Skip to main content
Log in

Acid sphingomyelinase in macrophage biology

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Macrophages play a central role in innate immune responses, in disposal of cholesterol, and in tissue homeostasis and remodeling. To perform these vital functions macrophages display high endosomal/lysosomal activities. Recent studies have highlighted that acid sphingomyelinase (ASMase), which generates ceramide from sphingomyelin, is involved in modulation of membrane structures and signal transduction in addition to its metabolic role in the lysosome. In this review, we bring together studies on ASMase, its different forms and locations that are necessary for the macrophage to accomplish its diverse functions. We also address the importance of ASMase to several disease processes that are mediated by activated macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23):720–731

    Article  PubMed  CAS  Google Scholar 

  2. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    Article  PubMed  CAS  Google Scholar 

  3. van Meer G (1989) Lipid traffic in animal cells. Annu Rev Cell Biol 5:247–275

    Article  PubMed  Google Scholar 

  4. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  PubMed  CAS  Google Scholar 

  5. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327(5966):656–661

    Article  PubMed  CAS  Google Scholar 

  6. van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128(3):415–435

    Article  PubMed  Google Scholar 

  7. Marcel YL, Ouimet M, Wang MD (2008) Regulation of cholesterol efflux from macrophages. Curr Opin Lipidol 19(5):455–461

    Article  PubMed  CAS  Google Scholar 

  8. Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(Suppl 1):S9–S17

    Article  PubMed  CAS  Google Scholar 

  9. Fadeel B, Xue D, Kagan V (2010) Programmed cell clearance: molecular regulation of the elimination of apoptotic cell corpses and its role in the resolution of inflammation. Biochem Biophys Res Commun 396(1):7–10

    Article  PubMed  CAS  Google Scholar 

  10. Boyce BF, Yao Z, Xing L (2009) Osteoclasts have multiple roles in bone in addition to bone resorption. Crit Rev Eukaryot Gene Expr 19(3):171–180

    PubMed  CAS  Google Scholar 

  11. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73(2):209–212

    Article  PubMed  CAS  Google Scholar 

  12. Kanfer JN, Young OM, Shapiro D, Brady RO (1966) The metabolism of sphingomyelin. I. Purification and properties of a sphingomyelin-cleaving enzyme from rat liver tissue. J Biol Chem 241(5):1081–1084

    PubMed  CAS  Google Scholar 

  13. Schneider PB, Kennedy EP (1967) Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann–Pick disease. J Lipid Res 8(3):202–209

    PubMed  CAS  Google Scholar 

  14. Tonnetti L, Veri MC, Bonvini E, D’Adamio L (1999) A role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction. J Exp Med 189(10):1581–1589

    Article  PubMed  CAS  Google Scholar 

  15. Yabu T, Imamura S, Yamashita M, Okazaki T (2008) Identification of Mg2+-dependent neutral sphingomyelinase 1 as a mediator of heat stress-induced ceramide generation and apoptosis. J Biol Chem 283(44):29971–29982

    Article  PubMed  CAS  Google Scholar 

  16. Zumbansen M, Stoffel W (2002) Neutral sphingomyelinase 1 deficiency in the mouse causes no lipid storage disease. Mol Cell Biol 22(11):3633–3638

    Article  PubMed  CAS  Google Scholar 

  17. Ito H, Murakami M, Furuhata A, Gao S, Yoshida K, Sobue S et al (2009) Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin. Biochim Biophys Acta 1789(11–12):681–690

    PubMed  CAS  Google Scholar 

  18. Levy M, Khan E, Careaga M, Goldkorn T (2009) Neutral sphingomyelinase 2 is activated by cigarette smoke to augment ceramide-induced apoptosis in lung cell death. Am J Physiol Lung Cell Mol Physiol 297(1):L125–L133

    Article  PubMed  CAS  Google Scholar 

  19. Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA (2004) Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem 279(24):25101–25111

    Article  PubMed  CAS  Google Scholar 

  20. Clarke CJ, Snook CF, Tani M, Matmati N, Marchesini N, Hannun YA (2006) The extended family of neutral sphingomyelinases. Biochemistry 45(38):11247–11256

    Article  PubMed  CAS  Google Scholar 

  21. Stoffel W, Jenke B, Block B, Zumbansen M, Koebke J (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci USA 102(12):4554–4559

    Article  PubMed  CAS  Google Scholar 

  22. Kim WJ, Okimoto RA, Purton LE, Goodwin M, Haserlat SM, Dayyani F et al (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 111(9):4716–4722

    Article  PubMed  CAS  Google Scholar 

  23. Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281(19):13784–13793

    Article  PubMed  CAS  Google Scholar 

  24. Duan RD, Nilsson A (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res 48(1):62–72

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Y, Cheng Y, Hansen GH, Niels-Christiansen LL, Koentgen F, Ohlsson L, et al (2010) Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on the enzyme knockout mice. J Lipid Res 52(4):771–781

    Google Scholar 

  26. Hertervig E, Nilsson A, Cheng Y, Duan RD (2003) Purified intestinal alkaline sphingomyelinase inhibits proliferation without inducing apoptosis in HT-29 colon carcinoma cells. J Cancer Res Clin Oncol 129(10):577–582

    Article  PubMed  CAS  Google Scholar 

  27. Wu J, Cheng Y, Nilsson A, Duan RD (2004) Identification of one exon deletion of intestinal alkaline sphingomyelinase in colon cancer HT-29 cells and a differentiation-related expression of the wild-type enzyme in Caco-2 cells. Carcinogenesis 25(8):1327–1333

    Article  PubMed  CAS  Google Scholar 

  28. Marathe S, Schissel SL, Yellin MJ, Beatini N, Mintzer R, Williams KJ et al (1998) Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem 273(7):4081–4088

    Article  PubMed  CAS  Google Scholar 

  29. Fowler S (1969) Lysosomal localization of sphingomyelinase in rat liver. Biochim Biophys Acta 191(2):481–484

    PubMed  CAS  Google Scholar 

  30. Schissel SL, Schuchman EH, Williams KJ, Tabas I (1996) Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 271(31):18431–18436

    Article  PubMed  CAS  Google Scholar 

  31. Jenkins RW, Canals D, Hannun YA (2009) Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21(6):836–846

    Article  PubMed  CAS  Google Scholar 

  32. Schissel SL, Keesler GA, Schuchman EH, Williams KJ, Tabas I (1998) The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem 273(29):18250–18259

    Article  PubMed  CAS  Google Scholar 

  33. de Duve C (2005) The lysosome turns fifty. Nat Cell Biol 7(9):847–849

    Article  PubMed  CAS  Google Scholar 

  34. Kolter T, Sandhoff K (2010) Lysosomal degradation of membrane lipids. FEBS Lett 584(9):1700–1712

    Article  PubMed  CAS  Google Scholar 

  35. Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I et al (2010) Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature 463(7280):549–553

    Article  PubMed  CAS  Google Scholar 

  36. Rutsaert J, Tondeur M, Vamos-Hurwitz E, Dustin P (1977) The cellular lesions of Farber’s disease and their experimental reproduction in tissue culture. Lab Invest 36(5):474–480

    PubMed  CAS  Google Scholar 

  37. Utermohlen O, Herz J, Schramm M, Kronke M (2008) Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses. Immunobiology 213(3–4):307–314

    Article  PubMed  CAS  Google Scholar 

  38. Goni FM, Alonso A (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531(1):38–46

    Article  PubMed  CAS  Google Scholar 

  39. Bao JX, Xia M, Poklis JL, Han WQ, Brimson C, Li PL (2010) Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries. Am J Physiol Heart Circ Physiol 298(3):H992–H1002

    Article  PubMed  CAS  Google Scholar 

  40. Herz J, Pardo J, Kashkar H, Schramm M, Kuzmenkina E, Bos E et al (2009) Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat Immunol 10(7):761–768

    Article  PubMed  CAS  Google Scholar 

  41. Bogdan C (2009) ASMase: the tailor of cytotoxic T cell granule exocytosis. Nat Immunol 10(7):683–685

    Article  PubMed  CAS  Google Scholar 

  42. Tam C, Idone V, Devlin C, Fernandes MC, Flannery A, He X et al (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189(6):1027–1038

    Article  PubMed  CAS  Google Scholar 

  43. Mathias S, Pena LA, Kolesnick RN (1998) Signal transduction of stress via ceramide. Biochem J 335:465–480

    PubMed  CAS  Google Scholar 

  44. Anker SD, Steinborn W, Strassburg S (2004) Cardiac cachexia. Ann Med 36(7):518–529

    Article  PubMed  Google Scholar 

  45. Doehner W, Bunck AC, Rauchhaus M, von Haehling S, Brunkhorst FM, Cicoira M et al (2007) Secretory sphingomyelinase is upregulated in chronic heart failure: a second messenger system of immune activation relates to body composition, muscular functional capacity, and peripheral blood flow. Eur Heart J 28(7):821–828

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi T, Abe T, Sato T, Miura K, Takahashi I, Yano M et al (2002) Elevated sphingomyelinase and hypercytokinemia in hemophagocytic lymphohistiocytosis. J Pediatr Hematol Oncol 24(5):401–404

    Article  PubMed  Google Scholar 

  47. Gupta S, Weitzman S (2010) Primary and secondary hemophagocytic lymphohistiocytosis: clinical features, pathogenesis and therapy. Expert Rev Clin Immunol 6(1):137–154

    Article  PubMed  Google Scholar 

  48. Schissel SL, Jiang X, Tweedie-Hardman J, Jeong T, Camejo EH, Najib J et al (1998) Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 273(5):2738–2746

    Article  PubMed  CAS  Google Scholar 

  49. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224

    Article  PubMed  CAS  Google Scholar 

  50. Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118(Pt 6):1099–1102

    Article  PubMed  CAS  Google Scholar 

  51. Staneva G, Chachaty C, Wolf C, Koumanov K, Quinn PJ (2008) The role of sphingomyelin in regulating phase coexistence in complex lipid model membranes: competition between ceramide and cholesterol. Biochim Biophys Acta 1778(12):2727–2739

    Article  PubMed  CAS  Google Scholar 

  52. Megha, London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279(11):9997–10004

    PubMed  CAS  Google Scholar 

  53. Veiga MP, Arrondo JL, Goni FM, Alonso A (1999) Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J 76(1 Pt 1):342–350

    Article  PubMed  CAS  Google Scholar 

  54. Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584(9):1728–1740

    Article  PubMed  CAS  Google Scholar 

  55. Scheel-Toellner D, Wang K, Assi LK, Webb PR, Craddock RM, Salmon M et al (2004) Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. Biochem Soc Trans 32(Pt 5):679–681

    PubMed  CAS  Google Scholar 

  56. Grassme H, Jendrossek V, Bock J, Riehle A, Gulbins E (2002) Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168(1):298–307

    PubMed  CAS  Google Scholar 

  57. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71(5):765–776

    Article  PubMed  CAS  Google Scholar 

  58. Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K et al (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276(23):20589–20596

    Article  PubMed  CAS  Google Scholar 

  59. Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25(41):5612–5625

    Article  PubMed  CAS  Google Scholar 

  60. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30(2):180–192

    Article  PubMed  CAS  Google Scholar 

  61. Ion G, Fajka-Boja R, Kovacs F, Szebeni G, Gombos I, Czibula A et al (2006) Acid sphingomyelinase mediated release of ceramide is essential to trigger the mitochondrial pathway of apoptosis by galectin-1. Cellular Signal 18(11):1887–1896 (Research Support, Non-U.S. Gov’t)

    Article  CAS  Google Scholar 

  62. Ferrari D, Pinton P, Campanella M, Callegari MG, Pizzirani C, Rimessi A et al (2010) Functional and structural alterations in the endoplasmic reticulum and mitochondria during apoptosis triggered by C2-ceramide and CD95/APO-1/FAS receptor stimulation. Biochem Biophys Res Commun 391(1):575–581 (Research Support, Non-U.S. Gov’t)

    Article  PubMed  CAS  Google Scholar 

  63. Longo CA, Tyler D, Mallampalli RK (1997) Sphingomyelin metabolism is developmentally regulated in rat lung. Am J Respir Cell Mol Biol 16(5):605–612

    PubMed  CAS  Google Scholar 

  64. Utermohlen O, Karow U, Lohler J, Kronke M (2003) Severe impairment in early host defense against Listeria monocytogenes in mice deficient in acid sphingomyelinase. J Immunol 170(5):2621–2628

    PubMed  Google Scholar 

  65. Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M et al (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86(2):189–199

    Article  PubMed  CAS  Google Scholar 

  66. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293(5528):293–297

    Article  PubMed  CAS  Google Scholar 

  67. Zhang Y, Mattjus P, Schmid PC, Dong Z, Zhong S, Ma WY et al (2001) Involvement of the acid sphingomyelinase pathway in uva-induced apoptosis. J Biol Chem 276(15):11775–11782

    Article  PubMed  CAS  Google Scholar 

  68. Dimanche-Boitrel MT, Meurette O, Rebillard A, Lacour S (2005) Role of early plasma membrane events in chemotherapy-induced cell death. Drug Resist Updat 8(1–2):5–14

    Article  PubMed  CAS  Google Scholar 

  69. Won JS, Singh I (2006) Sphingolipid signaling and redox regulation. Free Radic Biol Med 40(11):1875–1888

    Article  PubMed  CAS  Google Scholar 

  70. Grassme H, Schwarz H, Gulbins E (2001) Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 284(4):1016–1030

    Article  PubMed  CAS  Google Scholar 

  71. Jaiswal JK, Andrews NW, Simon SM (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 159(4):625–635

    Article  PubMed  CAS  Google Scholar 

  72. Jin S, Yi F, Zhang F, Poklis JL, Li PL (2008) Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells. Arterioscler Thromb Vasc Biol 28(11):2056–2062

    Article  PubMed  CAS  Google Scholar 

  73. Gulbins E, Li PL (2006) Physiological and pathophysiological aspects of ceramide. Am J Physiol Regul Integr Comp Physiol 290(1):R11–R26

    Article  PubMed  CAS  Google Scholar 

  74. Grassme H, Bock J, Kun J, Gulbins E (2002) Clustering of CD40 ligand is required to form a functional contact with CD40. J Biol Chem 277(33):30289–30299

    Article  PubMed  CAS  Google Scholar 

  75. Perrotta C, Bizzozero L, Cazzato D, Morlacchi S, Assi E, Simbari F et al (2010) Syntaxin 4 is required for Acid sphingomyelinase activity and apoptotic function. J Biol Chem 285(51):40240–40251

    Article  PubMed  CAS  Google Scholar 

  76. Cho WJ, Shin L, Ren G, Jena BP (2009) Structure of membrane-associated neuronal SNARE complex: implication in neurotransmitter release. J Cell Mol Med 13(10):4161–4165

    Article  PubMed  CAS  Google Scholar 

  77. Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477

    Article  PubMed  CAS  Google Scholar 

  78. Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10(2):148–155

    Article  PubMed  CAS  Google Scholar 

  79. Zeidan YH, Hannun YA (2007) Activation of acid sphingomyelinase by protein kinase Cdelta-mediated phosphorylation. J Biol Chem 282(15):11549–11561

    Article  PubMed  CAS  Google Scholar 

  80. Jenkins RW, Canals D, Idkowiak-Baldys J, Simbari F, Roddy P, Perry DM et al (2010) Regulated secretion of acid sphingomyelinase: implications for selectivity of ceramide formation. J Biol Chem 285(46):35706–35718

    Google Scholar 

  81. Jenkins RW, Clarke CJ, Canals DN, Snider AJ, Gault CR, Heffernan-Stroud L et al (2011) Regulation of CC ligand 5/ rantes by acid sphingomyelinase and acid ceramidase. J Biol Chem 286(15):13292–13303

    Google Scholar 

  82. Zhang Y, Li X, Carpinteiro A, Gulbins E (2008) Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J Immunol 181(6):4247–4254

    PubMed  CAS  Google Scholar 

  83. Reinehr R, Becker S, Braun J, Eberle A, Grether-Beck S, Haussinger D (2006) Endosomal acidification and activation of NADPH oxidase isoforms are upstream events in hyperosmolarity-induced hepatocyte apoptosis. J Biol Chem 281(32):23150–23166

    Article  PubMed  CAS  Google Scholar 

  84. Dumitru CA, Zhang Y, Li X, Gulbins E (2007) Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid Redox Signal 9(9):1535–1540

    Article  PubMed  CAS  Google Scholar 

  85. Xing YX, Li P, Miao YX, Du W, Wang CB (2008) Involvement of ROS/ASMase/JNK signalling pathway in inhibiting UVA-induced apoptosis of HaCaT cells by polypeptide from Chlamys farreri. Free Radic Res 42(1):12–19

    Article  PubMed  CAS  Google Scholar 

  86. Qiu H, Edmunds T, Baker-Malcolm J, Karey KP, Estes S, Schwarz C et al (2003) Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine. J Biol Chem 278(35):32744–32752

    Article  PubMed  CAS  Google Scholar 

  87. Charruyer A, Grazide S, Bezombes C, Muller S, Laurent G, Jaffrezou JP (2005) UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem 280(19):19196–19204

    Article  PubMed  CAS  Google Scholar 

  88. Truman JP, Garcia-Barros M, Kaag M, Hambardzumyan D, Stancevic B, Chan M et al (2010) Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS One 5(8):e12310

    Article  PubMed  CAS  Google Scholar 

  89. Brady RO, Kanfer JN, Mock MB, Fredrickson DS (1966) The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann–Pick diseae. Proc Natl Acad Sci USA 55(2):366–369

    Article  PubMed  CAS  Google Scholar 

  90. Schuchman EH (2009) The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann–Pick disease. Int J Clin Pharmacol Ther 47(Suppl 1):S48–S57

    PubMed  CAS  Google Scholar 

  91. Minai OA, Sullivan EJ, Stoller JK (2000) Pulmonary involvement in Niemann–Pick disease: case report and literature review. Respir Med 94(12):1241–1251

    Article  PubMed  CAS  Google Scholar 

  92. Mendelson DS, Wasserstein MP, Desnick RJ, Glass R, Simpson W, Skloot G et al (2006) Type B Niemann–Pick disease: findings at chest radiography, thin-section CT, and pulmonary function testing. Radiology 238(1):339–345

    Article  PubMed  Google Scholar 

  93. Ferretti GR, Lantuejoul S, Brambilla E, Coulomb M (1996) Case report. Pulmonary involvement in Niemann–Pick disease subtype B: CT findings. J Comput Assist Tomogr 20(6):990–992

    Article  PubMed  CAS  Google Scholar 

  94. Graber D, Salvayre R, Levade T (1994) Accurate differentiation of neuronopathic and nonneuronopathic forms of Niemann–Pick disease by evaluation of the effective residual lysosomal sphingomyelinase activity in intact cells. J Neurochem 63(3):1060–1068

    Article  PubMed  CAS  Google Scholar 

  95. Scandroglio F, Venkata JK, Loberto N, Prioni S, Schuchman EH, Chigorno V et al (2008) Lipid content of brain, brain membrane lipid domains, and neurons from acid sphingomyelinase deficient mice. J Neurochem 107(2):329–338

    Article  PubMed  CAS  Google Scholar 

  96. Horinouchi K, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, Sandhoff K et al (1995) Acid sphingomyelinase deficient mice: a model of types A and B Niemann–Pick disease. Nat Genet 10(3):288–293

    Article  PubMed  CAS  Google Scholar 

  97. Marathe S, Miranda SR, Devlin C, Johns A, Kuriakose G, Williams KJ et al (2000) Creation of a mouse model for non-neurological (type B) Niemann–Pick disease by stable, low level expression of lysosomal sphingomyelinase in the absence of secretory sphingomyelinase: relationship between brain intra-lysosomal enzyme activity and central nervous system function. Hum Mol Genet 9(13):1967–1976

    Article  PubMed  CAS  Google Scholar 

  98. Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J (2006) Mechanism of cholesterol transfer from the Niemann–Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem 281(42):31594–31604

    Article  PubMed  CAS  Google Scholar 

  99. Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL (2008) NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA 105(40):15287–15292

    Article  PubMed  CAS  Google Scholar 

  100. Maor I, Mandel H, Aviram M (1995) Macrophage uptake of oxidized LDL inhibits lysosomal sphingomyelinase, thus causing the accumulation of unesterified cholesterol-sphingomyelin-rich particles in the lysosomes. A possible role for 7-Ketocholesterol. Arterioscler Thromb Vasc Biol 15(9):1378–1387

    Article  PubMed  CAS  Google Scholar 

  101. Devlin C, Pipalia NH, Liao X, Schuchman EH, Maxfield FR, Tabas I (2010) Improvement in lipid and protein trafficking in NPC1 cells by correction of a secondary enzyme defect. Traffic 11(5):601–615

    Google Scholar 

  102. Devlin CM, Leventhal AR, Kuriakose G, Schuchman EH, Williams KJ, Tabas I (2008) Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol 28(10):1723–1730

    Article  PubMed  CAS  Google Scholar 

  103. Marathe S, Kuriakose G, Williams KJ, Tabas I (1999) Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscler Thromb Vasc Biol 19(11):2648–2658

    Article  PubMed  CAS  Google Scholar 

  104. Tabas I (1999) Secretory sphingomyelinase. Chem Phys Lipids 102(1–2):123–130

    Article  PubMed  CAS  Google Scholar 

  105. Subbaiah PV, Subramanian VS, Wang K (1999) Novel physiological function of sphingomyelin in plasma. Inhibition of lipid peroxidation in low density lipoproteins. J Biol Chem 274(51):36409–36414

    Article  PubMed  CAS  Google Scholar 

  106. Deigner HP, Hermetter A (2008) Oxidized phospholipids: emerging lipid mediators in pathophysiology. Curr Opin Lipidol 19(3):289–294

    Article  PubMed  CAS  Google Scholar 

  107. Fruhwirth GO, Hermetter A (2008) Mediation of apoptosis by oxidized phospholipids. Subcell Biochem 49:351–367

    Article  PubMed  Google Scholar 

  108. Tabas I, Li Y, Brocia RW, Xu SW, Swenson TL, Williams KJ (1993) Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation. J Biol Chem 268(27):20419–20432

    PubMed  CAS  Google Scholar 

  109. McGovern MM, Pohl-Worgall T, Deckelbaum RJ, Simpson W, Mendelson D, Desnick RJ et al (2004) Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr 145(1):77–81

    Article  PubMed  CAS  Google Scholar 

  110. Tall AR (1998) An overview of reverse cholesterol transport. Eur Heart J 19(Suppl A):A31–A35

    PubMed  CAS  Google Scholar 

  111. Ohashi R, Mu H, Wang X, Yao Q, Chen C (2005) Reverse cholesterol transport and cholesterol efflux in atherosclerosis. Q J Med 98(12):845–856

    Article  CAS  Google Scholar 

  112. Leventhal AR, Chen W, Tall AR, Tabas I (2001) Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux. J Biol Chem 276(48):44976–44983

    Article  PubMed  CAS  Google Scholar 

  113. Kornhuber J, Medlin A, Bleich S, Jendrossek V, Henkel AW, Wiltfang J et al (2005) High activity of acid sphingomyelinase in major depression. J Neural Transm 112(11):1583–1590

    Article  PubMed  CAS  Google Scholar 

  114. Albouz S, Le Saux F, Wenger D, Hauw JJ, Baumann N (1986) Modifications of sphingomyelin and phosphatidylcholine metabolism by tricyclic antidepressants and phenothiazines. Life Sci 38(4):357–363

    Article  PubMed  CAS  Google Scholar 

  115. Kolzer M, Werth N, Sandhoff K (2004) Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett 559(1–3):96–98

    Article  PubMed  CAS  Google Scholar 

  116. Claus RA, Bunck AC, Bockmeyer CL, Brunkhorst FM, Losche W, Kinscherf R et al (2005) Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J 19(12):1719–1721

    PubMed  CAS  Google Scholar 

  117. Wong ML, Xie B, Beatini N, Phu P, Marathe S, Johns A et al (2000) Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci USA 97(15):8681–8686

    Article  PubMed  CAS  Google Scholar 

  118. Langmann T, Buechler C, Ries S, Schaeffler A, Aslanidis C, Schuierer M et al (1999) Transcription factors Sp1 and AP-2 mediate induction of acid sphingomyelinase during monocytic differentiation. J Lipid Res 40(5):870–880

    PubMed  CAS  Google Scholar 

  119. Calbo E, Garau J (2010) Of mice and men: innate immunity in pneumococcal pneumonia. Int J Antimicrob Agents 35(2):107–113

    Article  PubMed  CAS  Google Scholar 

  120. Dentener MA, Bazil V, Von Asmuth EJ, Ceska M, Buurman WA (1993) Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor-alpha, IL-6 and IL-8 release by human monocytes and alveolar macrophages. J Immunol 150(7):2885–2891

    PubMed  CAS  Google Scholar 

  121. Sakata A, Ochiai T, Shimeno H, Hikishima S, Yokomatsu T, Shibuya S et al (2007) Acid sphingomyelinase inhibition suppresses lipopolysaccharide-mediated release of inflammatory cytokines from macrophages and protects against disease pathology in dextran sulphate sodium-induced colitis in mice. Immunology 122(1):54–64

    Article  PubMed  CAS  Google Scholar 

  122. Rozenova KA, Deevska GM, Karakashian AA, Nikolova-Karakashian MN (2010) Studies on the role of acid sphingomyelinase and ceramide in the regulation of tumor necrosis factor alpha (TNFalpha)-converting enzyme activity and TNFalpha secretion in macrophages. J Biol Chem 285(27):21103–21113

    Article  PubMed  CAS  Google Scholar 

  123. Parker LC, Prince LR, Sabroe I (2007) Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 147(2):199–207

    Article  PubMed  CAS  Google Scholar 

  124. Cuschieri J, Bulger E, Billgrin J, Garcia I, Maier RV (2007) Acid sphingomyelinase is required for lipid Raft TLR4 complex formation. Surg Infect (Larchmt) 8(1):91–106

    Article  Google Scholar 

  125. Wang SW, Parhar K, Chiu KJ, Tran A, Gangoiti P, Kong J et al (2007) Pertussis toxin promotes macrophage survival through inhibition of acid sphingomyelinase and activation of the phosphoinositide 3-kinase/protein kinase B pathway. Cell Signal 19(8):1772–1783

    Article  PubMed  CAS  Google Scholar 

  126. Wu W, Mosteller RD, Broek D (2004) Sphingosine kinase protects lipopolysaccharide-activated macrophages from apoptosis. Mol Cell Biol 24(17):7359–7369

    Article  PubMed  CAS  Google Scholar 

  127. Hammad SM, Crellin HG, Wu BX, Melton J, Anelli V, Obeid LM (2008) Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins Other Lipid Mediat 85(3–4):107–114

    Article  PubMed  CAS  Google Scholar 

  128. Gomez-Munoz A, Kong J, Salh B, Steinbrecher UP (2003) Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages. FEBS Lett 539(1–3):56–60

    Article  PubMed  CAS  Google Scholar 

  129. Hundal RS, Gomez-Munoz A, Kong JY, Salh BS, Marotta A, Duronio V et al (2003) Oxidized low density lipoprotein inhibits macrophage apoptosis by blocking ceramide generation, thereby maintaining protein kinase B activation and Bcl-XL levels. J Biol Chem 278(27):24399–24408

    Article  PubMed  CAS  Google Scholar 

  130. Consigny PM (1995) Pathogenesis of atherosclerosis. Am J Roentgenol 164(3):553–558

    CAS  Google Scholar 

  131. Miller YI, Chang MK, Binder CJ, Shaw PX, Witztum JL (2003) Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol 14(5):437–445

    Article  PubMed  CAS  Google Scholar 

  132. Yuan XM, Li W, Brunk UT, Dalen H, Chang YH, Sevanian A (2000) Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic Biol Med 28(2):208–218

    Article  PubMed  CAS  Google Scholar 

  133. Deigner HP, Claus R, Bonaterra GA, Gehrke C, Bibak N, Blaess M et al (2001) Ceramide induces aSMase expression: implications for oxLDL-induced apoptosis. FASEB J 15(3):807–814

    Article  PubMed  CAS  Google Scholar 

  134. Hammad SM, Taha TA, Nareika A, Johnson KR, Lopes-Virella MF, Obeid LM (2006) Oxidized LDL immune complexes induce release of sphingosine kinase in human U937 monocytic cells. Prostaglandins Other Lipid Mediat 79(1–2):126–140

    Article  PubMed  CAS  Google Scholar 

  135. Auge N, Maupas-Schwalm F, Elbaz M, Thiers JC, Waysbort A, Itohara S et al (2004) Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation 110(5):571–578

    Article  PubMed  CAS  Google Scholar 

  136. Fridman WH (1991) Fc receptors and immunoglobulin binding factors. FASEB J 5(12):2684–2690

    PubMed  CAS  Google Scholar 

  137. Abdel Shakor AB, Kwiatkowska K, Sobota A (2004) Cell surface ceramide generation precedes and controls FcgammaRII clustering and phosphorylation in rafts. J Biol Chem 279(35):36778–36787

    Article  PubMed  CAS  Google Scholar 

  138. Huber LC, Jungel A, Distler JH, Moritz F, Gay RE, Michel BA et al (2007) The role of membrane lipids in the induction of macrophage apoptosis by microparticles. Apoptosis 12(2):363–374

    Article  PubMed  CAS  Google Scholar 

  139. Haas A (2007) The phagosome: compartment with a license to kill. Traffic 8(4):311–330

    Article  PubMed  CAS  Google Scholar 

  140. Rogers LD, Foster LJ (2007) The dynamic phagosomal proteome and the contribution of the endoplasmic reticulum. Proc Natl Acad Sci USA 104(47):18520–18525

    Article  PubMed  CAS  Google Scholar 

  141. Schramm M, Herz J, Haas A, Kronke M, Utermohlen O (2008) Acid sphingomyelinase is required for efficient phago-lysosomal fusion. Cell Microbiol 10(9):1839–1853

    Article  PubMed  CAS  Google Scholar 

  142. Wahe A, Kasmapour B, Schmaderer C, Liebl D, Sandhoff K, Nykjaer A et al (2010) Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J Cell Sci 123(Pt 14):2502–2511

    Article  PubMed  CAS  Google Scholar 

  143. Hauck CR, Grassme H, Bock J, Jendrossek V, Ferlinz K, Meyer TF et al (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 478(3):260–266

    Article  PubMed  CAS  Google Scholar 

  144. Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H et al (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6(6):431–439

    Article  PubMed  CAS  Google Scholar 

  145. Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22(35):5457–5470

    Article  PubMed  CAS  Google Scholar 

  146. Yu H, Zeidan YH, Wu BX, Jenkins RW, Flotte TR, Hannun YA et al (2009) Defective acid sphingomyelinase pathway with Pseudomonas aeruginosa infection in cystic fibrosis. Am J Respir Cell Mol Biol 41(3):367–375 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t)

    Article  PubMed  CAS  Google Scholar 

  147. Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14(4):382–391 (Research Support, Non-U.S. Gov’t)

    Article  PubMed  CAS  Google Scholar 

  148. Zhang Y, Li X, Grassme H, Doring G, Gulbins E (2010) Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J Immunol 184(9):5104–5111 (Comparative Study Research Support, Non-U.S. Gov’t)

    Article  PubMed  CAS  Google Scholar 

  149. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661

    Article  PubMed  CAS  Google Scholar 

  150. McCollister BD, Myers JT, Jones-Carson J, Voelker DR, Vazquez-Torres A (2007) Constitutive acid sphingomyelinase enhances early and late macrophage killing of Salmonella enterica serovar Typhimurium. Infect Immun 75(11):5346–5352

    Article  PubMed  CAS  Google Scholar 

  151. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  152. Leon B, Ardavin C (2008) Monocyte-derived dendritic cells in innate and adaptive immunity. Immunol Cell Biol 86(4):320–324

    Article  PubMed  CAS  Google Scholar 

  153. van Kooyk Y, Geijtenbeek TB (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3(9):697–709 (Research Support, Non-U.S. Gov’t Review)

    Article  PubMed  CAS  Google Scholar 

  154. Avota E, Gulbins E, Schneider-Schaulies S (2011) DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog 7(2):e1001290

    Article  PubMed  CAS  Google Scholar 

  155. Eikelenboom P, Veerhuis R, Familian A, Hoozemans JJ, van Gool WA, Rozemuller AJ (2008) Neuroinflammation in plaque and vascular beta-amyloid disorders: clinical and therapeutic implications. Neurodegener Dis 5(3–4):190–193

    Article  PubMed  CAS  Google Scholar 

  156. Xuan NT, Shumilina E, Kempe DS, Gulbins E, Lang F (2010) Sphingomyelinase dependent apoptosis of dendritic cells following treatment with amyloid peptides. J Neuroimmunol 219(1–2):81–89

    Article  PubMed  CAS  Google Scholar 

  157. Falcone S, Perrotta C, De Palma C, Pisconti A, Sciorati C, Capobianco A et al (2004) Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3′,5′-monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells. J Immunol 173(7):4452–4463

    PubMed  CAS  Google Scholar 

  158. Ignarro LJ (1990) Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension 16(5):477–483

    PubMed  CAS  Google Scholar 

  159. Barsacchi R, Perrotta C, Sestili P, Cantoni O, Moncada S, Clementi E (2002) Cyclic GMP-dependent inhibition of acid sphingomyelinase by nitric oxide: an early step in protection against apoptosis. Cell Death Differ 9(11):1248–1255

    Article  PubMed  CAS  Google Scholar 

  160. Perrotta C, De Palma C, Clementi E (2008) Nitric oxide and sphingolipids: mechanisms of interaction and role in cellular pathophysiology. Biol Chem 389(11):1391–1397

    Article  PubMed  CAS  Google Scholar 

  161. Kim DO, Lee CY (2004) Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr 44(4):253–273

    Article  PubMed  CAS  Google Scholar 

  162. Mahmud H, Mauro D, Foller M, Lang F (2009) Inhibitory effect of thymol on suicidal erythrocyte death. Cell Physiol Biochem 24(5–6):407–414

    Article  PubMed  CAS  Google Scholar 

  163. Xuan NT, Shumilina E, Schmid E, Bhavsar SK, Rexhepaj R, Gotz F et al (2010) Role of acidic sphingomyelinase in thymol-mediated dendritic cell death. Mol Nutr Food Res 54(12):1833–1841

    Google Scholar 

  164. Hosea HJ, Rector ES, Taylor CG (2003) Zinc-deficient rats have fewer recent thymic emigrant (CD90 +) T lymphocytes in spleen and blood. J Nutr 133(12):4239–4242

    PubMed  CAS  Google Scholar 

  165. Prasad AS (2000) Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J Infect Dis 182(Suppl 1):S62–S68

    Article  PubMed  CAS  Google Scholar 

  166. Shumilina E, Xuan NT, Schmid E, Bhavsar SK, Szteyn K, Gu S et al (2010) Zinc induced apoptotic death of mouse dendritic cells. Apoptosis 15(10):1177–1186 (an international journal on programmed cell death [Research Support, Non-U.S. Gov’t])

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Y.A. Hannun and his team at MUSC for stimulating discussions and contribution of information to this article. S.M.H. was supported by NIH grant HL079274, NIH (ARRA) grant R01 HL079274 04S1, The Southeastern Clinical and Translational Research Institute (SCTR, formerly GCRC) and the South Carolina COBRE in Lipidomics and Pathobiology (P20 RR17677 from NCRR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar M. Hammad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truman, JP., Al Gadban, M.M., Smith, K.J. et al. Acid sphingomyelinase in macrophage biology. Cell. Mol. Life Sci. 68, 3293–3305 (2011). https://doi.org/10.1007/s00018-011-0686-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0686-6

Keywords

Navigation