, Pastok MW, Picone R, Badyal SK, Basran J, Rudland PS, Barraclough R, Lian LY, Bagshaw CR, Kriajevska M, Barsukov IL (2012) Asymmetric mode of Ca2+-S100A4 interaction with nonmuscle myosin IIA generates nanomolar affinity required for filament remodeling. Structure 20(4):654–666. doi:10.1016/j.str.2012.02.002

    PubMed Central  PubMed  CAS  Google Scholar 

  119. Kriajevska MV, Cardenas MN, Grigorian MS, Ambartsumian NS, Georgiev GP, Lukanidin EM (1994) Non-muscle myosin heavy chain as a possible target for protein encoded by metastasis-related mts-1 gene. J Biol Chem 269(31):19679–19682

    PubMed  CAS  Google Scholar 

  120. Hajra KM, Fearon ER (2002) Cadherin and catenin alterations in human cancer. Genes Chromosom Cancer 34(3):255–268. doi:10.1002/gcc.10083

    PubMed  CAS  Google Scholar 

  121. Moriyama-Kita M, Endo Y, Yonemura Y, Heizmann CW, Miyamori H, Sato H, Yamamoto E, Sasaki T (2005) S100A4 regulates E-cadherin expression in oral squamous cell carcinoma. Cancer Lett 230(2):211–218. doi:10.1016/j.canlet.2004.12.046

    PubMed  CAS  Google Scholar 

  122. Tubaro C, Arcuri C, Giambanco I, Donato R (2011) S100B in myoblasts regulates the transition from activation to quiescence and from quiescence to activation and reduces apoptosis. Biochim Biophys Acta 1813(5):1092–1104. doi:10.1016/j.bbamcr.2010.11.015

    PubMed  CAS  Google Scholar 

  123. Brozzi F, Arcuri C, Giambanco I, Donato R (2009) S100B protein regulates astrocyte shape and migration via interaction with Src kinase: implications for astrocyte development, activation and tumour growth. J Biol Chem 284(13):8797–8811. doi:10.1074/jbc.M805897200

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Sakaguchi M, Sonegawa H, Murata H, Kitazoe M, Futami J, Kataoka K, Yamada H, Huh NH (2008) S100A11, an dual mediator for growth regulation of human keratinocytes. Mol Biol Cell 19(1):78–85. doi:10.1091/mbc.E07-07-0682

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Stein U, Arlt F, Walther W, Smith J, Waldman T, Harris ED, Mertins SD, Heizmann CW, Allard D, Birchmeier W, Schlag PM, Shoemaker RH (2006) The metastasis-associated gene S100A4 is a novel target of beta-catenin/T-cell factor signaling in colon cancer. Gastroenterology 131(5):1486–1500. doi:10.1053/j.gastro.2006.08.041

    PubMed  CAS  Google Scholar 

  126. Stein U, Arlt F, Smith J, Sack U, Herrmann P, Walther W, Lemm M, Fichtner I, Shoemaker RH, Schlag PM (2011) Intervening in beta-catenin signaling by sulindac inhibits S100A4-dependent colon cancer metastasis. Neoplasia 13(2):131–144

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Slomnicki LP, Lesniak W (2010) S100A6 (calcyclin) deficiency induces senescence-like changes in cell cycle, morphology and functional characteristics of mouse NIH 3T3 fibroblasts. J Cell Biochem 109(3):576–584. doi:10.1002/jcb.22434

    PubMed  CAS  Google Scholar 

  128. Breen EC, Tang K (2003) Calcyclin (S100A6) regulates pulmonary fibroblast proliferation, morphology, and cytoskeletal organization in vitro. J Cell Biochem 88(4):848–854. doi:10.1002/jcb.10398

    PubMed  CAS  Google Scholar 

  129. Luo X, Sharff KA, Chen J, He TC, Luu HH (2008) S100A6 expression and function in human osteosarcoma. Clin Orthop Relat Res 466(9):2060–2070. doi:10.1007/s11999-008-0361-x

    PubMed Central  PubMed  Google Scholar 

  130. Luu HH, Zhou L, Haydon RC, Deyrup AT, Montag AG, Huo D, Heck R, Heizmann CW, Peabody TD, Simon MA, He TC (2005) Increased expression of S100A6 is associated with decreased metastasis and inhibition of cell migration and anchorage independent growth in human osteosarcoma. Cancer Lett 229(1):135–148. doi:10.1016/j.canlet.2005.02.015

    PubMed  CAS  Google Scholar 

  131. Nedjadi T, Kitteringham N, Campbell F, Jenkins RE, Park BK, Navarro P, Ashcroft F, Tepikin A, Neoptolemos JP, Costello E (2009) S100A6 binds to annexin 2 in pancreatic cancer cells and promotes pancreatic cancer cell motility. Br J Cancer 101(7):1145–1154. doi:10.1038/sj.bjc.6605289

    PubMed Central  PubMed  CAS  Google Scholar 

  132. Ohuchida K, Mizumoto K, Ishikawa N, Fujii K, Konomi H, Nagai E, Yamaguchi K, Tsuneyoshi M, Tanaka M (2005) The role of S100A6 in pancreatic cancer development and its clinical implication as a diagnostic marker and therapeutic target. Clin Cancer Res 11(21):7785–7793. doi:10.1158/1078-0432.CCR-05-0714

    PubMed  CAS  Google Scholar 

  133. Lesniak W, Slomnicki LP, Filipek A (2009) S100A6—new facts and features. Biochem Biophys Res Commun 390(4):1087–1092. doi:10.1016/j.bbrc.2009.10.150

    PubMed  CAS  Google Scholar 

  134. Komatsu K, Kobune-Fujiwara Y, Andoh A, Ishiguro S, Hunai H, Suzuki N, Kameyama M, Murata K, Miyoshi J, Akedo H, Tatsuta M, Nakamura H (2000) Increased expression of S100A6 at the invading fronts of the primary lesion and liver metastasis in patients with colorectal adenocarcinoma. Br J Cancer 83(6):769–774. doi:10.1054/bjoc.2000.1356

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Guo XJ, Chambers AF, Parfett CL, Waterhouse P, Murphy LC, Reid RE, Craig AM, Edwards DR, Denhardt DT (1990) Identification of a serum-inducible messenger RNA (5B10) as the mouse homologue of calcyclin: tissue distribution and expression in metastatic, ras-transformed NIH 3T3 cells. Cell Growth Differ 1(7):333–338

    PubMed  CAS  Google Scholar 

  136. Golitsina NL, Kordowska J, Wang CL, Lehrer SS (1996) Ca2+-dependent binding of calcyclin to muscle tropomyosin. Biochem Biophys Res Commun 220(2):360–365. doi:10.1006/bbrc.1996.0410

    PubMed  CAS  Google Scholar 

  137. Gross SR (2013) Actin binding proteins: their ups and downs in metastatic life. Cell Adh Migr 7(2):199–213

    PubMed Central  PubMed  Google Scholar 

  138. Mani RS, Kay CM (1990) Isolation and characterization of a novel molecular weight 11,000 Ca2+-binding protein from smooth muscle. Biochemistry 29(6):1398–1404

    PubMed  CAS  Google Scholar 

  139. Filipek A, Zasada A, Wojda U, Makuch R, Dabrowska R (1996) Characterization of chicken gizzard calcyclin and examination of its interaction with caldesmon. Comp Biochem Physiol B: Biochem Mol Biol 113(4):745–752

    CAS  Google Scholar 

  140. Wills FL, McCubbin WD, Kay CM (1994) Smooth muscle calponin-caltropin interaction: effect on biological activity and stability of calponin. Biochemistry 33(18):5562–5569

    PubMed  CAS  Google Scholar 

  141. Wolf R, Howard OM, Dong HF, Voscopoulos C, Boeshans K, Winston J, Divi R, Gunsior M, Goldsmith P, Ahvazi B, Chavakis T, Oppenheim JJ, Yuspa SH (2008) Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15. J Immunol 181(2):1499–1506

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Nasser MW, Qamri Z, Deol YS, Ravi J, Powell CA, Trikha P, Schwendener RA, Bai XF, Shilo K, Zou X, Leone G, Wolf R, Yuspa SH, Ganju RK (2012) S100A7 enhances mammary tumorigenesis through upregulation of inflammatory pathways. Cancer Res 72(3):604–615. doi:10.1158/0008-5472.CAN-11-0669

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Winston J, Wolf R (2012) Psoriasin (S100A7) promotes migration of a squamous carcinoma cell line. J Dermatol Sci 67(3):205–207. doi:10.1016/j.jdermsci.2012.06.009

    PubMed  CAS  Google Scholar 

  144. Kataoka K, Ono T, Murata H, Morishita M, Yamamoto KI, Sakaguchi M, Huh NH (2012) S100A7 promotes the migration and invasion of osteosarcoma cells via the receptor for advanced glycation end products. Oncol Lett 3(5):1149–1153. doi:10.3892/ol.2012.612

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Emberley ED, Niu Y, Leygue E, Tomes L, Gietz RD, Murphy LC, Watson PH (2003) Psoriasin interacts with Jab1 and influences breast cancer progression. Cancer Res 63(8):1954–1961

    PubMed  CAS  Google Scholar 

  146. Morgan MR, Jazayeri M, Ramsay AG, Thomas GJ, Boulanger MJ, Hart IR, Marshall JF (2011) Psoriasin (S100A7) associates with integrin beta6 subunit and is required for alphavbeta6-dependent carcinoma cell invasion. Oncogene 30(12):1422–1435. doi:10.1038/onc.2010.535

    PubMed  CAS  Google Scholar 

  147. West NR, Farnell B, Murray JI, Hof F, Watson PH, Boulanger MJ (2009) Structural and functional characterization of a triple mutant form of S100A7 defective for Jab1 binding. Protein Sci Publ Protein Soc 18(12):2615–2623. doi:10.1002/pro.274

    CAS  Google Scholar 

  148. West NR, Watson PH (2010) S100A7 (psoriasin) is induced by the proinflammatory cytokines oncostatin-M and interleukin-6 in human breast cancer. Oncogene 29(14):2083–2092. doi:10.1038/onc.2009.488

    PubMed  CAS  Google Scholar 

  149. Pei XF, Noble MS, Davoli MA, Rosfjord E, Tilli MT, Furth PA, Russell R, Johnson MD, Dickson RB (2004) Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In Vitro Cell Dev Biol Anim 40(1–2):14–21. doi:10.1290/1543-706X(2004)40<14:ECOPMT>2.0.CO;2

    PubMed  Google Scholar 

  150. Deol YS, Nasser MW, Yu L, Zou X, Ganju RK (2011) Tumor-suppressive effects of psoriasin (S100A7) are mediated through the beta-catenin/T cell factor 4 protein pathway in estrogen receptor-positive breast cancer cells. J Biol Chem 286(52):44845–44854. doi:10.1074/jbc.M111.225466

    PubMed Central  PubMed  CAS  Google Scholar 

  151. Krop I, Marz A, Carlsson H, Li X, Bloushtain-Qimron N, Hu M, Gelman R, Sabel MS, Schnitt S, Ramaswamy S, Kleer CG, Enerback C, Polyak K (2005) A putative role for psoriasin in breast tumor progression. Cancer Res 65(24):11326–11334. doi:10.1158/0008-5472.CAN-05-1523

    PubMed  CAS  Google Scholar 

  152. Goyette J, Geczy CL (2011) Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids 41(4):821–842. doi:10.1007/s00726-010-0528-0

    PubMed  CAS  Google Scholar 

  153. Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA (2003) Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol 170(6):3233–3242

    PubMed  CAS  Google Scholar 

  154. Frosch M, Strey A, Vogl T, Wulffraat NM, Kuis W, Sunderkotter C, Harms E, Sorg C, Roth J (2000) Myeloid-related proteins 8 and 14 are specifically secreted during interaction of phagocytes and activated endothelium and are useful markers for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthritis. Arthritis Rheum 43(3):628–637. doi:10.1002/1529-0131(200003)43:3<628:AID-ANR20>3.0.CO;2-X

    PubMed  CAS  Google Scholar 

  155. Odink K, Cerletti N, Bruggen J, Clerc RG, Tarcsay L, Zwadlo G, Gerhards G, Schlegel R, Sorg C (1987) Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330(6143):80–82. doi:10.1038/330080a0

    PubMed  CAS  Google Scholar 

  156. Zwadlo G, Bruggen J, Gerhards G, Schlegel R, Sorg C (1988) Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol 72(3):510–515

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Foell D, Frosch M, Sorg C, Roth J (2004) Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta 344(1–2):37–51. doi:10.1016/j.cccn.2004.02.023

    CAS  Google Scholar 

  158. Li C, Li S, Jia C, Yang L, Song Z, Wang Y (2012) Low concentration of S100A8/9 promotes angiogenesis-related activity of vascular endothelial cells: bridges among inflammation, angiogenesis, and tumorigenesis? Mediat Inflamm 2012:248574. doi:10.1155/2012/248574

    Google Scholar 

  159. Lee Y, Jang S, Min JK, Lee K, Sohn KC, Lim JS, Im M, Lee HE, Seo YJ, Kim CD, Lee JH (2012) S100A8 and S100A9 are messengers in the crosstalk between epidermis and dermis modulating a psoriatic milieu in human skin. Biochem Biophys Res Commun 423(4):647–653. doi:10.1016/j.bbrc.2012.05.162

    PubMed  CAS  Google Scholar 

  160. Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D (2006) S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 312(2):184–197. doi:10.1016/j.yexcr.2005.10.013

    PubMed  CAS  Google Scholar 

  161. Ang CW, Nedjadi T, Sheikh AA, Tweedle EM, Tonack S, Honap S, Jenkins RE, Park BK, Schwarte-Waldhoff I, Khattak I, Azadeh B, Dodson A, Kalirai H, Neoptolemos JP, Rooney PS, Costello E (2010) Smad4 loss is associated with fewer S100A8-positive monocytes in colorectal tumors and attenuated response to S100A8 in colorectal and pancreatic cancer cells. Carcinogenesis 31(9):1541–1551. doi:10.1093/carcin/bgq137

    PubMed  CAS  Google Scholar 

  162. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G (2011) S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res MCR 9(2):133–148. doi:10.1158/1541-7786.MCR-10-0394

    CAS  Google Scholar 

  163. Saha A, Lee YC, Zhang Z, Chandra G, Su SB, Mukherjee AB (2010) Lack of an endogenous anti-inflammatory protein in mice enhances colonization of B16F10 melanoma cells in the lungs. J Biol Chem 285(14):10822–10831. doi:10.1074/jbc.M109.083550

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Newton RA, Hogg N (1998) The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. J Immunol 160(3):1427–1435

    PubMed  CAS  Google Scholar 

  165. Hibino T, Sakaguchi M, Miyamoto S, Yamamoto M, Motoyama A, Hosoi J, Shimokata T, Ito T, Tsuboi R, Huh NH (2013) S100A9 Is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res 73(1):172–183. doi:10.1158/0008-5472.CAN-11-3843

    PubMed  CAS  Google Scholar 

  166. Cornish CJ, Devery JM, Poronnik P, Lackmann M, Cook DI, Geczy CL (1996) S100 protein CP-10 stimulates myeloid cell chemotaxis without activation. J Cell Physiol 166(2):427–437. doi:10.1002/(SICI)1097-4652(199602)166:2<427:AID-JCP21>3.0.CO;2-6

    PubMed  CAS  Google Scholar 

  167. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375. doi:10.1038/ncb1507

    PubMed  CAS  Google Scholar 

  168. Lominadze G, Rane MJ, Merchant M, Cai J, Ward RA, McLeish KR (2005) Myeloid-related protein-14 is a p38 MAPK substrate in human neutrophils. J Immunol 174(11):7257–7267

    PubMed  CAS  Google Scholar 

  169. Manitz MP, Horst B, Seeliger S, Strey A, Skryabin BV, Gunzer M, Frings W, Schonlau F, Roth J, Sorg C, Nacken W (2003) Loss of S100A9 (MRP14) results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro. Mol Cell Biol 23(3):1034–1043

    PubMed Central  PubMed  CAS  Google Scholar 

  170. Vogl T, Ludwig S, Goebeler M, Strey A, Thorey IS, Reichelt R, Foell D, Gerke V, Manitz MP, Nacken W, Werner S, Sorg C, Roth J (2004) MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood 104(13):4260–4268. doi:10.1182/blood-2004-02-0446

    PubMed  CAS  Google Scholar 

  171. Roth J, Burwinkel F, van den Bos C, Goebeler M, Vollmer E, Sorg C (1993) MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner. Blood 82(6):1875–1883

    PubMed  CAS  Google Scholar 

  172. Leukert N, Vogl T, Strupat K, Reichelt R, Sorg C, Roth J (2006) Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J Mol Biol 359(4):961–972. doi:10.1016/j.jmb.2006.04.009

    PubMed  CAS  Google Scholar 

  173. McNeill E, Conway SJ, Roderick HL, Bootman MD, Hogg N (2007) Defective chemoattractant-induced calcium signalling in S100A9 null neutrophils. Cell Calcium 41(2):107–121. doi:10.1016/j.ceca.2006.05.004

    PubMed  CAS  Google Scholar 

  174. Vandal K, Rouleau P, Boivin A, Ryckman C, Talbot M, Tessier PA (2003) Blockade of S100A8 and S100A9 suppresses neutrophil migration in response to lipopolysaccharide. J Immunol 171(5):2602–2609

    PubMed  CAS  Google Scholar 

  175. O’Connell PA, Surette AP, Liwski RS, Svenningsson P, Waisman DM (2010) S100A10 regulates plasminogen-dependent macrophage invasion. Blood 116(7):1136–1146. doi:10.1182/blood-2010-01-264754

    PubMed  Google Scholar 

  176. Phipps KD, Surette AP, O’Connell PA, Waisman DM (2011) Plasminogen receptor S100A10 is essential for the migration of tumor-promoting macrophages into tumor sites. Cancer Res 71(21):6676–6683. doi:10.1158/0008-5472.CAN-11-1748

    PubMed  CAS  Google Scholar 

  177. McKiernan E, McDermott EW, Evoy D, Crown J, Duffy MJ (2011) The role of S100 genes in breast cancer progression. Tumour Biol J Int Soc Oncodev Biol Med 32(3):441–450. doi:10.1007/s13277-010-0137-2

    CAS  Google Scholar 

  178. Zhang L, Fogg DK, Waisman DM (2004) RNA interference-mediated silencing of the S100A10 gene attenuates plasmin generation and invasiveness of Colo 222 colorectal cancer cells. J Biol Chem 279(3):2053–2062. doi:10.1074/jbc.M310357200

    PubMed  CAS  Google Scholar 

  179. Choi KS, Fogg DK, Yoon CS, Waisman DM (2003) p11 regulates extracellular plasmin production and invasiveness of HT1080 fibrosarcoma cells. FASEB J Off Publ Fed Am Soc Exp Biol 17(2):235–246. doi:10.1096/fj.02-0697com

    CAS  Google Scholar 

  180. Jung MJ, Murzik U, Wehder L, Hemmerich P, Melle C (2010) Regulation of cellular actin architecture by S100A10. Exp Cell Res 316(7):1234–1240. doi:10.1016/j.yexcr.2010.01.022

    PubMed  CAS  Google Scholar 

  181. Yang X, Popescu NC, Zimonjic DB (2011) DLC1 interaction with S100A10 mediates inhibition of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism. Cancer Res 71(8):2916–2925. doi:10.1158/0008-5472.CAN-10-2158

    PubMed Central  PubMed  CAS  Google Scholar 

  182. Zobiack N, Gerke V, Rescher U (2001) Complex formation and submembranous localization of annexin 2 and S100A10 in live HepG2 cells. FEBS Lett 500(3):137–140

    PubMed  CAS  Google Scholar 

  183. Gerke V, Weber K (1984) Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J 3(1):227–233

    PubMed Central  PubMed  CAS  Google Scholar 

  184. Glenney JR Jr (1987) Calpactins: calcium-regulated membrane-skeletal proteins. BioEssays 7(4):173–175. doi:10.1002/bies.950070408

    CAS  Google Scholar 

  185. Regnouf F, Rendon A, Pradel LA (1991) Biochemical characterization of annexins I and II isolated from pig nervous tissue. J Neurochem 56(6):1985–1996

    PubMed  CAS  Google Scholar 

  186. Murzik U, Hemmerich P, Weidtkamp-Peters S, Ulbricht T, Bussen W, Hentschel J, von Eggeling F, Melle C (2008) Rad54B targeting to DNA double-strand break repair sites requires complex formation with S100A11. Mol Biol Cell 19(7):2926–2935. doi:10.1091/mbc.E07-11-1167

    PubMed Central  PubMed  CAS  Google Scholar 

  187. Sakaguchi M, Miyazaki M, Inoue Y, Tsuji T, Kouchi H, Tanaka T, Yamada H, Namba M (2000) Relationship between contact inhibition and intranuclear S100C of normal human fibroblasts. J Cell Biol 149(6):1193–1206

    PubMed Central  PubMed  CAS  Google Scholar 

  188. Sakaguchi M, Huh NH (2011) S100A11, a dual growth regulator of epidermal keratinocytes. Amino Acids 41(4):797–807. doi:10.1007/s00726-010-0747-4

    PubMed  CAS  Google Scholar 

  189. Fan C, Fu Z, Su Q, Angelini DJ, Van Eyk J, Johns RA (2011) S100A11 mediates hypoxia-induced mitogenic factor (HIMF)-induced smooth muscle cell migration, vesicular exocytosis, and nuclear activation. Mol Cell Proteomics 10(3):M110000901. doi:10.1074/mcp.M110.000901

  190. Naka M, Qing ZX, Sasaki T, Kise H, Tawara I, Hamaguchi S, Tanaka T (1994) Purification and characterization of a novel calcium-binding protein, S100C, from porcine heart. Biochim Biophys Acta 1223(3):348–353

    PubMed  CAS  Google Scholar 

  191. Vogl T, Propper C, Hartmann M, Strey A, Strupat K, van den Bos C, Sorg C, Roth J (1999) S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. J Biol Chem 274(36):25291–25296

    PubMed  CAS  Google Scholar 

  192. Guignard F, Mauel J, Markert M (1995) Identification and characterization of a novel human neutrophil protein related to the S100 family. Biochem J 309(2):395–401

    PubMed Central  PubMed  CAS  Google Scholar 

  193. Yang Z, Tao T, Raftery MJ, Youssef P, Di Girolamo N, Geczy CL (2001) Proinflammatory properties of the human S100 protein S100A12. J Leukoc Biol 69(6):986–994

    PubMed  CAS  Google Scholar 

  194. Dell’Angelica EC, Schleicher CH, Santome JA (1994) Primary structure and binding properties of calgranulin C, a novel S100-like calcium-binding protein from pig granulocytes. J Biol Chem 269(46):28929–28936

    PubMed  Google Scholar 

  195. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97(7):889–901

    PubMed  CAS  Google Scholar 

  196. Yan WX, Armishaw C, Goyette J, Yang Z, Cai H, Alewood P, Geczy CL (2008) Mast cell and monocyte recruitment by S100A12 and its hinge domain. J Biol Chem 283(19):13035–13043. doi:10.1074/jbc.M710388200

    PubMed  CAS  Google Scholar 

  197. Rouleau P, Vandal K, Ryckman C, Poubelle PE, Boivin A, Talbot M, Tessier PA (2003) The calcium-binding protein S100A12 induces neutrophil adhesion, migration, and release from bone marrow in mouse at concentrations similar to those found in human inflammatory arthritis. Clin Immunol 107(1):46–54

    PubMed  CAS  Google Scholar 

  198. Xiong Z, O’Hanlon D, Becker LE, Roder J, MacDonald JF, Marks A (2000) Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100B null mice. Exp Cell Res 257(2):281–289. doi:10.1006/excr.2000.4902

    PubMed  CAS  Google Scholar 

  199. Lin J, Yang Q, Wilder PT, Carrier F, Weber DJ (2010) The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J Biol Chem 285(35):27487–27498. doi:10.1074/jbc.M110.155382

    PubMed Central  PubMed  CAS  Google Scholar 

  200. Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A (2007) S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 282(43):31317–31331. doi:10.1074/jbc.M703951200

    PubMed  CAS  Google Scholar 

  201. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275(51):40096–40105. doi:10.1074/jbc.M006993200

    PubMed  CAS  Google Scholar 

  202. Bianchi R, Kastrisianaki E, Giambanco I, Donato R (2011) S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 286(9):7214–7226. doi:10.1074/jbc.M110.169342

    PubMed Central  PubMed  CAS  Google Scholar 

  203. Reddy MA, Li SL, Sahar S, Kim YS, Xu ZG, Lanting L, Natarajan R (2006) Key role of Src kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells. J Biol Chem 281(19):13685–13693. doi:10.1074/jbc.M511425200

    PubMed  CAS  Google Scholar 

  204. Sbai O, Devi TS, Melone MA, Feron F, Khrestchatisky M, Singh LP, Perrone L (2010) RAGE-TXNIP axis is required for S100B-promoted Schwann cell migration, fibronectin expression and cytokine secretion. J Cell Sci 123(24):4332–4339. doi:10.1242/jcs.074674

    PubMed  CAS  Google Scholar 

  205. Pang X, Min J, Liu L, Liu Y, Ma N, Zhang H (2012) S100B protein as a possible participant in the brain metastasis of NSCLC. Med Oncol 29(4):2626–2632. doi:10.1007/s12032-012-0169-0

    PubMed  CAS  Google Scholar 

  206. Jiang W, Jia Q, Liu L, Zhao X, Tan A, Ma N, Zhang H (2011) S100B promotes the proliferation, migration and invasion of specific brain metastatic lung adenocarcinoma cell line. Cell Biochem Funct 29(7):582–588. doi:10.1002/cbf.1791

    PubMed  CAS  Google Scholar 

  207. Ivanenkov VV, Jamieson GA, Jr., Gruenstein E, Dimlich RV (1995) Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ. J Biol Chem 270(24):14651–14658

    Google Scholar 

  208. Skripnikova EV, Gusev NB (1989) Interaction of smooth muscle caldesmon with S-100 protein. FEBS Lett 257(2):380–382

    PubMed  CAS  Google Scholar 

  209. Donato R (1988) Calcium-independent, pH-regulated effects of S-100 proteins on assembly-disassembly of brain microtubule protein in vitro. J Biol Chem 263(1):106–110

    PubMed  CAS  Google Scholar 

  210. Baudier J, Cole RD (1988) Interactions between the microtubule-associated tau proteins and S100b regulate tau phosphorylation by the Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263(12):5876–5883

    PubMed  CAS  Google Scholar 

  211. Sorci G, Agneletti AL, Bianchi R, Donato R (1998) Association of S100B with intermediate filaments and microtubules in glial cells. Biochim Biophys Acta 1448(2):277–289

    PubMed  CAS  Google Scholar 

  212. Saito T, Ikeda T, Nakamura K, Chung UI, Kawaguchi H (2007) S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Rep 8(5):504–509. doi:10.1038/sj.embor.7400934

    PubMed Central  PubMed  CAS  Google Scholar 

  213. Wang G, Platt-Higgins A, Carroll J, de Silva Rudland S, Winstanley J, Barraclough R, Rudland PS (2006) Induction of metastasis by S100P in a rat mammary model and its association with poor survival of breast cancer patients. Cancer Res 66(2):1199–1207. doi:10.1158/0008-5472.CAN-05-2605

    PubMed  CAS  Google Scholar 

  214. Guerreiro Da Silva ID, Hu YF, Russo IH, Ao X, Salicioni AM, Yang X, Russo J (2000) S100P calcium-binding protein overexpression is associated with immortalization of human breast epithelial cells in vitro and early stages of breast cancer development in vivo. Int J Oncol 16(2):231–240

    PubMed  CAS  Google Scholar 

  215. Gibadulinova A, Tothova V, Pastorek J, Pastorekova S (2011) Transcriptional regulation and functional implication of S100P in cancer. Amino Acids 41(4):885–892. doi:10.1007/s00726-010-0495-5

    PubMed  CAS  Google Scholar 

  216. Parkkila S, Pan PW, Ward A, Gibadulinova A, Oveckova I, Pastorekova S, Pastorek J, Martinez AR, Helin HO, Isola J (2008) The calcium-binding protein S100P in normal and malignant human tissues. BMC Clin Pathol 8:2. doi:10.1186/1472-6890-8-2

    PubMed Central  PubMed  Google Scholar 

  217. Tong XM, Lin XN, Song T, Liu L, Zhang SY (2010) Calcium-binding protein S100P is highly expressed during the implantation window in human endometrium. Fertil Steril 94(4):1510–1518. doi:10.1016/j.fertnstert.2009.07.1667

    PubMed  CAS  Google Scholar 

  218. Arumugam T, Logsdon CD (2011) S100P: a novel therapeutic target for cancer. Amino Acids 41(4):893–899. doi:10.1007/s00726-010-0496-4

    PubMed  CAS  Google Scholar 

  219. Du M, Wang G, Ismail TM, Gross S, Fernig DG, Barraclough R, Rudland PS (2012) S100P dissociates myosin IIA filaments and focal adhesion sites to reduce cell adhesion and enhance cell migration. J Biol Chem 287(19):15330–15344. doi:10.1074/jbc.M112.349787

    PubMed Central  PubMed  CAS  Google Scholar 

  220. Austermann J, Nazmi AR, Muller-Tidow C, Gerke V (2008) Characterization of the Ca2+-regulated ezrin-S100P interaction and its role in tumor cell migration. J Biol Chem 283(43):29331–29340. doi:10.1074/jbc.M806145200

    PubMed Central  PubMed  CAS  Google Scholar 

  221. Arumugam T, Simeone DM, Van Golen K, Logsdon CD (2005) S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 11(15):5356–5364. doi:10.1158/1078-0432.CCR-05-0092

    PubMed  CAS  Google Scholar 

  222. Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, Zhang Q, Martin EC, Elliott S, Collins-Burow BM, Burow ME, Wang G (2012) Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Breast Cancer Res BCR 14(2):R45. doi:10.1186/bcr3144

    CAS  Google Scholar 

  223. Jiang L, Lai YK, Zhang J, Wang H, Lin MC, He ML, Kung HF (2011) Targeting S100P inhibits colon cancer growth and metastasis by Lentivirus-mediated RNA interference and proteomic analysis. Mol Med 17(7–8):709–716. doi:10.2119/molmed.2011.00008

    PubMed Central  PubMed  CAS  Google Scholar 

  224. Chandramouli A, Mercado-Pimentel ME, Hutchinson A, Gibadulinova A, Olson ER, Dickinson S, Shanas R, Davenport J, Owens J, Bhattacharyya AK, Regan JW, Pastorekova S, Arumugam T, Logsdon CD, Nelson MA (2010) The induction of S100p expression by the prostaglandin E(2) (PGE(2))/EP4 receptor signaling pathway in colon cancer cells. Cancer Biol Ther 10(10):1056–1066. doi:10.4161/cbt.10.10.13373

    PubMed Central  PubMed  CAS  Google Scholar 

  225. Barry S, Chelala C, Lines K, Sunamura M, Wang A, Marelli-Berg FM, Brennan C, Lemoine NR, Crnogorac-Jurcevic T (2012) S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells. Clin Exp Metastasis 30(3):251–264. doi:10.1007/s10585-012-9532-y

    PubMed  Google Scholar 

  226. Heil A, Nazmi AR, Koltzscher M, Poeter M, Austermann J, Assard N, Baudier J, Kaibuchi K, Gerke V (2011) S100P is a novel interaction partner and regulator of IQGAP1. J Biol Chem 286(9):7227–7238. doi:10.1074/jbc.M110.135095

    PubMed Central  PubMed  CAS  Google Scholar 

  227. Whiteman HJ, Weeks ME, Dowen SE, Barry S, Timms JF, Lemoine NR, Crnogorac-Jurcevic T (2007) The role of S100P in the invasion of pancreatic cancer cells is mediated through cytoskeletal changes and regulation of cathepsin D. Cancer Res 67(18):8633–8642. doi:10.1158/0008-5472.CAN-07-0545

    PubMed  CAS  Google Scholar 

  228. Fuentes MK, Nigavekar SS, Arumugam T, Logsdon CD, Schmidt AM, Park JC, Huang EH (2007) RAGE activation by S100P in colon cancer stimulates growth, migration, and cell signaling pathways. Dis Colon Rectum 50(8):1230–1240. doi:10.1007/s10350-006-0850-5

    PubMed  Google Scholar 

  229. Halayko AJ, Ghavami S (2009) S100A8/A9: a mediator of severe asthma pathogenesis and morbidity? Can J Physiol Pharmacol 87(10):743–755. doi:10.1139/Y09-054

    PubMed  CAS  Google Scholar 

  230. Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D (2012) The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem 120(5):644–659. doi:10.1111/j.1471-4159.2011.07612.x

    PubMed  CAS  Google Scholar 

  231. Wolf R, Ruzicka T, Yuspa SH (2011) Novel S100A7 (psoriasin)/S100A15 (koebnerisin) subfamily: highly homologous but distinct in regulation and function. Amino Acids 41(4):789–796. doi:10.1007/s00726-010-0666-4

    PubMed  CAS  Google Scholar 

  232. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13(1):24–57

    PubMed Central  PubMed  CAS  Google Scholar 

  233. Yoo HJ, Yun BR, Kwon JH, Ahn HS, Seol MA, Lee MJ, Yu GR, Yu HC, Hong B, Choi K, Kim DG (2009) Genetic and expression alterations in association with the sarcomatous change of cholangiocarcinoma cells. Exp Mol Med 41(2):102–115

    PubMed Central  PubMed  CAS  Google Scholar 

  234. Hamada S, Satoh K, Hirota M, Fujibuchi W, Kanno A, Umino J, Ito H, Satoh A, Kikuta K, Kume K, Masamune A, Shimosegawa T (2009) Expression of the calcium-binding protein S100P is regulated by bone morphogenetic protein in pancreatic duct epithelial cell lines. Cancer Sci 100(1):103–110. doi:10.1111/j.1349-7006.2008.00993.x

    PubMed  CAS  Google Scholar 

  235. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293. doi:10.1038/nrc2621

    PubMed Central  PubMed  CAS  Google Scholar 

  236. Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C, Grigorian M, Lukanidin E, Ambartsumian N (2005) Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res 65(9):3772–3780. doi:10.1158/0008-5472.CAN-04-4510

    PubMed  CAS  Google Scholar 

  237. Schmidt-Hansen B, Klingelhofer J, Grum-Schwensen B, Christensen A, Andresen S, Kruse C, Hansen T, Ambartsumian N, Lukanidin E, Grigorian M (2004) Functional significance of metastasis-inducing S100A4(Mts1) in tumor-stroma interplay. J Biol Chem 279(23):24498–24504. doi:10.1074/jbc.M400441200

    PubMed  CAS  Google Scholar 

  238. Grum-Schwensen B, Klingelhofer J, Grigorian M, Almholt K, Nielsen BS, Lukanidin E, Ambartsumian N (2010) Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. Cancer Res 70(3):936–947. doi:10.1158/0008-5472.CAN-09-3220

    PubMed  CAS  Google Scholar 

  239. Taylor S, Herrington S, Prime W, Rudland PS, Barraclough R (2002) S100A4 (p9Ka) protein in colon carcinoma and liver metastases: association with carcinoma cells and T-lymphocytes. Br J Cancer 86(3):409–416. doi:10.1038/sj.bjc.6600071

    PubMed Central  PubMed  CAS  Google Scholar 

  240. Ruegg C (2006) Leukocytes, inflammation, and angiogenesis in cancer: fatal attractions. J Leukoc Biol 80(4):682–684. doi:10.1189/jlb.0606394

    PubMed  CAS  Google Scholar 

  241. Salama I, Malone PS, Mihaimeed F, Jones JL (2008) A review of the S100 proteins in cancer. Eur J Surg Oncol 34(4):357–364. doi:10.1016/j.ejso.2007.04.009

    CAS  Google Scholar 

  242. Guarino M, Tosoni A, Nebuloni M (2009) Direct contribution of epithelium to organ fibrosis: epithelial–mesenchymal transition. Hum Pathol 40(10):1365–1376. doi:10.1016/j.humpath.2009.02.020

    PubMed  CAS  Google Scholar 

  243. Rygiel KA, Robertson H, Marshall HL, Pekalski M, Zhao L, Booth TA, Jones DE, Burt AD, Kirby JA (2008) Epithelial–mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab Investig J Tech Meth Pathol 88(2):112–123. doi:10.1038/labinvest.3700704

    CAS  Google Scholar 

  244. Ju W, Eichinger F, Bitzer M, Oh J, McWeeney S, Berthier CC, Shedden K, Cohen CD, Henger A, Krick S, Kopp JB, Stoeckert CJ Jr, Dikman S, Schroppel B, Thomas DB, Schlondorff D, Kretzler M, Bottinger EP (2009) Renal gene and protein expression signatures for prediction of kidney disease progression. Am J Pathol 174(6):2073–2085. doi:10.2353/ajpath.2009.080888

    PubMed Central  PubMed  CAS  Google Scholar 

  245. Gant TW, Baus PR, Clothier B, Riley J, Davies R, Judah DJ, Edwards RE, George E, Greaves P, Smith AG (2003) Gene expression profiles associated with inflammation, fibrosis, and cholestasis in mouse liver after griseofulvin. EHP Toxicogenomics J Natl Inst Environ Health Sci 111(1T):37–43

    Google Scholar 

  246. Dempsie Y, Nilsen M, White K, Mair KM, Loughlin L, Ambartsumian N, Rabinovitch M, Maclean MR (2011) Development of pulmonary arterial hypertension in mice over-expressing S100A4/Mts1 is specific to females. Respir Res 12:159. doi:10.1186/1465-9921-12-159

    PubMed Central  PubMed  CAS  Google Scholar 

  247. Merklinger SL, Wagner RA, Spiekerkoetter E, Hinek A, Knutsen RH, Kabir MG, Desai K, Hacker S, Wang L, Cann GM, Ambartsumian NS, Lukanidin E, Bernstein D, Husain M, Mecham RP, Starcher B, Yanagisawa H, Rabinovitch M (2005) Increased fibulin-5 and elastin in S100A4/Mts1 mice with pulmonary hypertension. Circ Res 97(6):596–604. doi:10.1161/01.RES.0000182425.49768.8a

    PubMed  CAS  Google Scholar 

  248. Schneider M, Kostin S, Strom CC, Aplin M, Lyngbaek S, Theilade J, Grigorian M, Andersen CB, Lukanidin E, Lerche Hansen J, Sheikh SP (2007) S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes. Cardiovasc Res 75(1):40–50. doi:10.1016/j.cardiores.2007.03.027

    PubMed  CAS  Google Scholar 

  249. Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M, Boerries M, Remppis A, Katus HA, Most P (2009) S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy. J Mol Cell Cardiol 47(4):445–455. doi:10.1016/j.yjmcc.2009.06.003

    PubMed Central  PubMed  CAS  Google Scholar 

  250. Yammani RR (2012) S100 proteins in cartilage: role in arthritis. Biochim Biophys Acta 1822(4):600–606. doi:10.1016/j.bbadis.2012.01.006

    PubMed Central  PubMed  CAS  Google Scholar 

  251. Bian L, Strzyz P, Jonsson IM, Erlandsson M, Hellvard A, Brisslert M, Ohlsson C, Ambartsumian N, Grigorian M, Bokarewa M (2011) S100A4 deficiency is associated with efficient bacterial clearance and protects against joint destruction during Staphylococcal infection. J Infect Dis 204(5):722–730. doi:10.1093/infdis/jir369

    PubMed  CAS  Google Scholar 

  252. Heo SH, Choi YJ, Lee JH, Lee JM, Cho JY (2011) S100A2 level changes are related to human periodontitis. Mol Cells 32(5):445–450. doi:10.1007/s10059-011-0132-5

    PubMed Central  PubMed  CAS  Google Scholar 

  253. Madsen P, Rasmussen HH, Leffers H, Honore B, Dejgaard K, Olsen E, Kiil J, Walbum E, Andersen AH, Basse B et al (1991) Molecular cloning, occurrence, and expression of a novel partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin. J Invest Dermatol 97(4):701–712

    PubMed  CAS  Google Scholar 

  254. Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K, Volk HD, Sterry W, Sabat R (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36(5):1309–1323. doi:10.1002/eji.200535503

    PubMed  CAS  Google Scholar 

  255. Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroder JM (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6(1):57–64. doi:10.1038/ni1142

    PubMed  Google Scholar 

  256. Gebhardt C, Nemeth J, Angel P, Hess J (2006) S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 72(11):1622–1631. doi:10.1016/j.bcp.2006.05.017

    PubMed  CAS  Google Scholar 

  257. Yano J, Noverr MC, Fidel PL Jr (2012) Cytokines in the host response to Candida vaginitis: identifying a role for non-classical immune mediators, S100 alarmins. Cytokine 58(1):118–128. doi:10.1016/j.cyto.2011.11.021

    PubMed Central  PubMed  CAS  Google Scholar 

  258. Rudland PS, Barraclough R, Fernig DG, Smith JA (1996) Mammary stem cells in normal development and cancer. In: Stem cells. Academic Press, London

  259. Rudland PS, Paterson FC, Monaghan P, Davies AC, Warburton MJ (1986) Isolation and properties of rat cell lines morphologically intermediate between cultured mammary epithelial and myoepithelial-like cells. Dev Biol 113(2):388–405

    PubMed  CAS  Google Scholar 

  260. Jamieson S, Rudland PS (1990) Identification of metaplastic variants generated by transfection of a nonmetastatic rat mammary epithelial cell line with DNA from a metastatic rat mammary cell line. Am J Pathol 137(3):629–641

    PubMed Central  PubMed  CAS  Google Scholar 

  261. Rudland PS, Wang G (2013) MicroRNAs in S100P-induced breast cancer metastasis. Cancer and Polio Research Fund UK annual report

  262. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. doi:10.1038/ncb1722

    PubMed  CAS  Google Scholar 

  263. Wang Z, Griffin M (2013) The role of TG2 in regulating S100A4-mediated mammary tumour cell migration. PLoS ONE 8(3):e57017. doi:10.1371/journal.pone.0057017

    PubMed Central  PubMed  CAS  Google Scholar 

  264. Rudland PS, Wang G (2013b) Role of microtubules in S100P-induced cell migration and metastasis. Cancer and Polio Research Fund UK annual report

  265. Zhang H, Wang G, Ding Y, Wang Z, Barraclough R, Rudland PS, Fernig DG, Rao Z (2003) The crystal structure at 2A resolution of the Ca2+-binding protein S100P. J Mol Biol 325(4):785–794

    PubMed  CAS  Google Scholar 

  266. Wang G, Rudland PS, White MR, Barraclough R (2000) Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1. J Biol Chem 275(15):11141–11146

    PubMed  CAS  Google Scholar 

  267. Wang G, Zhang S, Fernig DG, Spiller D, Martin-Fernandez M, Zhang H, Ding Y, Rao Z, Rudland PS, Barraclough R (2004) Heterodimeric interaction and interfaces of S100A1 and S100P. Biochem J 382(1):375–383. doi:10.1042/BJ20040142

    PubMed Central  PubMed  CAS  Google Scholar 

  268. Rudland PS, Fernig DG, Barraclough R (2013c) Identification of assays and potential inhibitors for metastasis-inducing proteins. Cancer and Polio Research Fund UK annual report

  269. Barraclough R, Fernig DG, Rudland PS, Smith JA (1990) Synthesis of basic fibroblast growth factor upon differentiation of rat mammary epithelial to myoepithelial-like cells in culture. J Cell Physiol 144(2):333–344. doi:10.1002/jcp.1041440220

    PubMed  CAS  Google Scholar 

  270. Rudland PS, Platt-Higgins AM, Wilkinson MC, Fernig DG (1993) Immunocytochemical identification of basic fibroblast growth factor in the developing rat mammary gland: variations in location are dependent on glandular structure and differentiation. J Histochem Cytochem 41(6):887–898

    PubMed  CAS  Google Scholar 

  271. Duchesne L, Octeau V, Bearon RN, Beckett A, Prior IA, Lounis B, Fernig DG (2012) Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate. PLoS Biol 10(7):e1001361. doi:10.1371/journal.pbio.1001361

    PubMed Central  PubMed  CAS  Google Scholar 

  272. Barraclough R, Ismail T (2009) Effect of S100A4 on the establishment/development of metastases. Cancer and Polio Research Fund UK annual report

  273. Ismail TM, Zhang S, Fernig DG, Gross S, Martin-Fernandez ML, See V, Tozawa K, Tynan CJ, Wang G, Wilkinson MC, Rudland PS, Barraclough R (2010) Self-association of calcium-binding protein S100A4 and metastasis. J Biol Chem 285(2):914–922. doi:10.1074/jbc.M109.010892

    PubMed Central  PubMed  CAS  Google Scholar 

  274. Ramasamy R, Yan SF, Schmidt AM (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243:88–102. doi:10.1111/j.1749-6632.2011.06320.x

    PubMed  CAS  Google Scholar 

  275. Most P, Raake P, Weber C, Katus HA, Pleger ST (2013) S100A1 gene therapy in small and large animals. Methods Mol Biol 963:407–420. doi:10.1007/978-1-62703-230-8_25

    PubMed  CAS  Google Scholar 

  276. Sack U, Walther W, Scudiero D, Selby M, Kobelt D, Lemm M, Fichtner I, Schlag PM, Shoemaker RH, Stein U (2011) Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer. J Natl Cancer Inst 103(13):1018–1036. doi:10.1093/jnci/djr190

    PubMed  CAS  Google Scholar 

  277. Lapi E, Iovino A, Fontemaggi G, Soliera AR, Lacovelli S, Sacchi A, Rechavi G, Givol D, Blandino G, Strano S (2006) S100A2 gene is a direct transcriptional target of p53 homologues during keratinocyte differentiation. Oncogene 25(26):3628–3637. doi:10.1038/sj.onc.1209401

    PubMed  CAS  Google Scholar 

  278. Shi Y, Zou M, Collison K, Baitei EY, Al-Makhalafi Z, Farid NR, Al-Mohanna FA (2006) Ribonucleic acid interference targeting S100A4 (Mts1) suppresses tumor growth and metastasis of anaplastic thyroid carcinoma in a mouse model. J Clin Endocrinol Metab 91(6):2373–2379. doi:10.1210/jc.2006-0155

    PubMed  CAS  Google Scholar 

  279. Tamaki Y, Iwanaga Y, Niizuma S, Kawashima T, Kato T, Inuzuka Y, Horie T, Morooka H, Takase T, Akahashi Y, Kobuke K, Ono K, Shioi T, Sheikh SP, Ambartsumian N, Lukanidin E, Koshimizu TA, Miyazaki S, Kimura T (2013) Metastasis-associated protein, S100A4 mediates cardiac fibrosis potentially through the modulation of p53 in cardiac fibroblasts. J Mol Cell Cardiol 57:72–81. doi:10.1016/j.yjmcc.2013.01.007

    PubMed  CAS  Google Scholar 

  280. Stary M, Schneider M, Sheikh SP, Weitzer G (2006) Parietal endoderm secreted S100A4 promotes early cardiomyogenesis in embryoid bodies. Biochem Biophys Res Commun 343(2):555–563. doi:10.1016/j.bbrc.2006.02.161

    PubMed  CAS  Google Scholar 

  281. Novitskaya V, Grigorian M, Kriajevska M, Tarabykina S, Bronstein I, Berezin V, Bock E, Lukanidin E (2000) Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons. J Biol Chem 275(52):41278–41286. doi:10.1074/jbc.M007058200

    PubMed  CAS  Google Scholar 

  282. Kiryushko D, Novitskaya V, Soroka V, Klingelhofer J, Lukanidin E, Berezin V, Bock E (2006) Molecular mechanisms of Ca2+ signaling in neurons induced by the S100A4 protein. Mol Cell Biol 26(9):3625–3638. doi:10.1128/MCB.26.9.3625-3638.2006

    PubMed Central  PubMed  CAS  Google Scholar 

  283. Hwang R, Lee EJ, Kim MH, Li SZ, Jin YJ, Rhee Y, Kim YM, Lim SK (2004) Calcyclin, a Ca2+ ion-binding protein, contributes to the anabolic effects of simvastatin on bone. J Biol Chem 279(20):21239–21247. doi:10.1074/jbc.M312771200

    PubMed  CAS  Google Scholar 

  284. Shubbar E, Vegfors J, Carlstrom M, Petersson S, Enerback C (2012) Psoriasin (S100A7) increases the expression of ROS and VEGF and acts through RAGE to promote endothelial cell proliferation. Breast Cancer Res Treat 134(1):71–80. doi:10.1007/s10549-011-1920-5

    PubMed  CAS  Google Scholar 

  285. Zhou G, Xie TX, Zhao M, Jasser SA, Younes MN, Sano D, Lin J, Kupferman ME, Santillan AA, Patel V, Gutkind JS, Ei-Naggar AK, Emberley ED, Watson PH, Matsuzawa SI, Reed JC, Myers JN (2008) Reciprocal negative regulation between S100A7/psoriasin and beta-catenin signaling plays an important role in tumor progression of squamous cell carcinoma of oral cavity. Oncogene 27(25):3527–3538. doi:10.1038/sj.onc.1211015

    PubMed  CAS  Google Scholar 

  286. Vegfors J, Petersson S, Kovacs A, Polyak K, Enerback C (2012) The expression of Psoriasin (S100A7) and CD24 is linked and related to the differentiation of mammary epithelial cells. PLoS ONE 7(12):e53119. doi:10.1371/journal.pone.0053119

    PubMed Central  PubMed  CAS  Google Scholar 

  287. Voss A, Bode G, Sopalla C, Benedyk M, Varga G, Bohm M, Nacken W, Kerkhoff C (2011) Expression of S100A8/A9 in HaCaT keratinocytes alters the rate of cell proliferation and differentiation. FEBS Lett 585(2):440–446. doi:10.1016/j.febslet.2010.12.037

    PubMed  CAS  Google Scholar 

  288. Ito Y, Arai K, Nozawa R, Yoshida H, Hirokawa M, Fukushima M, Inoue H, Tomoda C, Kihara M, Higashiyama T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Miyauchi A (2009) S100A8 and S100A9 expression is a crucial factor for dedifferentiation in thyroid carcinoma. Anticancer Res 29(10):4157–4161

    PubMed  Google Scholar 

  289. Hao J, Wang K, Yue Y, Tian T, Xu A, Xiao X, He D (2012) Selective expression of S100A11 in lung cancer and its role in regulating proliferation of adenocarcinomas cells. Mol Cell Biochem 359(1–2):323–332. doi:10.1007/s11010-011-1026-8

    PubMed  CAS  Google Scholar 

  290. Howell MD, Fairchild HR, Kim BE, Bin L, Boguniewicz M, Redzic JS, Hansen KC, Leung DY (2008) Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J Invest Dermatol 128(9):2248–2258. doi:10.1038/jid.2008.74

    PubMed  CAS  Google Scholar 

  291. Mikkelsen SE, Novitskaya V, Kriajevska M, Berezin V, Bock E, Norrild B, Lukanidin E (2001) S100A12 protein is a strong inducer of neurite outgrowth from primary hippocampal neurons. J Neurochem 79(4):767–776

    PubMed  CAS  Google Scholar 

  292. Tsoporis JN, Izhar S, Proteau G, Slaughter G, Parker TG (2012) S100B-RAGE dependent VEGF secretion by cardiac myocytes induces myofibroblast proliferation. J Mol Cell Cardiol 52(2):464–473. doi:10.1016/j.yjmcc.2011.08.015

    PubMed  CAS  Google Scholar 

  293. Riuzzi F, Sorci G, Donato R (2011) S100B protein regulates myoblast proliferation and differentiation by activating FGFR1 in a bFGF-dependent manner. J Cell Sci 124(14):2389–2400. doi:10.1242/jcs.084491

    PubMed  CAS  Google Scholar 

  294. Riuzzi F, Sorci G, Beccafico S, Donato R (2012) S100B engages RAGE or bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. Implications for muscle regeneration. PLoS ONE 7(1):e28700. doi:10.1371/journal.pone.0028700

    PubMed Central  PubMed  CAS  Google Scholar 

  295. Arumugam T, Simeone DM, Schmidt AM, Logsdon CD (2004) S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE). J Biol Chem 279(7):5059–5065. doi:10.1074/jbc.M310124200

    PubMed  CAS  Google Scholar 

  296. Basu GD, Azorsa DO, Kiefer JA, Rojas AM, Tuzmen S, Barrett MT, Trent JM, Kallioniemi O, Mousses S (2008) Functional evidence implicating S100P in prostate cancer progression. Int J Cancer 123(2):330–339. doi:10.1002/ijc.23447

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to apologise for the numerous studies, which have significantly improved our understanding of the role of S100 proteins in motility/migration, but could not be included in this work owing to journal limits on the number of references.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephane R. Gross or Philip S. Rudland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, S.R., Sin, C.G.T., Barraclough, R. et al. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell. Mol. Life Sci. 71, 1551–1579 (2014). https://doi.org/10.1007/s00018-013-1400-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1400-7

Keywords

Navigation