Skip to main content
Log in

Epigenetic methylations and their connections with metabolism

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Metabolic pathways play fundamental roles in several processes that regulate cell physiology and adaptation to environmental changes. Altered metabolic pathways predispose to several different pathologies ranging from diabetes to cancer. Specific transcriptional programs tightly regulate the enzymes involved in cell metabolism and dictate cell fate regulating the differentiation into specialized cell types that contribute to metabolic adaptation in higher organisms. For these reasons, it is of extreme importance to identify signaling pathways and transcription factors that positively and negatively regulate metabolism. Genomic organization allows a plethora of different strategies to regulate transcription. Importantly, large evidence suggests that the quality of diet and the caloric regimen can influence the epigenetic state of our genome and that certain metabolic pathways are also epigenetically controlled reveling a tight crosstalk between metabolism and epigenomes. Here we focus our attention on methylation-based epigenetic reactions, on how different metabolic pathways control these activities, and how these can influence metabolism. Altogether, the recent discoveries linking these apparent distant areas reveal that an exciting field of research is emerging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shi Y, Shi Y (2004) Metabolic enzymes and coenzymes in transcription–a direct link between metabolism and transcription? Trends Genet 20(9):445–452

    Article  PubMed  CAS  Google Scholar 

  2. Amon J, Titgemeyer F, Burkovski A (2010) Common patterns—unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 34(4):588–605

    PubMed  CAS  Google Scholar 

  3. Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS (2007) The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell Mol Life Sci 64(1):3–16

    Article  PubMed  CAS  Google Scholar 

  4. Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13(2):125–137

    Article  PubMed  CAS  Google Scholar 

  5. Feige JN, Auwerx J (2007) Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol 17(6):292–301

    Article  PubMed  CAS  Google Scholar 

  6. Splinter E, de Laat W (2011) The complex transcription regulatory landscape of our genome: control in three dimensions. EMBO J 30(21):4345–4355

    Article  PubMed  CAS  Google Scholar 

  7. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev 11(4):285–296

    Article  CAS  Google Scholar 

  8. Jenuwein T, Allis CD (2001) Translating the histone code. Science (New York, NY) 293(5532):1074–1080. doi:10.1126/science.1063127

    Article  CAS  Google Scholar 

  9. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412

    Article  PubMed  CAS  Google Scholar 

  10. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357. doi:10.1038/nrg3173

    Article  PubMed  CAS  Google Scholar 

  11. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13. doi:10.1016/j.molcel.2008.12.013

    Article  PubMed  CAS  Google Scholar 

  12. Hou H, Yu H (2010) Structural insights into histone lysine demethylation. Curr Opin Struct Biol 20(6):739–748. doi:10.1016/j.sbi.2010.09.006

    Article  PubMed  CAS  Google Scholar 

  13. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492. doi:10.1038/nrg3230

    Article  PubMed  CAS  Google Scholar 

  14. Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25(23):2436–2452

    Article  PubMed  CAS  Google Scholar 

  15. Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development(Cambridge, England) 139(11):1895–1902. doi:10.1242/dev.070771

    Article  CAS  Google Scholar 

  16. Harvey AE, Lashinger LM, Hursting SD (2011) The growing challenge of obesity and cancer: an inflammatory issue. Ann N Y Acad Sci 1229:45–52

    Article  PubMed  CAS  Google Scholar 

  17. Simon JA, Kingston RE (2009) Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10(10):697–708

    PubMed  CAS  Google Scholar 

  18. Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98(1):37–46

    Article  PubMed  CAS  Google Scholar 

  19. Dura JM, Randsholt NB, Deatrick J, Erk I, Santamaria P, Freeman JD, Freeman SJ, Weddell D, Brock HW (1987) A complex genetic locus, polyhomeotic, is required for segmental specification and epidermal development in D. melanogaster. Cell 51(5):829–839

    Article  PubMed  CAS  Google Scholar 

  20. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431(7010):873–878

    Article  PubMed  CAS  Google Scholar 

  21. de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M, Koseki H, Brockdorff N (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7(5):663–676

    Article  PubMed  Google Scholar 

  22. Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20(6):845–854

    Article  PubMed  CAS  Google Scholar 

  23. Kagey MH, Melhuish TA, Wotton D (2003) The Polycomb protein Pc2 is a SUMO E3. Cell 113(1):127–137

    Article  PubMed  CAS  Google Scholar 

  24. Kagey MH, Melhuish TA, Powers SE, Wotton D (2005) Multiple activities contribute to Pc2 E3 function. EMBO J 24(1):108–119

    Article  PubMed  CAS  Google Scholar 

  25. Li B, Zhou J, Liu P, Hu J, Jin H, Shimono Y, Takahashi M, Xu G (2007) Polycomb protein Cbx4 promotes SUMO modification of de novo DNA methyltransferase Dnmt3a. Biochem J 405(2):369–378

    Article  PubMed  CAS  Google Scholar 

  26. Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher AG, Pombo A (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9(12):1428–1435

    Article  PubMed  CAS  Google Scholar 

  27. Lagarou A, Mohd-Sarip A, Moshkin YM, Chalkley GE, Bezstarosti K, Demmers JA, Verrijzer CP (2008) dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev 22(20):2799–2810

    Article  PubMed  CAS  Google Scholar 

  28. Gearhart MD, Corcoran CM, Wamstad JA, Bardwell VJ (2006) Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol 26(18):6880–6889

    Article  PubMed  CAS  Google Scholar 

  29. Sanchez C, Sanchez I, Demmers JA, Rodriguez P, Strouboulis J, Vidal M (2007) Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol Cell Prot 6(5):820–834

    Article  CAS  Google Scholar 

  30. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111(2):185–196

    Article  PubMed  CAS  Google Scholar 

  31. Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111(2):197–208

    Article  PubMed  CAS  Google Scholar 

  32. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science (New York, NY) 298(5595):1039–1043

    Article  CAS  Google Scholar 

  33. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16(22):2893–2905

    Article  PubMed  CAS  Google Scholar 

  34. Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17(15):1870–1881

    Article  PubMed  CAS  Google Scholar 

  35. Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17(15):1823–1828

    Article  PubMed  CAS  Google Scholar 

  36. Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD (2006) Mouse Polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 26(7):2560–2569. doi:10.1128/MCB.26.7.2560-2569.2006

    Article  PubMed  CAS  Google Scholar 

  37. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Di Croce L, Shiekhattar R (2007) Demethylation of H3K27 regulates Polycomb recruitment and H2A ubiquitination. Science (New York, NY) 318(5849):447–450

    Article  CAS  Google Scholar 

  38. Mujtaba S, Manzur KL, Gurnon JR, Kang M, Van Etten JL, Zhou MM (2008) Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nat Cell Biol 10(9):1114–1122

    Article  PubMed  CAS  Google Scholar 

  39. Muller J, Kassis JA (2006) Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev 16(5):476–484

    Article  PubMed  CAS  Google Scholar 

  40. Fritsch C, Brown JL, Kassis JA, Muller J (1999) The DNA-binding Polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126(17):3905–3913

    PubMed  CAS  Google Scholar 

  41. Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004) Hierarchical recruitment of Polycomb group silencing complexes. Mol Cell 14(5):637–646

    Article  PubMed  CAS  Google Scholar 

  42. Mohd-Sarip A, Cleard F, Mishra RK, Karch F, Verrijzer CP (2005) Synergistic recognition of an epigenetic DNA element by Pleiohomeotic and a Polycomb core complex. Genes Dev 19(15):1755–1760

    Article  PubMed  CAS  Google Scholar 

  43. Woo CJ, Kharchenko PV, Daheron L, Park PJ, Kingston RE (2010) A region of the human HOXD cluster that confers Polycomb-group responsiveness. Cell 140 (1):99-110

    Google Scholar 

  44. Sing A, Pannell D, Karaiskakis A, Sturgeon K, Djabali M, Ellis J, Lipshitz HD, Cordes SP (2009) A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138(5):885–897

    Article  PubMed  CAS  Google Scholar 

  45. Mendenhall EM, Koche RP, Truong T, Zhou VW, Issac B, Chi AS, Ku M, Bernstein BE (2010) GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS genetics 6 (12):e1001244

  46. Vella P, Barozzi I, Cuomo A, Bonaldi T, Pasini D (2011) Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells. Nucleic acids research 40:3403–3418

  47. Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D (2010) Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 24(4):368–380

    Article  PubMed  CAS  Google Scholar 

  48. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Bak M, Tommerup N, Rappsilber J, Helin K (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464(7286):306–310

    Article  PubMed  CAS  Google Scholar 

  49. Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139(7):1290–1302

    Article  PubMed  Google Scholar 

  50. Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y, Orkin SH (2009) Jumonji modulates Polycomb activity and self-renewal versus differentiation of stem cells. Cell 139(7):1303–1314

    Article  PubMed  Google Scholar 

  51. Landeira D, Sauer S, Poot R, Dvorkina M, Mazzarella L, Jorgensen HF, Pereira CF, Leleu M, Piccolo FM, Spivakov M, Brookes E, Pombo A, Fisher C, Skarnes WC, Snoek T, Bezstarosti K, Demmers J, Klose RJ, Casanova M, Tavares L, Brockdorff N, Merkenschlager M, Fisher AG (2010) Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol 12(6):618–624

    Article  PubMed  CAS  Google Scholar 

  52. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, Ping B, Otte AP, Hung MC (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science (New York, NY) 310(5746):306–310

    Article  CAS  Google Scholar 

  53. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev 7(8):606–619

    Article  CAS  Google Scholar 

  54. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  PubMed  CAS  Google Scholar 

  55. Etchegaray JP, Yang X, DeBruyne JP, Peters AH, Weaver DR, Jenuwein T, Reppert SM (2006) The Polycomb group protein EZH2 is required for mammalian circadian clock function. J biol chem 281(30):21209–21215

    Article  PubMed  CAS  Google Scholar 

  56. Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metabolism 13 (2):125–137

    Google Scholar 

  57. Wang L, Jin Q, Lee JE, Su IH, Ge K (2010) Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA 107(16):7317–7322

    Article  PubMed  CAS  Google Scholar 

  58. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21(5):525–530

    Article  PubMed  CAS  Google Scholar 

  59. Chen H, Gu X, Su IH, Bottino R, Contreras JL, Tarakhovsky A, Kim SK (2009) Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev 23(8):975–985

    Article  PubMed  CAS  Google Scholar 

  60. Dhawan S, Tschen SI, Bhushan A (2009) Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. Genes Dev 23(8):906–911

    Article  PubMed  CAS  Google Scholar 

  61. Kennison JA, Tamkun JW (1988) Dosage-dependent modifiers of Polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci USA 85(21):8136–8140

    Article  PubMed  CAS  Google Scholar 

  62. Eissenberg JC, Shilatifard A (2009) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev biol 339(2):240–249

    Article  PubMed  CAS  Google Scholar 

  63. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL (2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10(5):1107–1117

    Article  PubMed  CAS  Google Scholar 

  64. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    Article  PubMed  CAS  Google Scholar 

  65. Nislow C, Ray E, Pillus L (1997) SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol Biol Cell 8(12):2421–2436

    PubMed  CAS  Google Scholar 

  66. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 98(23):12902–12907

    Article  PubMed  CAS  Google Scholar 

  67. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15(24):3286–3295

    Article  PubMed  CAS  Google Scholar 

  68. Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R, Stewart AF (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20(24):7137–7148

    Article  PubMed  CAS  Google Scholar 

  69. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466(7304):383–387

    Article  PubMed  CAS  Google Scholar 

  70. Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479(7373):365–371

    Article  PubMed  CAS  Google Scholar 

  71. Lee J, Saha PK, Yang QH, Lee S, Park JY, Suh Y, Lee SK, Chan L, Roeder RG, Lee JW (2008) Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci USA 105(49):19229–19234

    Article  PubMed  CAS  Google Scholar 

  72. Lee S, Lee J, Lee SK, Lee JW (2008) Activating signal cointegrator-2 is an essential adaptor to recruit histone H3 lysine 4 methyltransferases MLL3 and MLL4 to the liver X receptors. Mol Endocrinol (Baltimore, Md) 6(22):1312–1319

    Article  CAS  Google Scholar 

  73. Kim DH, Lee J, Lee B, Lee JW (2009) ASCOM controls farnesoid X receptor transactivation through its associated histone H3 lysine 4 methyltransferase activity. Mol Endocrinol (Baltimore, Md) 23(10):1556–1562

    Article  CAS  Google Scholar 

  74. Lo Sasso G, Petruzzelli M, Moschetta A (2008) A translational view on the biliary lipid secretory network. Biochim Biophys Acta 1781(3):79–96

    Article  PubMed  CAS  Google Scholar 

  75. Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12(11):722–734

    Article  PubMed  CAS  Google Scholar 

  76. Brown SA, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, Rosbash M, Schibler U (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science (New York, NY) 308(5722):693–696

    Article  CAS  Google Scholar 

  77. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    Article  PubMed  CAS  Google Scholar 

  78. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120

    Article  PubMed  CAS  Google Scholar 

  79. Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12(6):1591–1598

    Article  PubMed  CAS  Google Scholar 

  80. Grummt I, Ladurner AG (2008) A metabolic throttle regulates the epigenetic state of rDNA. Cell 133(4):577–580

    Article  PubMed  CAS  Google Scholar 

  81. Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie S, Daitoku H, Okuwaki M, Nagata K, Fukamizu A, Kimura K, Shimizu T, Yanagisawa J (2008) Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133(4):627–639

    Article  PubMed  CAS  Google Scholar 

  82. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353(25):2643–2653

    Article  PubMed  Google Scholar 

  83. Ihnat MA, Thorpe JE, Ceriello A (2007) Hypothesis: the ‘metabolic memory’, the new challenge of diabetes. Diabet Med 24(6):582–586

    Article  PubMed  CAS  Google Scholar 

  84. Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R (2008) Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci USA 105(26):9047–9052

    Article  PubMed  CAS  Google Scholar 

  85. Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12(8):554–564. doi:10.1038/nrg3017

    Article  PubMed  CAS  Google Scholar 

  86. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953. doi:10.1016/j.cell.2004.12.012

    Article  PubMed  CAS  Google Scholar 

  87. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439. doi:10.1038/nature04020

    PubMed  CAS  Google Scholar 

  88. Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7(9):715–727. doi:10.1038/nrg1945

    Article  PubMed  CAS  Google Scholar 

  89. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078):811–816. doi:10.1038/nature04433

    Article  PubMed  CAS  Google Scholar 

  90. Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20(11):662–671. doi:10.1016/j.tcb.2010.08.011

    Article  PubMed  CAS  Google Scholar 

  91. Tateishi K, Okada Y, Kallin EM, Zhang Y (2009) Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458(7239):757–761

    Article  PubMed  CAS  Google Scholar 

  92. Musri MM, Carmona MC, Hanzu FA, Kaliman P, Gomis R, Parrizas M (2010) Histone demethylase LSD1 regulates adipogenesis. J Biol Chem 285(39):30034–30041

    Article  PubMed  CAS  Google Scholar 

  93. Reddy MA, Villeneuve LM, Wang M, Lanting L, Natarajan R (2008) Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. Circ Res 103(6):615–623

    Article  PubMed  CAS  Google Scholar 

  94. Maures TJ, Greer EL, Hauswirth AG, Brunet A (2011) The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10(6):980–990

    Article  PubMed  CAS  Google Scholar 

  95. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975. doi:10.1038/nrc2540

    Article  PubMed  CAS  Google Scholar 

  96. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-Adenosylmethionine and methylation. FASEB 10(4):471–480

    CAS  Google Scholar 

  97. Mimura I, Tanaka T, Wada Y, Kodama T, Nangaku M (2011) Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: epigenetic regulation of the hypoxic response via hypoxia-inducible factor and histone modifying enzymes. J Pharmacol Sci 115(4):453–458

    Article  PubMed  CAS  Google Scholar 

  98. Watson JA, Watson CJ, McCann A, Baugh J (2010) Epigenetics, the epicenter of the hypoxic response. Epigenetics 5(4):293–296

    Article  PubMed  CAS  Google Scholar 

  99. Fedele AO, Whitelaw ML, Peet DJ (2002) Regulation of gene expression by the hypoxia-inducible factors. Mol Interven 2(4):229–243. doi:10.1124/mi.2.4.229

    Article  CAS  Google Scholar 

  100. Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M (2006) Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 66(18):9009–9016. doi:10.1158/0008-5472.CAN-06-0101

    Article  PubMed  CAS  Google Scholar 

  101. Johnson AB, Denko N, Barton MC (2008) Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 640(1–2):174–179. doi:10.1016/j.mrfmmm.2008.01.001

    PubMed  CAS  Google Scholar 

  102. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G (2010) MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Molecular cancer 9:108. doi:10.1186/1476-4598-9-108

    Article  PubMed  CAS  Google Scholar 

  103. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, Woodward WA, Hsu JM, Hortobagyi GN, Hung MC (2011) EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 19(1):86–100. doi:10.1016/j.ccr.2010.10.035

    Article  PubMed  CAS  Google Scholar 

  104. Heddleston JM, Wu Q, Rivera M, Minhas S, Lathia JD, Sloan AE, Iliopoulos O, Hjelmeland AB, Rich JN (2011) Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ. doi:10.1038/cdd.2011.109

    Google Scholar 

  105. Wu MZ, Tsai YP, Yang MH, Huang CH, Chang SY, Chang CC, Teng SC, Wu KJ (2011) Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell 43(5):811–822. doi:10.1016/j.molcel.2011.07.012

    Article  PubMed  CAS  Google Scholar 

  106. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 106(11):4260–4265. doi:10.1073/pnas.0810067106

    Article  PubMed  CAS  Google Scholar 

  107. Wellmann S, Bettkober M, Zelmer A, Seeger K, Faigle M, Eltzschig HK, Buhrer C (2008) Hypoxia upregulates the histone demethylase JMJD1A via HIF-1. Biochem Biophys Res Commun 372(4):892–897. doi:10.1016/j.bbrc.2008.05.150

    Article  PubMed  CAS  Google Scholar 

  108. Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, Ratcliffe PJ (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416(3):387–394. doi:10.1042/BJ20081238

    Article  PubMed  CAS  Google Scholar 

  109. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P (2008) The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283(52):36542–36552. doi:10.1074/jbc.M804578200

    Article  PubMed  CAS  Google Scholar 

  110. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):51–56. doi:10.1016/j.gde.2009.10.009

    Article  PubMed  CAS  Google Scholar 

  111. Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ (2010) Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 30(1):344–353. doi:10.1128/MCB.00444-09

    Article  PubMed  CAS  Google Scholar 

  112. Kondo K, Kim WY, Lechpammer M, Kaelin WG Jr (2003) Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 1(3):E83. doi:10.1371/journal.pbio.0000083

    Article  PubMed  Google Scholar 

  113. Niu X, Zhang T, Liao L, Zhou L, Lindner DJ, Zhou M, Rini B, Yan Q, Yang H (2011) The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene. doi:10.1038/onc.2011.266

    Google Scholar 

  114. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744. doi:10.1038/nature08617

    Article  PubMed  CAS  Google Scholar 

  115. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, Ding J, Lei Q, Guan KL, Xiong Y (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324(5924):261–265. doi:10.1126/science.1170944

    Article  PubMed  CAS  Google Scholar 

  116. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M, McDonough MA, King ON, Clifton IJ, Klose RJ, Claridge TD, Ratcliffe PJ, Schofield CJ, Kawamura A (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12(5):463–469. doi:10.1038/embor.2011.43

    Article  PubMed  CAS  Google Scholar 

  117. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30. doi:10.1016/j.ccr.2010.12.014

    Article  PubMed  CAS  Google Scholar 

  118. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378):490–495

    PubMed  CAS  Google Scholar 

  119. Cheng X, Roberts RJ (2001) AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29(18):3784–3795

    Article  PubMed  CAS  Google Scholar 

  120. Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, Cedar H, Razin A (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev 6(5):705–714

    Article  PubMed  CAS  Google Scholar 

  121. Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development (Cambridge, England) 99(3):371–382

    CAS  Google Scholar 

  122. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  PubMed  CAS  Google Scholar 

  123. Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154):714–717

    Article  PubMed  CAS  Google Scholar 

  124. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449(7159):248–251

    Article  PubMed  CAS  Google Scholar 

  125. Chen T, Li E (2006) Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol 301:179–201

    Article  PubMed  CAS  Google Scholar 

  126. Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci USA 102(25):8905–8909

    Article  PubMed  CAS  Google Scholar 

  127. Turner BM (2007) Defining an epigenetic code. Nat Cell Biol 9(1):2–6

    Article  PubMed  CAS  Google Scholar 

  128. Stephan D, Siddiqua M, Ta Hoang A, Engelmann J, Winter S, Maiss E (2008) Complete nucleotide sequence and experimental host range of Okra mosaic virus. Virus Genes 36(1):231–240

    Article  PubMed  CAS  Google Scholar 

  129. Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, Deplus R, Fuks F, Shinkai Y, Cedar H, Bergman Y (2008) De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 15(11):1176–1183

    Article  PubMed  CAS  Google Scholar 

  130. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H, Bergman Y (2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8(2):188–194

    Article  PubMed  CAS  Google Scholar 

  131. Escamilla-Del-Arenal M, da Rocha ST, Heard E (2011) Evolutionary diversity and developmental regulation of X-chromosome inactivation. Hum Genet 130(2):307–327

    Article  PubMed  CAS  Google Scholar 

  132. Walsh CP, Xu GL (2006) Cytosine methylation and DNA repair. Curr Top Microbiol Immunol 301:283–315

    Article  PubMed  CAS  Google Scholar 

  133. Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev 12(9):615–627

    Article  CAS  Google Scholar 

  134. Ulrey CL, Liu L, Andrews LG, Tollefsbol TO (2005) The impact of metabolism on DNA methylation. Human molecular genetics 14(1(Spec No)):R139–R147

    Article  PubMed  CAS  Google Scholar 

  135. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132(8 Suppl):2393S–2400S

    PubMed  CAS  Google Scholar 

  136. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12(11):949–957

    PubMed  CAS  Google Scholar 

  137. Cropley JE, Suter CM, Beckman KB, Martin DI (2006) Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci USA 103(46):17308–17312

    Article  PubMed  CAS  Google Scholar 

  138. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300

    Article  PubMed  CAS  Google Scholar 

  139. Li CC, Cropley JE, Cowley MJ, Preiss T, Martin DI, Suter CM (2011) A sustained dietary change increases epigenetic variation in isogenic mice. PLoS Genet 7(4):e1001380

    Article  PubMed  CAS  Google Scholar 

  140. Milagro FI, Campion J, Cordero P, Goyenechea E, Gomez-Uriz AM, Abete I, Zulet MA, Martinez JA (2011) A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J 25(4):1378–1389

    Article  PubMed  CAS  Google Scholar 

  141. Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science (New York, NY) 319(5871):1827–1830

    Article  CAS  Google Scholar 

  142. Maleszka R (2008) Epigenetic integration of environmental and genomic signals in honey bees: the critical interplay of nutritional, brain and reproductive networks. Epigenetics 3(4):188–192

    Article  PubMed  Google Scholar 

  143. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607–620

    Article  PubMed  CAS  Google Scholar 

  144. Cimmino L, Abdel-Wahab O, Levine RL, Aifantis I (2011) TET family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell 9(3):193–204

    Article  PubMed  CAS  Google Scholar 

  145. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (New York, NY ) 324(5929):930–935

    Article  CAS  Google Scholar 

  146. Chia N, Wang L, Lu X, Senut MC, Brenner C, Ruden DM (2011) Hypothesis: environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics 6(7):853–856

    Article  PubMed  CAS  Google Scholar 

  147. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567

    Article  PubMed  CAS  Google Scholar 

  148. Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, Dicker F, Fasan A, Haferlach C, Haferlach T, Kern W, Schnittger S, Kohlmann A (2011) Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 26(5):934–942

    Article  PubMed  CAS  Google Scholar 

  149. Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C, Heguy A, Bueso-Ramos C, Kantarjian H, Levine RL, Verstovsek S (2010) Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 70(2):447–452

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of the Pasini’s laboratory for comments and discussion. The work in the Pasini’s laboratory is supported by AIRC; the Italian Association of Cancer Research and by the Italian Ministry of Health. AP is supported by a fellowship from FIRC; the Italian Foundation for Cancer Research.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Pasini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiacchiera, F., Piunti, A. & Pasini, D. Epigenetic methylations and their connections with metabolism. Cell. Mol. Life Sci. 70, 1495–1508 (2013). https://doi.org/10.1007/s00018-013-1293-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1293-5

Keywords

Navigation