Skip to main content

Advertisement

Log in

Heparanase enzyme in chronic inflammatory bowel disease and colon cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Heparanase is the sole mammalian endoglycosidase that cleaves heparan sulfate, the key polysaccharide of the extracellular matrix and basement membranes. Enzymatic cleavage of heparan sulfate profoundly affects a variety of physiological and pathological processes, including morphogenesis, neovascularization, inflammation, and tumorigenesis. Critical involvement of heparanase in colorectal tumor progression and metastatic spread is widely documented; however, until recently a role for heparanase in the initiation of colon carcinoma remained underappreciated. Interestingly, the emerging data that link heparanase to chronic inflammatory bowel conditions, also suggest contribution of the enzyme to colonic tumor initiation, at least in the setting of colitis-associated cancer. Highly coordinated interplay between intestinal heparanase and immune cells (i.e., macrophages) preserves chronic inflammatory conditions and creates a tumor-promoting microenvironment. Here we review the action of heparanase in colon tumorigenesis and discuss recent findings, pointing to a role for heparanase in sustaining immune cell-epithelial crosstalk that underlies intestinal inflammation and the associated cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  PubMed  CAS  Google Scholar 

  2. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  PubMed  CAS  Google Scholar 

  3. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    Article  PubMed  CAS  Google Scholar 

  4. Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    Article  PubMed  CAS  Google Scholar 

  5. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 277:3904–3923

    Article  PubMed  CAS  Google Scholar 

  6. Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S et al (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4:691–697

    Article  PubMed  CAS  Google Scholar 

  7. Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, Bashkin P, Fuks Z (1991) Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci 16:268–271

    Article  PubMed  CAS  Google Scholar 

  8. Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186

    Article  PubMed  CAS  Google Scholar 

  9. Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528

    Article  PubMed  CAS  Google Scholar 

  10. Elkin M, Ilan N, Ishai-Michaeli R, Friedmann Y, Papo O et al (2001) Heparanase as mediator of angiogenesis: mode of action. Faseb J 15:1661–1663

    PubMed  CAS  Google Scholar 

  11. Gotte M (2003) Syndecans in inflammation. Faseb J 17:575–591

    Article  PubMed  CAS  Google Scholar 

  12. Li JP, Vlodavsky I (2009) Heparin, heparan sulfate and heparanase in inflammatory reactions. Thromb Haemost 102:823–828

    PubMed  CAS  Google Scholar 

  13. Bar-Sela G, Kaplan-Cohen V, Ilan N, Vlodavsky I, Ben-Izhak O (2006) Heparanase expression in nasopharyngeal carcinoma inversely correlates with patient survival. Histopathology 49:188–193

    Article  PubMed  CAS  Google Scholar 

  14. Ben-Izhak O, Kaplan-Cohen V, Ilan N, Gan S, Vlodavsky I et al (2006) Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival. Neoplasia 8:879–884

    Article  PubMed  CAS  Google Scholar 

  15. Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N et al (2006) Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia 8:1055–1061

    Article  PubMed  CAS  Google Scholar 

  16. Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q et al (2001) Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res 61:4655–4659

    PubMed  CAS  Google Scholar 

  17. Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y et al (2003) Heparanase expression correlates with invasion and poor prognosis in gastric cancers. Lab Invest 83:613–622

    PubMed  CAS  Google Scholar 

  18. Naomoto Y, Takaoka M, Okawa T, Nobuhisa T, Gunduz M et al (2005) The role of heparanase in gastrointestinal cancer (Review). Oncol Rep 14:3–8

    PubMed  CAS  Google Scholar 

  19. Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R et al (2005) Heparanase expression correlates with malignant potential in human colon cancer. J Cancer Res Clin Oncol 131:229–237

    Article  PubMed  CAS  Google Scholar 

  20. Cohen I, Pappo O, Elkin M, San T, Bar-Shavit R et al (2006) Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer 118:1609–1617

    Article  PubMed  CAS  Google Scholar 

  21. Lerner I, Baraz L, Pikarsky E, Meirovitz A, Edovitsky E et al (2008) Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res 14:668–676

    Article  PubMed  CAS  Google Scholar 

  22. Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96:1219–1230

    Article  PubMed  CAS  Google Scholar 

  23. Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I et al (2003) Heparanase mediates cell adhesion independent of its enzymatic activity. Faseb J 17:1015–1025

    Article  PubMed  CAS  Google Scholar 

  24. Zetser A, Bashenko Y, Miao HQ, Vlodavsky I, Ilan N (2003) Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res 63:7733–7741

    PubMed  CAS  Google Scholar 

  25. Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N (2004) Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem 279:23536–23541

    Article  PubMed  CAS  Google Scholar 

  26. Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–2039

    Article  PubMed  CAS  Google Scholar 

  27. Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I et al (2006) Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res 66:1455–1463

    Article  PubMed  CAS  Google Scholar 

  28. Cohen-Kaplan V, Doweck I, Naroditsky I, Vlodavsky I, Ilan N (2008) Heparanase augments epidermal growth factor receptor phosphorylation: correlation with head and neck tumor progression. Cancer Res 68:10077–10085

    Article  PubMed  CAS  Google Scholar 

  29. Lerner I, Hermano E, Zcharia E, Rodkin D, Bulvik R et al (2011) Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 121:1709–1721

    Article  PubMed  CAS  Google Scholar 

  30. Waterman M, Ben-Izhak O, Eliakim R, Groisman G, Vlodavsky I et al (2007) Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 20:8–14

    Article  PubMed  CAS  Google Scholar 

  31. Fransson LA, Belting M, Cheng F, Jonsson M, Mani K et al (2004) Novel aspects of glypican glycobiology. Cell Mol Life Sci 61:1016–1024

    Article  PubMed  CAS  Google Scholar 

  32. Kramer KL, Yost HJ (2003) Heparan sulfate core proteins in cell–cell signaling. Annu Rev Genet 37:461–484

    Article  PubMed  CAS  Google Scholar 

  33. Iozzo RV (2001) Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest 108:165–167

    PubMed  CAS  Google Scholar 

  34. Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. Natl Rev Mol Cell Biol 6:530–541

    Article  CAS  Google Scholar 

  35. Timpl R (1996) Macromolecular organization of basement membranes. Curr Opin Cell Biol 8:618–624

    Article  PubMed  CAS  Google Scholar 

  36. Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Dev Biol 12:89–98

    Article  PubMed  CAS  Google Scholar 

  37. Timar J, Lapis K, Dudas J, Sebestyen A, Kopper L et al (2002) Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12:173–186

    Article  PubMed  CAS  Google Scholar 

  38. Belting M (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28:145–151

    Article  PubMed  CAS  Google Scholar 

  39. Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R et al (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:4177–4186

    Article  PubMed  CAS  Google Scholar 

  40. Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471:M99–M108

    PubMed  CAS  Google Scholar 

  41. McKenzie E, Tyson K, Stamps A, Smith P, Turner P et al (2000) Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 276:1170–1177

    Article  PubMed  CAS  Google Scholar 

  42. Ateeq B, Unterberger A, Szyf M, Rabbani SA (2008) Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 10:266–278

    PubMed  CAS  Google Scholar 

  43. Shteper PJ, Zcharia E, Ashhab Y, Peretz T, Vlodavsky I et al (2003) Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene 22:7737–7749

    Article  PubMed  CAS  Google Scholar 

  44. Ogishima T, Shiina H, Breault JE, Tabatabai L, Bassett WW et al (2005) Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res 11:1028–1036

    PubMed  CAS  Google Scholar 

  45. Ogishima T, Shiina H, Breault JE, Terashima M, Honda S et al (2005) Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene 24:6765–6772

    Article  PubMed  CAS  Google Scholar 

  46. Baraz L, Haupt Y, Elkin M, Peretz T, Vlodavsky I (2006) Tumor suppressor p53 regulates heparanase gene expression. Oncogene 25:3939–3947

    Article  PubMed  CAS  Google Scholar 

  47. Jiang P, Kumar A, Parrillo JE, Dempsey LA, Platt JL et al (2002) Cloning and characterization of the human heparanase-1 (HPR1) gene promoter: role of GA-binding protein and Sp1 in regulating HPR1 basal promoter activity. J Biol Chem 277:8989–8998

    Article  PubMed  CAS  Google Scholar 

  48. Lu WC, Liu YN, Kang BB, Chen JH (2003) Trans-activation of heparanase promoter by ETS transcription factors. Oncogene 22:919–923

    Article  PubMed  CAS  Google Scholar 

  49. Rao G, Liu D, Xing M, Tauler J, Prinz RA et al (2010) Induction of heparanase-1 expression by mutant B-Raf kinase: role of GA binding protein in heparanase-1 promoter activation. Neoplasia 12:946–956

    PubMed  CAS  Google Scholar 

  50. de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD (2003) Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem 278:50377–50385

    Article  PubMed  Google Scholar 

  51. de Mestre AM, Rao S, Hornby JR, Soe-Htwe T, Khachigian LM et al (2005) Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem 280:35136–35147

    Article  PubMed  CAS  Google Scholar 

  52. Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P et al (2002) Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery 132:326–333

    Article  PubMed  Google Scholar 

  53. Rao G, Ding HG, Huang W, Le D, Maxhimer JB et al (2011) Reactive oxygen species mediate high glucose-induced heparanase-1 production and heparan sulphate proteoglycan degradation in human and rat endothelial cells: a potential role in the pathogenesis of atherosclerosis. Diabetologia 54:1527–1538

    Article  PubMed  CAS  Google Scholar 

  54. Elkin M, Cohen I, Zcharia E, Orgel A, Guatta-Rangini Z et al (2003) Regulation of heparanase gene expression by estrogen in breast cancer. Cancer Res 63:8821–8826

    PubMed  CAS  Google Scholar 

  55. Xu X, Ding J, Rao G, Shen J, Prinz RA et al (2007) Estradiol induces heparanase-1 expression and heparan sulphate proteoglycan degradation in human endometrium. Hum Reprod 22:927–937

    Article  PubMed  CAS  Google Scholar 

  56. Chen G, Wang D, Vikramadithyan R, Yagyu H, Saxena U et al (2004) Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry 43:4971–4977

    Article  PubMed  CAS  Google Scholar 

  57. Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I et al (2006) Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107:3609–3616

    Article  PubMed  CAS  Google Scholar 

  58. Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N (2003) Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 308:885–891

    Article  PubMed  CAS  Google Scholar 

  59. McKenzie E, Young K, Hircock M, Bennett J, Bhaman M et al (2003) Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J 373:423–435

    Article  PubMed  CAS  Google Scholar 

  60. Nardella C, Lahm A, Pallaoro M, Brunetti M, Vannini A et al (2004) Mechanism of activation of human heparanase investigated by protein engineering. Biochemistry 43:1862–1873

    Article  PubMed  CAS  Google Scholar 

  61. Hulett MD, Hornby JR, Ohms SJ, Zuegg J, Freeman C et al (2000) Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 39:15659–15667

    Article  PubMed  CAS  Google Scholar 

  62. Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H, Atzmon R, Elgavish S et al (2005) Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem 280:13568–13575

    Article  PubMed  CAS  Google Scholar 

  63. Abboud-Jarrous G, Atzmon R, Peretz T, Palermo C, Gadea BB et al (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283:18167–18176

    Article  PubMed  CAS  Google Scholar 

  64. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (2008) Essentials of glycobiology 40:29606–29613

    Google Scholar 

  65. Nakajima M, Irimura T, Di Ferrante N, Nicolson GL (1984) Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem 259:2283–2290

    PubMed  CAS  Google Scholar 

  66. Temkin V, Aingorn H, Puxeddu I, Goldshmidt O, Zcharia E et al (2004) Eosinophil major basic protein: first identified natural heparanase-inhibiting protein. J Allergy Clin Immunol 113:703–709

    Article  PubMed  CAS  Google Scholar 

  67. Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res 43:2704–2711

    PubMed  CAS  Google Scholar 

  68. Mahtouk K, Hose D, Raynaud P, Hundemer M, Jourdan M et al (2007) Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 109:4914–4923

    Article  PubMed  CAS  Google Scholar 

  69. Yang Y, Macleod V, Bendre M, Huang Y, Theus AM et al (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105:1303–1309

    Article  PubMed  CAS  Google Scholar 

  70. Doviner V, Maly B, Kaplan V, Gingis-Velitski S, Ilan N et al (2006) Spatial and temporal heparanase expression in colon mucosa throughout the adenoma-carcinoma sequence. Mod Pathol 19:878–888

    PubMed  CAS  Google Scholar 

  71. Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R et al (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5:793–802

    Article  PubMed  CAS  Google Scholar 

  72. Roy M, Reiland J, Murry BP, Chouljenko V, Kousoulas KG et al (2005) Antisense-mediated suppression of heparanase gene inhibits melanoma cell invasion. Neoplasia 7:253–262

    Article  PubMed  CAS  Google Scholar 

  73. Vreys V, David G (2007) Mammalian heparanase: what is the message? J Cell Mol Med 11:427–452

    Article  PubMed  CAS  Google Scholar 

  74. Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T et al (2000) Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma : evidence for its role in colonic tumorigenesis [In Process Citation]. Am J Pathol 157:1167–1175

    Article  PubMed  CAS  Google Scholar 

  75. Sato T, Yamaguchi A, Goi T, Hirono Y, Takeuchi K et al (2004) Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis, hematogenous metastasis, and prognosis. J Surg Oncol 87:174–181

    Article  PubMed  CAS  Google Scholar 

  76. Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X et al (2002) Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol 15:593–598

    Article  PubMed  Google Scholar 

  77. El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N (2001) The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clin Cancer Res 7:1299–1305

    PubMed  CAS  Google Scholar 

  78. Kim AW, Xu X, Hollinger EF, Gattuso P, Godellas CV et al (2002) Human heparanase-1 gene expression in pancreatic adenocarcinoma. J Gastrointest Surg 6:167–172

    Article  PubMed  Google Scholar 

  79. Rohloff J, Zinke J, Schoppmeyer K, Tannapfel A, Witzigmann H et al (2002) Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma. Br J Cancer 86:1270–1275

    Article  PubMed  CAS  Google Scholar 

  80. Jemal A, Siegel R, Ward E, Hao Y, Xu J et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  81. Boyle P, Ferlay J (2005) Cancer incidence and mortality in Europe, 2004. Ann Oncol 16:481–488

    Article  PubMed  CAS  Google Scholar 

  82. Matzner Y, Bar-Ner M, Yahalom J, Ishai-Michaeli R, Fuks Z et al (1985) Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role in invasion through basement membranes. J Clin Invest 76:1306–1313

    Article  PubMed  CAS  Google Scholar 

  83. Fridman R, Lider O, Naparstek Y, Fuks Z, Vlodavsky I et al (1987) Soluble antigen induces T lymphocytes to secrete an endoglycosidase that degrades the heparan sulfate moiety of subendothelial extracellular matrix. J Cell Physiol 130:85–92

    Article  PubMed  CAS  Google Scholar 

  84. Vlodavsky I, Eldor A, Haimovitz-Friedman A, Matzner Y, Ishai-Michaeli R et al (1992) Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127

    PubMed  CAS  Google Scholar 

  85. Lider O, Baharav E, Mekori YA, Miller T, Naparstek Y et al (1989) Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins. J Clin Invest 83:752–756

    Article  PubMed  CAS  Google Scholar 

  86. Naparstek Y, Cohen IR, Fuks Z, Vlodavsky I (1984) Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature 310:241–244

    Article  PubMed  CAS  Google Scholar 

  87. Lider O, Mekori YA, Miller T, Bar-Tana R, Vlodavsky I et al (1990) Inhibition of T lymphocyte heparanase by heparin prevents T cell migration and T cell-mediated immunity. Eur J Immunol 20:493–499

    Article  PubMed  CAS  Google Scholar 

  88. Li RW, Freeman C, Yu D, Hindmarsh EJ, Tymms KE et al (2008) Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. Arthritis Rheum 58:1590–1600

    Article  PubMed  CAS  Google Scholar 

  89. Shafat I, Ilan N, Zoabi S, Vlodavsky I, Nakhoul F (2011) Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels. PLoS One 6:e17312

    Article  PubMed  CAS  Google Scholar 

  90. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  PubMed  CAS  Google Scholar 

  91. Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533

    Article  PubMed  CAS  Google Scholar 

  92. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434

    Article  PubMed  CAS  Google Scholar 

  93. Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43:246–252

    Article  PubMed  CAS  Google Scholar 

  94. Caradonna L, Amati L, Magrone T, Pellegrino NM, Jirillo E et al (2000) Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res 6:205–214

    PubMed  CAS  Google Scholar 

  95. Mullin JM, Snock KV (1990) Effect of tumor necrosis factor on epithelial tight junctions and transepithelial permeability. Cancer Res 50:2172–2176

    PubMed  CAS  Google Scholar 

  96. Clayburgh DR, Shen L, Turner JR (2004) A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 84:282–291

    Article  PubMed  CAS  Google Scholar 

  97. Clevers H (2006) Colon cancer–understanding how NSAIDs work. N Engl J Med 354:761–763

    Article  PubMed  CAS  Google Scholar 

  98. Lashner BA (1994) Colorectal cancer in ulcerative colitis patients: survival curves and surveillance. Cleve Clin J Med 61:272–275

    PubMed  CAS  Google Scholar 

  99. Herszenyi L, Miheller P, Tulassay Z (2007) Carcinogenesis in inflammatory bowel disease. Dig Dis 25:267–269

    Article  PubMed  Google Scholar 

  100. Gupta RB, Harpaz N, Itzkowitz S, Hossain S, Matula S et al (2007) Histologic inflammation is a risk factor for progression to colorectal neoplasia in ulcerative colitis: a cohort study. Gastroenterology 133: 1099–1105 (quiz 1340–1091)

    Google Scholar 

  101. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  PubMed  CAS  Google Scholar 

  102. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  103. Bollrath J, Greten FR (2009) IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep 10:1314–1319

    Article  PubMed  CAS  Google Scholar 

  104. Danese S, Mantovani A (2010) Inflammatory bowel disease and intestinal cancer: a paradigm of the Yin-Yang interplay between inflammation and cancer. Oncogene 29:3313–3323

    Google Scholar 

  105. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    Article  PubMed  CAS  Google Scholar 

  106. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113

    Article  PubMed  CAS  Google Scholar 

  107. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570

    PubMed  CAS  Google Scholar 

  108. Terzic J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138(2101–2114):e2105

    Google Scholar 

  109. Mahida YR (2000) The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 6:21–33

    Article  PubMed  CAS  Google Scholar 

  110. Krieglstein CF, Cerwinka WH, Sprague AG, Laroux FS, Grisham MB et al (2002) Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 110:1773–1782

    PubMed  CAS  Google Scholar 

  111. Kamada N, Hisamatsu T, Okamoto S, Sato T, Matsuoka K et al (2005) Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J Immunol 175:6900–6908

    PubMed  CAS  Google Scholar 

  112. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N et al (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39–49

    Article  PubMed  CAS  Google Scholar 

  113. Smith PD, Ochsenbauer-Jambor C, Smythies LE (2005) Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev 206:149–159

    Article  PubMed  CAS  Google Scholar 

  114. Menzel K, Hausmann M, Obermeier F, Schreiter K, Dunger N et al (2006) Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo. Clin Exp Immunol 146:169–180

    Article  PubMed  CAS  Google Scholar 

  115. Beaulieu JF, Vachon PH, Chartrand S (1991) Immunolocalization of extracellular matrix components during organogenesis in the human small intestine. Anat Embryol (Berl) 183:363–369

    Article  CAS  Google Scholar 

  116. Simon-Assmann P, Bouziges F, Vigny M, Kedinger M (1989) Origin and deposition of basement membrane heparan sulfate proteoglycan in the developing intestine. J Cell Biol 109:1837–1848

    Article  PubMed  CAS  Google Scholar 

  117. Belmiro CL, Souza HS, Elia CC, Castelo-Branco MT, Silva FR et al (2005) Biochemical and immunohistochemical analysis of glycosaminoglycans in inflamed and non-inflamed intestinal mucosa of patients with Crohn’s disease. Int J Colorectal Dis

  118. Bode L, Eklund EA, Murch S, Freeze HH (2005) Heparan sulfate depletion amplifies TNF-alpha-induced protein leakage in an in vitro model of protein-losing enteropathy. Am J Physiol Gastrointest Liver Physiol 288:G1015–G1023

    Article  PubMed  CAS  Google Scholar 

  119. Bode L, Murch S, Freeze HH (2006) Heparan sulfate plays a central role in a dynamic in vitro model of protein-losing enteropathy. J Biol Chem 281:7809–7815

    Article  PubMed  CAS  Google Scholar 

  120. Bode L, Salvestrini C, Park PW, Li JP, Esko JD et al (2008) Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest 118:229–238

    Article  PubMed  CAS  Google Scholar 

  121. Oshiro M, Ono K, Suzuki Y, Ota H, Katsuyama T et al (2001) Immunohistochemical localization of heparan sulfate proteoglycan in human gastrointestinal tract. Histochem Cell Biol 115:373–380

    PubMed  CAS  Google Scholar 

  122. Murch SH, MacDonald TT, Walker-Smith JA, Levin M, Lionetti P et al (1993) Disruption of sulphated glycosaminoglycans in intestinal inflammation. Lancet 341:711–714

    Article  PubMed  CAS  Google Scholar 

  123. Day R, Forbes A (1999) Heparin, cell adhesion, and pathogenesis of inflammatory bowel disease. Lancet 354:62–65

    Article  PubMed  CAS  Google Scholar 

  124. Day R, Ilyas M, Daszak P, Talbot I, Forbes A (1999) Expression of syndecan-1 in inflammatory bowel disease and a possible mechanism of heparin therapy. Dig Dis Sci 44:2508–2515

    Article  PubMed  CAS  Google Scholar 

  125. Symonds DA (1978) The glycosaminoglycans of the human colon in inflammatory and neoplastic conditions. Arch Pathol Lab Med 102:146–149

    PubMed  CAS  Google Scholar 

  126. Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA et al (2005) IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4:217–220

    Article  PubMed  CAS  Google Scholar 

  127. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  PubMed  CAS  Google Scholar 

  128. Jarnicki A, Putoczki T, Ernst M (2010) Stat3: linking inflammation to epithelial cancer—more than a “gut” feeling? Cell Div 5:14

    Article  PubMed  CAS  Google Scholar 

  129. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y et al (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702

    PubMed  CAS  Google Scholar 

  130. Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39:87–92

    Article  PubMed  CAS  Google Scholar 

  131. Okayasu I, Yamada M, Mikami T, Yoshida T, Kanno J et al (2002) Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model. J Gastroenterol Hepatol 17:1078–1083

    Article  PubMed  Google Scholar 

  132. Zcharia E, Metzger S, Chajek-Shaul T, Aingorn H, Elkin M et al (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. Faseb J 18:252–263

    Article  PubMed  CAS  Google Scholar 

  133. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

    Article  PubMed  CAS  Google Scholar 

  134. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    Article  PubMed  CAS  Google Scholar 

  135. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  PubMed  CAS  Google Scholar 

  136. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  137. Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14:4280–4288

    Article  PubMed  CAS  Google Scholar 

  138. Elson CO, Sartor RB, Tennyson GS, Riddell RH (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367

    Article  PubMed  CAS  Google Scholar 

  139. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  PubMed  CAS  Google Scholar 

  140. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  PubMed  CAS  Google Scholar 

  141. Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–446

    Article  PubMed  CAS  Google Scholar 

  142. Benhamron S, Nechushtan H, Verbovetski I, Krispin A, Abboud-Jarrous G et al (2006) Translocation of active heparanase to cell surface regulates degradation of extracellular matrix heparan sulfate upon transmigration of mature monocyte-derived dendritic cells. J Immunol 176:6417–6424

    PubMed  CAS  Google Scholar 

  143. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  144. Brunn GJ, Bungum MK, Johnson GB, Platt JL (2005) Conditional signaling by Toll-like receptor 4. Faseb J 19:872–874

    PubMed  CAS  Google Scholar 

  145. Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133:1869–1881

    Article  PubMed  CAS  Google Scholar 

  146. Fukata M, Hernandez Y, Conduah D, Cohen J, Chen A et al (2009) Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis 15:997–1006

    Article  PubMed  Google Scholar 

  147. Subbaramaiah K, Yoshimatsu K, Scherl E, Das KM, Glazier KD et al (2004) Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem 279:12647–12658

    Article  PubMed  CAS  Google Scholar 

  148. Fiebiger E, Maehr R, Villadangos J, Weber E, Erickson A et al (2002) Invariant chain controls the activity of extracellular cathepsin L. J Exp Med 196:1263–1269

    Article  PubMed  CAS  Google Scholar 

  149. Zhang ZH, Chen Y, Zhao HJ, Xie CY, Ding J et al (2007) Silencing of heparanase by siRNA inhibits tumor metastasis and angiogenesis of human breast cancer in vitro and in vivo. Cancer Biol Ther 6:587–595

    PubMed  CAS  Google Scholar 

  150. Zhang Y, Li L, Wang Y, Zhang J, Wei G et al (2007) Downregulating the expression of heparanase inhibits the invasion, angiogenesis and metastasis of human hepatocellular carcinoma. Biochem Biophys Res Commun 358:124–129

    Article  PubMed  CAS  Google Scholar 

  151. Zheng LD, Jiang GS, Pu JR, Mei H, Dong JH et al (2009) Stable knockdown of heparanase expression in gastric cancer cells in vitro. World J Gastroenterol 15:5442–5448

    Article  PubMed  CAS  Google Scholar 

  152. Ferro V, Hammond E, Fairweather JK (2004) The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem 4:693–702

    PubMed  CAS  Google Scholar 

  153. McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151:1–14

    Article  PubMed  CAS  Google Scholar 

  154. Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA et al (1999) Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer 83:424–431

    Article  PubMed  CAS  Google Scholar 

  155. Pan W, Miao HQ, Xu YJ, Navarro EC, Tonra JR et al (2006) 1-[4-(1H-Benzoimidazol-2-yl)-phenyl]-3-[4-(1H-benzoimidazol-2-yl)-phenyl]- urea derivatives as small molecule heparanase inhibitors. Bioorg Med Chem Lett 16:409–412

    Article  PubMed  CAS  Google Scholar 

  156. Simizu S, Ishida K, Osada H (2004) Heparanase as a molecular target of cancer chemotherapy. Cancer Sci 95:553–558

    Article  PubMed  CAS  Google Scholar 

  157. Naggi A, Casu B, Perez M, Torri G, Cassinelli G et al (2005) Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 280:12103–12113

    Article  PubMed  CAS  Google Scholar 

  158. Dredge K, Hammond E, Handley P, Gonda TJ, Smith MT et al (2011) PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 104:635–642

    Article  PubMed  CAS  Google Scholar 

  159. Gaffney PR, Doyle CT, Gaffney A, Hogan J, Hayes DP et al (1995) Paradoxical response to heparin in 10 patients with ulcerative colitis. Am J Gastroenterol 90:220–223

    PubMed  CAS  Google Scholar 

  160. Torkvist L, Thorlacius H, Sjoqvist U, Bohman L, Lapidus A et al (1999) Low molecular weight heparin as adjuvant therapy in active ulcerative colitis. Aliment Pharmacol Ther 13:1323–1328

    Article  PubMed  CAS  Google Scholar 

  161. Evans RC, Wong VS, Morris AI, Rhodes JM (1997) Treatment of corticosteroid-resistant ulcerative colitis with heparin–a report of 16 cases. Aliment Pharmacol Ther 11:1037–1040

    Article  PubMed  CAS  Google Scholar 

  162. Floer M, Gotte M, Wild MK, Heidemann J, Gassar ES et al (2010) Enoxaparin improves the course of dextran sodium sulfate-induced colitis in syndecan-1-deficient mice. Am J Pathol 176:146–157

    Article  PubMed  CAS  Google Scholar 

  163. Kakkar AK (2003) An expanding role for antithrombotic therapy in cancer patients. Cancer Treat Rev 29(Suppl 2):23–26

    Article  PubMed  Google Scholar 

  164. Klerk CP, Smorenburg SM, Otten HM, Lensing AW, Prins MH et al (2005) The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol 23:2130–2135

    Article  PubMed  CAS  Google Scholar 

  165. Lazo-Langner A, Goss GD, Spaans JN, Rodger MA (2007) The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J Thromb Haemost 5:729–737

    Article  PubMed  CAS  Google Scholar 

  166. Lee AY, Rickles FR, Julian JA, Gent M, Baker RI et al (2005) Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J Clin Oncol 23:2123–2129

    Article  PubMed  CAS  Google Scholar 

  167. Casu B, Vlodavsky I, Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36:195–203

    Article  PubMed  CAS  Google Scholar 

  168. Bloom S, Kiilerich S, Lassen MR, Forbes A, Leiper K et al (2004) Low molecular weight heparin (tinzaparin) vs. placebo in the treatment of mild to moderately active ulcerative colitis. Aliment Pharmacol Ther 19:871–878

    Article  PubMed  CAS  Google Scholar 

  169. de Bievre MA, Vrij AA, Schoon EJ, Dijkstra G, de Jong AE et al (2007) Randomized, placebo-controlled trial of low molecular weight heparin in active ulcerative colitis. Inflamm Bowel Dis 13:753–758

    Article  PubMed  Google Scholar 

  170. Lever R, Page CP (2002) Novel drug development opportunities for heparin. Nat Rev Drug Discov 1:140–148

    Article  PubMed  CAS  Google Scholar 

  171. Vlodavsky I, Ilan N, Naggi A, Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 13:2057–2073

    Article  PubMed  CAS  Google Scholar 

  172. Gil N, Goldberg R, Neuman T, Garsen M, Zcharia E et al (2012) Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 61:208–216

    Article  PubMed  CAS  Google Scholar 

  173. Hostettler N, Naggi A, Torri G, Ishai-Michaeli R, Casu B et al (2007) P-selectin- and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. Faseb J 21:3562–3572

    Article  PubMed  CAS  Google Scholar 

  174. Yang Y, MacLeod V, Dai Y, Khotskaya-Sample Y, Shriver Z et al (2007) The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 110:2041–2048

    Article  PubMed  CAS  Google Scholar 

  175. Meirovitz A, Hermano E, Lerner I, Zcharia E, Pisano C et al (2011) Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res 71:2772–2780

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Israel Vlodavsky (Cancer and Vascular Biology Research Center, the Rappaport Faculty of Medicine, Technion, Haifa, Israel) for his continuous help and collaboration. This work was supported by grants from the German-Israel Research Foundation (GIF), Israel Science Foundation (grant 593/10), and Chief Scientist Office—Israeli Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Elkin.

Additional information

E. Hermano and I. Lerner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermano, E., Lerner, I. & Elkin, M. Heparanase enzyme in chronic inflammatory bowel disease and colon cancer. Cell. Mol. Life Sci. 69, 2501–2513 (2012). https://doi.org/10.1007/s00018-012-0930-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0930-8

Keywords

Navigation