Skip to main content

Advertisement

Log in

Structural diversity and species distribution of host-defense peptides in frog skin secretions

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cationic peptides that adopt an amphipathic α-helical conformation in a membrane-mimetic environment are synthesized in the skins of many frog species. These peptides often display cytolytic activities against bacteria and fungi consistent with the idea that they play a role in the host’s system of defense against pathogenic microorganisms, but their importance in the survival strategy of the animal is not clearly understood. Despite the common misconception that antimicrobial peptides are synthesized in the skins of all anurans, the species distribution is sporadic, suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329

    Article  PubMed  CAS  Google Scholar 

  2. Conlon JM (2004) The therapeutic potential of antimicrobial peptides from frog skin. Rev Med Micro 15:17–25

    Google Scholar 

  3. Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    Article  PubMed  CAS  Google Scholar 

  4. Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691

    Article  PubMed  CAS  Google Scholar 

  5. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  PubMed  CAS  Google Scholar 

  6. Conlon JM, Kolodziejek J, Nowotny N (2004) Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta 1696:1–14

    PubMed  CAS  Google Scholar 

  7. Nicolas P, El Amri C (2009) The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Biochim Biophys Acta 1788:1537–1550

    Article  PubMed  CAS  Google Scholar 

  8. Tennessen JA, Blouin MS (2007) Selection for antimicrobial peptide diversity in frogs leads to gene duplication and low allelic variation. J Mol Evol 65:605–615

    Article  PubMed  CAS  Google Scholar 

  9. Tennessen JA, Woodhams DC, Chaurand P, Reinert LK, Billheimer D, Shyr Y, Caprioli RM, Blouin MS, Rollins-Smith LA (2009) Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol 33:1247–1257

    Article  PubMed  CAS  Google Scholar 

  10. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  PubMed  CAS  Google Scholar 

  11. Frost DR (2010) Amphibian Species of the World: an Online Reference. Version 5.4. Electronic Database accessible at http://research.amnh.org/ herpetology/amphibia/index.php. American Museum of Natural History, New York, USA

  12. Amiche M, Ladram A, Nicolas P (2008) A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae. Peptides 29:2074–2082

    Article  PubMed  CAS  Google Scholar 

  13. Conlon JM (2008) Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides 29:1815–1819

    Article  PubMed  CAS  Google Scholar 

  14. Conlon JM (2008) A proposed nomenclature for antimicrobial peptides from frogs of the genus Leptodactylus. Peptides 29:1631–1632

    Article  PubMed  CAS  Google Scholar 

  15. Ohnuma A, Conlon JM, Kawasaki H, Iwamuro S (2006) Developmental and triiodothyronine-induced expression of genes encoding preprotemporins in the skin of Tago’s brown frog Rana tagoi. Gen Comp Endocrinol 146:242–250

    Article  PubMed  CAS  Google Scholar 

  16. Matutte B, Storey KB, Knoop FC, Conlon JM (2000) Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica in response to environmental stimuli. FEBS Lett 483:135–138

    Article  PubMed  CAS  Google Scholar 

  17. Davidson C, Benard MF, Shaffer HB, Parker JM, O’Leary C, Conlon JM, Rollins-Smith LA (2007) Effects of chytrid and carbaryl exposure on survival, growth and skin peptide defenses in foothill yellow-legged frogs. Environ Sci Technol 4:1771–1776

    Article  Google Scholar 

  18. Conlon JM, Iwamuro S, King JD (2009) Dermal cytolytic peptides and the system of innate immunity in Anurans. Ann NY Acad Sci 1163:75–82

    Article  PubMed  CAS  Google Scholar 

  19. Gissi C, San Mauro D, Pesole G, Zardoya R (2006) Mitochondrial phylogeny of Anura (Amphibia): a case study of congruent phylogenetic reconstruction using amino acid and nucleotide characters. Gene 366:228–237

    Article  PubMed  CAS  Google Scholar 

  20. Nielson M, Lohman K, Sullivan J (2001) Phylogeography of the tailed fog (Ascaphus truei): implications for the biogeography of the Pacific Northwest. Evolution 55:147–160

    PubMed  CAS  Google Scholar 

  21. Conlon JM, Sonnevend A, Davidson C, Smith DD, Nielsen PF (2004) The ascaphins: a family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei. Biochem Biophys Res Commun 320:170–175

    Article  PubMed  CAS  Google Scholar 

  22. Conlon JM, Bevier CR, Coquet L, Leprince J, Jouenne T, Vaudry H, Hossack BR (2007) Peptidomic analysis of skin secretions supports separate species status for the tailed frogs, Ascaphus truei and Ascaphus montanus. Comp Biochem Physiol 2D:121–125

    CAS  Google Scholar 

  23. Eley A, Ibrahim M, Kurdi SE, Conlon JM (2008) Activities of the frog skin peptide, ascaphin-8 and its lysine-substituted analogs against clinical isolates of extended-spectrum beta-lactamase (ESBL) producing bacteria. Peptides 29:25–30

    Article  PubMed  CAS  Google Scholar 

  24. Conlon JM, Galadari S, Raza H, Condamine E (2008) Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem Biol Drug Des 72:58–64

    Article  PubMed  CAS  Google Scholar 

  25. Conlon JM, Demandt A, Nielsen PF, Leprince J, Vaudry H, Woodhams DC (2009) The alyteserins: two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides 30:1069–1073

    Article  PubMed  CAS  Google Scholar 

  26. Conlon JM, Ahmed E, Pal T, Sonnevend A (2010) Potent and rapid bactericidal action of alyteserin-1c and its[E4K] analog against multidrug-resistant strains of Acinetobacter baumannii. Peptides 31:1806–1810

    Article  PubMed  CAS  Google Scholar 

  27. Mangoni ML, Marcellini HG, Simmaco M (2007) Biological characterization and modes of action of temporins and bombinins H, multiple forms of short and mildly cationic anti-microbial peptides from amphibian skin. J Pept Sci 13:603–613

    Article  PubMed  CAS  Google Scholar 

  28. Simmaco M, Kreil G, Barra D (2009) Bombinins, antimicrobial peptides from Bombina species. Biochim Biophys Acta 1788:1551–1555

    Article  PubMed  CAS  Google Scholar 

  29. Csordás A, Michl H (1970) Isolation and structure of a haemolytic polypeptide from the defensive secretion of European Bombina species. Monatsh Chem 101:182–189

    Article  Google Scholar 

  30. Simmaco M, Barra D, Chiarini F, Noviello L, Melchiorri P, Kreil G, Richter K (1991) A family of bombinin-related peptides from the skin of Bombina variegata. Eur J Biochem 199:217–222

    Article  PubMed  CAS  Google Scholar 

  31. Gibson BW, Tang DZ, Mandrell R, Kelly M, Spindel ER (1991) Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J Biol Chem 266:23103–23111

    PubMed  CAS  Google Scholar 

  32. Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, Tang SZ, Zhang Y (2002) Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides 23:427–435

    Article  PubMed  CAS  Google Scholar 

  33. Miele R, Ponti D, Boman HG, Barra D, Simmaco M (1998) Molecular cloning of a bombinin gene from Bombina orientalis: detection of NF-κB and NF-IL6 binding sites in its promoter. FEBS Lett 431:23–28

    Article  PubMed  CAS  Google Scholar 

  34. Miele R, Borro M, Fiocco D, Barra D, Simmaco M (2000) Sequence of a gene from Bombina orientalis coding for the antimicrobial peptide BLP-7. Peptides 21:1681–1686

    Article  PubMed  CAS  Google Scholar 

  35. Mangoni ML, Grovale N, Giorgi A, Mignogna G, Simmaco M, Barra D (2000) Structure–function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides 21:1673–1679

    Article  PubMed  CAS  Google Scholar 

  36. Mignogna G, Simmaco M, Kreil G, Barra D (1993) Antibacterial and haemolytic peptides containing d-alloisoleucine from the skin of Bombina variegata. EMBO J 12:4829–4832

    PubMed  CAS  Google Scholar 

  37. Jilek A, Mollay C, Tippelt C, Grassi J, Mignogna G, Müllegger J, Sander V, Fehrer C, Barra D, Kreil G (2005) Biosynthesis of a d-amino acid in peptide linkage by an enzyme from frog skin secretions. Proc Natl Acad Sci USA 102:4235–4239

    Article  PubMed  CAS  Google Scholar 

  38. Lai R, Liu H, Hui Lee W, Zhang Y (2002) An anionic antimicrobial peptide from toad Bombina maxima. Biochem Biophys Res Commun 295:796–799

    Article  PubMed  CAS  Google Scholar 

  39. Kobel HR, Du Pasquier L (1991) Genetics of Xenopus laevis. Methods Cell Biol 36:9–34

    Google Scholar 

  40. Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC (2004) A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol Phylogenet Evol 33:197–213

    Article  PubMed  CAS  Google Scholar 

  41. Gibson BW, Poulter L, Williams DH, Maggio JE (1986) Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis. J Biol Chem 261:5341–5349

    PubMed  CAS  Google Scholar 

  42. James S, Gibbs BF, Toney K, Bennett HP (1994) Purification of antimicrobial peptides from an extract of the skin of Xenopus laevis using heparin-affinity HPLC: characterization by ion-spray mass spectrometry. Anal Biochem 217:84–90

    Article  PubMed  CAS  Google Scholar 

  43. Hunt LT, Barker WC (1988) Relationship of promagainin to three other prohormones from the skin of Xenopus laevis: a different perspective. FEBS Lett 233:282–288

    Article  PubMed  CAS  Google Scholar 

  44. Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM (2010) Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae). Comp Biochem Physiol 152C:467–472

    CAS  Google Scholar 

  45. Conlon JM, Al-Ghaferi N, Ahmed E, Meetani MA, Leprince J, Nielsen PF (2010) Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae). Peptides 31:989–994

    Article  PubMed  CAS  Google Scholar 

  46. Ali MF, Soto A, Knoop FC, Conlon JM (2001) Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). Biochim Biophys Acta 1550:81–89

    Article  PubMed  CAS  Google Scholar 

  47. Gottler LM, Ramamoorthy A (2009) Structure, membrane orientation, mechanism, and function of pexiganan—a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta 1788:1680–1686

    Article  PubMed  CAS  Google Scholar 

  48. Subasinghage AP, Conlon JM, Hewage CM (2010) Development of potent anti-infective agents from Silurana tropicalis: conformational analysis of the amphipathic, alpha-helical antimicrobial peptide XT-7 and its non-haemolytic analogue [G4K]XT-7. Biochim Biophys Acta 1804:1020–1028

    PubMed  CAS  Google Scholar 

  49. Kawasaki H, Isaacson T, Iwamuro S, Conlon JM (2003) A protein with antimicrobial activity in the skin of Schlegel’s green tree frog Rhacophorus schlegelii (Rhacophoridae) identified as histone H2B. Biochem Biophys Res Commun 312:1082–1086

    Article  PubMed  CAS  Google Scholar 

  50. Conlon JM, Kim JB (2000) A protease inhibitor of the Kunitz family from skin secretions of the tomato frog, Dyscophus guineti (Microhylidae). Biochem Biophys Res Commun 279:961–964

    Article  PubMed  CAS  Google Scholar 

  51. Bradford AM, Bowie JH, Tyler MJ, Wallace JC (1996) New antibiotic uperin peptides from the dorsal glands of the Australian toadlet Uperoleia mjobergii. Aust J Chem 49:1325–1331

    Article  CAS  Google Scholar 

  52. Bradford AM, Raftery MJ, Bowie JH, Tyler MJ, Wallace JC, Adams GW, Severini C (1996) Novel uperin peptides from the dorsal glands of the Australian floodplain toadlet Uperoleia inundata. Aust J Chem 49:475–484

    Article  CAS  Google Scholar 

  53. Maselli VM, Brinkworth CS, Bowie JH, Tyler MJ (2004) Host-defence skin peptides of the Australian Common Froglet Crinia signifera: sequence determination using positive and negative ion electrospray mass spectra. Rapid Commun Mass Spectrom 18:2155–2161

    Article  PubMed  CAS  Google Scholar 

  54. Maselli VM, Bilusich D, Bowie JH, Tyler MJ (2006) Host-defence skin peptides of the Australian Streambank Froglet Crinia riparia: isolation and sequence determination by positive and negative ion electrospray mass spectrometry. Rapid Commun Mass Spectrom 20:797–803

    Article  PubMed  CAS  Google Scholar 

  55. El Amri C, Nicolas P (2008) Plasticins: membrane-damaging peptides with ‘chameleon-like’ properties. Cell Mol Life Sci 65:895–909

    Article  PubMed  CAS  Google Scholar 

  56. Mor A, Hani K, Nicolas P (1994) The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269:31635–31641

    PubMed  CAS  Google Scholar 

  57. Mor A, Nicolas P (1994) The NH2-terminal alpha-helical domain 1–18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem 269:1934–1939

    PubMed  CAS  Google Scholar 

  58. Apponyi MA, Pukala TL, Brinkworth CS, Maselli VM, Bowie JH, Tyler MJ, Booker GW, Wallace JC, Carver JA, Separovic F, Doyle J, Llewellyn LE (2004) Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance. Peptides 25:1035–1054

    Article  PubMed  CAS  Google Scholar 

  59. Pukala TL, Bowie JH, Maselli VM, Musgrave IF, Tyler MJ (2006) Host-defence peptides from the glandular secretions of amphibians: structure and activity. Nat Prod Rep 23:368–393

    Article  PubMed  CAS  Google Scholar 

  60. Vanhoye D, Bruston F, Nicolas P, Amiche M (2003) Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur J Biochem 270:2068–2081

    Article  PubMed  CAS  Google Scholar 

  61. Doyle J, Brinkworth CS, Wegener KL, Carver JA, Llewellyn LE, Olver IN, Bowie JH, Wabnitz PA, Tyler MJ (2003) nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. The solution structure of a modified citropin 1.1. Eur J Biochem 270:1141–1153

    Article  PubMed  CAS  Google Scholar 

  62. Wong H, Bowie JH, Carver JA (1997) The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida. Eur J Biochem 247:545–557

    Article  PubMed  CAS  Google Scholar 

  63. Olson L 3rd, Soto AM, Knoop FC, Conlon JM (2001) Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog. Biochem Biophys Res Commun 288:1001–1005

    Article  PubMed  CAS  Google Scholar 

  64. Pál T, Sonnevend A, Galadari S, Conlon JM (2005) Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2. Regul Pept 129:85–91

    Article  PubMed  Google Scholar 

  65. Prates MV, Sforça ML, Regis WC, Leite JR, Silva LP, Pertinhez TA, Araújo AL, Azevedo RB, Spisni A, Bloch C Jr (2004) The NMR-derived solution structure of a new cationic antimicrobial peptide from the skin secretion of the anuran Hyla punctata. J Biol Chem 279:13018–13026

    Article  PubMed  CAS  Google Scholar 

  66. Magalhães BS, Melo JA, Leite JR, Silva LP, Prates MV, Vinecky F, Barbosa EA, Verly RM, Mehta A, Nicoli JR, Bemquerer MP, Andrade AC, Bloch C Jr (2008) Post-secretory events alter the peptide content of the skin secretion of Hypsiboas raniceps. Biochem Biophys Res Commun 377:1057–1061

    Article  PubMed  Google Scholar 

  67. Nascimento AC, Zanotta LC, Kyaw CM, Schwartz EN, Schwartz CA, Sebben A, Sousa MV, Fontes W, Castro MS (2004) Ocellatins: new antimicrobial peptides from the skin secretion of the South American frog Leptodactylus ocellatus (Anura: Leptodactylidae). Protein J 23:501–508

    Article  PubMed  CAS  Google Scholar 

  68. Conlon JM, Abdel-Wahab YH, Flatt PR, Leprince J, Vaudry H, Jouenne T, Condamine E (2009) A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog Leptodactylus laticeps (Leptodactylidae). Peptides 30:888–892

    Article  PubMed  CAS  Google Scholar 

  69. Sousa JC, Berto RF, Gois EA, Fontenele-Cardi NC, Honório JE Jr, Konno K, Richardson M, Rocha MF, Camargo AA, Pimenta DC, Cardi BA, Carvalho KM (2009) Leptoglycin: a new glycine/leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae). Toxicon 54:23–32

    Article  PubMed  CAS  Google Scholar 

  70. Mattute B, Knoop FC, Conlon JM (2000) Kassinatuerin-1: a peptide with broad-spectrum antimicrobial activity isolated from the skin of the hyperoliid frog, Kassina senegalensis. Biochem Biophys Res Commun 268:433–436

    Article  PubMed  CAS  Google Scholar 

  71. Wang L, Zhou M, McGrath S, Chen T, Gorman SP, Walker B, Shaw C (2009) A family of kassinatuerin-2 related peptides from the skin secretion of the African hyperoliid frog, Kassina maculata. Peptides 30:1428–1433

    Article  PubMed  Google Scholar 

  72. Sai PS, Jagannadham VJ, Vairamani M, Raju NP, Devi AS, Nagaraj R, Sitaram N (2001) Tigerinins: novel antimicrobial peptides from the Indian frog Rana tigerina. J Biol Chem 276:2701–2707

    Article  PubMed  CAS  Google Scholar 

  73. Song Y, Lu Y, Wang L, Yang H, Zhang K, Lai R (2009) Purification, characterization and cloning of two novel tigerinin-like peptides from skin secretions of Fejervarya cancrivora. Peptides 30:1228–1232

    Article  PubMed  CAS  Google Scholar 

  74. Sitaram N, Sai KP, Singh S, Sankaran K, Nagaraj R (2002) Structure–function relationship studies on the frog skin antimicrobial peptide tigerinin 1: design of analogs with improved activity and their action on clinical bacterial isolates. Antimicrob Agents Chemother 46:2279–2283

    Article  PubMed  CAS  Google Scholar 

  75. Wiens JJ, Sukumaran J, Pyron RA, Brown RM (2009) Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae). Evolution 63:1217–1231

    Article  PubMed  Google Scholar 

  76. Conlon JM, Kolodziejek J, Nowotny N (2009) Antimicrobial peptides from the skins of North American frogs. Biochim Biophys Acta 1788:1556–1563

    Article  PubMed  CAS  Google Scholar 

  77. Basir YJ, Knoop FC, Dulka J, Conlon JM (2000) Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim Biophys Acta 543:95–105

    Article  Google Scholar 

  78. Wang A, Wang J, Hong J, Feng H, Yang H, Yu X, Ma Y, Lai R (2008) A novel family of antimicrobial peptides from the skin of Amolops loloensis. Biochimie 90:863–867

    Article  PubMed  CAS  Google Scholar 

  79. Suzuki H, Conlon JM, Iwamuro S (2007) Evidence that the genes encoding the melittin-related peptides in the skins of the Japanese frogs Rana sakuraii and Rana tagoi are not orthologous to bee venom melittin genes: developmental- and tissue-dependent gene expression. Peptides 28:2061–2068

    Article  PubMed  CAS  Google Scholar 

  80. Conlon JM, Kolodziejek J, Nowotny N, Leprince J, Vaudry H, Coquet L, Jouenne T, Iwamuro S (2007) Cytolytic peptides belonging to the brevinin-1 and brevinin-2 families isolated from the skin of the Japanese brown frog, Rana dybowskii. Toxicon 50:746–756

    Article  PubMed  CAS  Google Scholar 

  81. Mangoni ML, Rinaldi AC, Di Giulio A, Mignogna G, Bozzi A, Barra D, Simmaco M (2000) Structure–function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem 267:1447–1454

    Article  PubMed  CAS  Google Scholar 

  82. Mangoni ML, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A, Rinaldi AC (2004) Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem J 380:859–865

    Article  PubMed  CAS  Google Scholar 

  83. Conlon JM, Al-Ghaferi N, Abraham B, Leprince J (2007) Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 42:349–357

    Article  PubMed  CAS  Google Scholar 

  84. Ashcroft JW, Zalinger ZB, Bevier CR, Fekete FA (2007) Antimicrobial properties of two purified skin peptides from the mink frog (Rana septentrionalis) against bacteria isolated from the natural habitat. Comp Biochem Physiol 146C:325–330

    CAS  Google Scholar 

  85. Rosenfeld Y, Barra D, Simmaco M, Shai Y, Mangoni ML (2006) A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem 281:28565–28574

    Article  PubMed  CAS  Google Scholar 

  86. Kilpatrick AM, Briggs CJ, Daszak P (2010) The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol Evol 25:109–118

    Article  PubMed  Google Scholar 

  87. Rollins-Smith LA, Conlon JM (2005) Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev Comp Immunol 29:589–598

    Article  PubMed  CAS  Google Scholar 

  88. Conlon JM (2011) The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res 343:201–212

    Google Scholar 

  89. Yasin B, Pang M, Turner JS, Cho Y, Dinh NN, Waring AJ, Lehrer RI, Wagar EA (2000) Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Infect Dis 19:187–194

    Article  PubMed  CAS  Google Scholar 

  90. VanCompernolle SE, Taylor RJ, Oswald-Richter K, Jiang J, Youree BE, Bowie JH, Tyler MJ, Conlon JM, Wade D, Aiken C, Dermody TS, Kewal Ramani VN, Rollins-Smith LA, Unutmaz D (2005) Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J Virol 79:11598–11606

    Article  PubMed  CAS  Google Scholar 

  91. Chinchar VG, Wang J, Murti G, Carey C, Rollins-Smith L (2001) Inactivation of frog virus 3 and channel catfish virus by esculentin-2P and ranatuerin-2P, two antimicrobial peptides isolated from frog skin. Virology 288:351–357

    Article  PubMed  CAS  Google Scholar 

  92. Chinchar VG, Bryan L, Silphadaung U, Noga E, Wade D, Rollins-Smith L (2004) Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323:268–275

    Article  PubMed  CAS  Google Scholar 

  93. Boman HG (2000) Innate immunity and the normal microflora. Immunol Rev 173:5–16

    Article  PubMed  CAS  Google Scholar 

  94. Woodhams DC, Vredenburg VT, Simon M-A, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN (2007) Symbiotic bacteria contribute to innate immune defences of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv 138:390–398

    Article  Google Scholar 

  95. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KP (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from my own laboratory that is cited in this review was supported by Faculty Support Grants and Interdisciplinary Grants from the United Arab Emirates University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Conlon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conlon, J.M. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell. Mol. Life Sci. 68, 2303–2315 (2011). https://doi.org/10.1007/s00018-011-0720-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0720-8

Keywords

Navigation